diff --git a/.github/workflows/ccpp.yml b/.github/workflows/ccpp.yml
index dd8a98dd856..21ff07296fb 100644
--- a/.github/workflows/ccpp.yml
+++ b/.github/workflows/ccpp.yml
@@ -1,6 +1,10 @@
name: Darknet Continuous Integration
-on: [push, workflow_dispatch]
+on:
+ push:
+ workflow_dispatch:
+ schedule:
+ - cron: '0 0 * * *'
env:
VCPKG_BINARY_SOURCES: 'clear;nuget,vcpkgbinarycache,readwrite'
@@ -17,24 +21,13 @@ jobs:
run: sudo apt install libopencv-dev
- name: 'Install CUDA'
+ run: ./scripts/deploy-cuda.sh
+
+ - name: 'Create softlinks for CUDA'
run: |
- sudo apt update
- sudo apt-get dist-upgrade -y
- sudo wget -O /etc/apt/preferences.d/cuda-repository-pin-600 https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/cuda-ubuntu2004.pin
- sudo apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/7fa2af80.pub
- sudo add-apt-repository "deb http://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/ /"
- sudo add-apt-repository "deb http://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu2004/x86_64/ /"
- sudo apt-get install -y --no-install-recommends cuda-compiler-11-2 cuda-libraries-dev-11-2 cuda-driver-dev-11-2 cuda-cudart-dev-11-2
- sudo apt-get install -y --no-install-recommends libcudnn8-dev
- sudo rm -rf /usr/local/cuda
sudo ln -s /usr/local/cuda-11.2/lib64/stubs/libcuda.so /usr/local/cuda-11.2/lib64/stubs/libcuda.so.1
sudo ln -s /usr/local/cuda-11.2/lib64/stubs/libcuda.so /usr/local/cuda-11.2/lib64/libcuda.so.1
sudo ln -s /usr/local/cuda-11.2/lib64/stubs/libcuda.so /usr/local/cuda-11.2/lib64/libcuda.so
- sudo ln -s /usr/local/cuda-11.2 /usr/local/cuda
- export PATH=/usr/local/cuda/bin:$PATH
- export LD_LIBRARY_PATH=/usr/local/cuda/lib64:/usr/local/cuda/lib64/stubs:$LD_LIBRARY_PATH
- nvcc --version
- gcc --version
- name: 'LIBSO=1 GPU=0 CUDNN=0 OPENCV=0'
run: |
@@ -72,37 +65,26 @@ jobs:
make clean
- ubuntu-vcpkg-cuda:
+ ubuntu-vcpkg-opencv4-cuda:
runs-on: ubuntu-20.04
steps:
- uses: actions/checkout@v2
+ - uses: lukka/get-cmake@latest
+
- name: Update apt
run: sudo apt update
- name: Install dependencies
run: sudo apt install yasm nasm
- - uses: lukka/get-cmake@latest
-
- name: 'Install CUDA'
+ run: ./scripts/deploy-cuda.sh
+
+ - name: 'Create softlinks for CUDA'
run: |
- sudo apt update
- sudo apt-get dist-upgrade -y
- sudo wget -O /etc/apt/preferences.d/cuda-repository-pin-600 https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/cuda-ubuntu2004.pin
- sudo apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/7fa2af80.pub
- sudo add-apt-repository "deb http://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/ /"
- sudo add-apt-repository "deb http://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu2004/x86_64/ /"
- sudo apt-get install -y --no-install-recommends cuda-compiler-11-2 cuda-libraries-dev-11-2 cuda-driver-dev-11-2 cuda-cudart-dev-11-2
- sudo apt-get install -y --no-install-recommends libcudnn8-dev
- sudo rm -rf /usr/local/cuda
sudo ln -s /usr/local/cuda-11.2/lib64/stubs/libcuda.so /usr/local/cuda-11.2/lib64/stubs/libcuda.so.1
sudo ln -s /usr/local/cuda-11.2/lib64/stubs/libcuda.so /usr/local/cuda-11.2/lib64/libcuda.so.1
sudo ln -s /usr/local/cuda-11.2/lib64/stubs/libcuda.so /usr/local/cuda-11.2/lib64/libcuda.so
- sudo ln -s /usr/local/cuda-11.2 /usr/local/cuda
- export PATH=/usr/local/cuda/bin:$PATH
- export LD_LIBRARY_PATH=/usr/local/cuda/lib64:/usr/local/cuda/lib64/stubs:$LD_LIBRARY_PATH
- nvcc --version
- gcc --version
- name: 'Setup vcpkg and NuGet artifacts backend'
shell: bash
@@ -123,7 +105,7 @@ jobs:
CUDA_PATH: "/usr/local/cuda"
CUDA_TOOLKIT_ROOT_DIR: "/usr/local/cuda"
LD_LIBRARY_PATH: "/usr/local/cuda/lib64:/usr/local/cuda/lib64/stubs:$LD_LIBRARY_PATH"
- run: ./build.ps1 -UseVCPKG -DoNotUpdateVCPKG -EnableOPENCV -EnableCUDA -DisableInteractive -DoNotUpdateDARKNET
+ run: ./build.ps1 -UseVCPKG -DoNotUpdateVCPKG -EnableOPENCV -EnableCUDA -EnableCUDNN -DisableInteractive -DoNotUpdateDARKNET
- uses: actions/upload-artifact@v2
with:
@@ -143,6 +125,92 @@ jobs:
path: ${{ github.workspace }}/uselib*
+ ubuntu-vcpkg-opencv3-cuda:
+ runs-on: ubuntu-20.04
+ steps:
+ - uses: actions/checkout@v2
+
+ - uses: lukka/get-cmake@latest
+
+ - name: Update apt
+ run: sudo apt update
+ - name: Install dependencies
+ run: sudo apt install yasm nasm
+
+ - name: 'Install CUDA'
+ run: ./scripts/deploy-cuda.sh
+
+ - name: 'Create softlinks for CUDA'
+ run: |
+ sudo ln -s /usr/local/cuda-11.2/lib64/stubs/libcuda.so /usr/local/cuda-11.2/lib64/stubs/libcuda.so.1
+ sudo ln -s /usr/local/cuda-11.2/lib64/stubs/libcuda.so /usr/local/cuda-11.2/lib64/libcuda.so.1
+ sudo ln -s /usr/local/cuda-11.2/lib64/stubs/libcuda.so /usr/local/cuda-11.2/lib64/libcuda.so
+
+ - name: 'Setup vcpkg and NuGet artifacts backend'
+ shell: bash
+ run: >
+ git clone https://github.com/microsoft/vcpkg ;
+ ./vcpkg/bootstrap-vcpkg.sh ;
+ mono $(./vcpkg/vcpkg fetch nuget | tail -n 1) sources add
+ -Name "vcpkgbinarycache"
+ -Source http://93.49.111.10:5555/v3/index.json ;
+ mono $(./vcpkg/vcpkg fetch nuget | tail -n 1)
+ setapikey ${{ secrets.BAGET_API_KEY }}
+ -Source http://93.49.111.10:5555/v3/index.json
+
+ - name: 'Build'
+ shell: pwsh
+ env:
+ CUDACXX: "/usr/local/cuda/bin/nvcc"
+ CUDA_PATH: "/usr/local/cuda"
+ CUDA_TOOLKIT_ROOT_DIR: "/usr/local/cuda"
+ LD_LIBRARY_PATH: "/usr/local/cuda/lib64:/usr/local/cuda/lib64/stubs:$LD_LIBRARY_PATH"
+ run: ./build.ps1 -UseVCPKG -DoNotUpdateVCPKG -EnableOPENCV -EnableCUDA -EnableCUDNN -ForceOpenCVVersion 3 -DisableInteractive -DoNotUpdateDARKNET
+
+
+ ubuntu-vcpkg-opencv2-cuda:
+ runs-on: ubuntu-20.04
+ steps:
+ - uses: actions/checkout@v2
+
+ - uses: lukka/get-cmake@latest
+
+ - name: Update apt
+ run: sudo apt update
+ - name: Install dependencies
+ run: sudo apt install yasm nasm
+
+ - name: 'Install CUDA'
+ run: ./scripts/deploy-cuda.sh
+
+ - name: 'Create softlinks for CUDA'
+ run: |
+ sudo ln -s /usr/local/cuda-11.2/lib64/stubs/libcuda.so /usr/local/cuda-11.2/lib64/stubs/libcuda.so.1
+ sudo ln -s /usr/local/cuda-11.2/lib64/stubs/libcuda.so /usr/local/cuda-11.2/lib64/libcuda.so.1
+ sudo ln -s /usr/local/cuda-11.2/lib64/stubs/libcuda.so /usr/local/cuda-11.2/lib64/libcuda.so
+
+ - name: 'Setup vcpkg and NuGet artifacts backend'
+ shell: bash
+ run: >
+ git clone https://github.com/microsoft/vcpkg ;
+ ./vcpkg/bootstrap-vcpkg.sh ;
+ mono $(./vcpkg/vcpkg fetch nuget | tail -n 1) sources add
+ -Name "vcpkgbinarycache"
+ -Source http://93.49.111.10:5555/v3/index.json ;
+ mono $(./vcpkg/vcpkg fetch nuget | tail -n 1)
+ setapikey ${{ secrets.BAGET_API_KEY }}
+ -Source http://93.49.111.10:5555/v3/index.json
+
+ - name: 'Build'
+ shell: pwsh
+ env:
+ CUDACXX: "/usr/local/cuda/bin/nvcc"
+ CUDA_PATH: "/usr/local/cuda"
+ CUDA_TOOLKIT_ROOT_DIR: "/usr/local/cuda"
+ LD_LIBRARY_PATH: "/usr/local/cuda/lib64:/usr/local/cuda/lib64/stubs:$LD_LIBRARY_PATH"
+ run: ./build.ps1 -UseVCPKG -DoNotUpdateVCPKG -EnableOPENCV -EnableCUDA -EnableCUDNN -ForceOpenCVVersion 2 -DisableInteractive -DoNotUpdateDARKNET
+
+
ubuntu:
runs-on: ubuntu-20.04
steps:
@@ -195,24 +263,13 @@ jobs:
- uses: lukka/get-cmake@latest
- name: 'Install CUDA'
+ run: ./scripts/deploy-cuda.sh
+
+ - name: 'Create softlinks for CUDA'
run: |
- sudo apt update
- sudo apt-get dist-upgrade -y
- sudo wget -O /etc/apt/preferences.d/cuda-repository-pin-600 https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/cuda-ubuntu2004.pin
- sudo apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/7fa2af80.pub
- sudo add-apt-repository "deb http://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/ /"
- sudo add-apt-repository "deb http://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu2004/x86_64/ /"
- sudo apt-get install -y --no-install-recommends cuda-compiler-11-2 cuda-libraries-dev-11-2 cuda-driver-dev-11-2 cuda-cudart-dev-11-2
- sudo apt-get install -y --no-install-recommends libcudnn8-dev
- sudo rm -rf /usr/local/cuda
sudo ln -s /usr/local/cuda-11.2/lib64/stubs/libcuda.so /usr/local/cuda-11.2/lib64/stubs/libcuda.so.1
sudo ln -s /usr/local/cuda-11.2/lib64/stubs/libcuda.so /usr/local/cuda-11.2/lib64/libcuda.so.1
sudo ln -s /usr/local/cuda-11.2/lib64/stubs/libcuda.so /usr/local/cuda-11.2/lib64/libcuda.so
- sudo ln -s /usr/local/cuda-11.2 /usr/local/cuda
- export PATH=/usr/local/cuda/bin:$PATH
- export LD_LIBRARY_PATH=/usr/local/cuda/lib64:/usr/local/cuda/lib64/stubs:$LD_LIBRARY_PATH
- nvcc --version
- gcc --version
- name: 'Build'
shell: pwsh
@@ -221,7 +278,7 @@ jobs:
CUDA_PATH: "/usr/local/cuda"
CUDA_TOOLKIT_ROOT_DIR: "/usr/local/cuda"
LD_LIBRARY_PATH: "/usr/local/cuda/lib64:/usr/local/cuda/lib64/stubs:$LD_LIBRARY_PATH"
- run: ./build.ps1 -EnableOPENCV -EnableCUDA -DisableInteractive -DoNotUpdateDARKNET
+ run: ./build.ps1 -EnableOPENCV -EnableCUDA -EnableCUDNN -DisableInteractive -DoNotUpdateDARKNET
- uses: actions/upload-artifact@v2
with:
@@ -253,6 +310,28 @@ jobs:
run: ./build.ps1 -ForceCPP -DisableInteractive -DoNotUpdateDARKNET
+ ubuntu-setup-sh:
+ runs-on: ubuntu-20.04
+ steps:
+ - uses: actions/checkout@v2
+
+ - name: 'Setup vcpkg and NuGet artifacts backend'
+ shell: bash
+ run: >
+ git clone https://github.com/microsoft/vcpkg ;
+ ./vcpkg/bootstrap-vcpkg.sh ;
+ mono $(./vcpkg/vcpkg fetch nuget | tail -n 1) sources add
+ -Name "vcpkgbinarycache"
+ -Source http://93.49.111.10:5555/v3/index.json ;
+ mono $(./vcpkg/vcpkg fetch nuget | tail -n 1)
+ setapikey ${{ secrets.BAGET_API_KEY }}
+ -Source http://93.49.111.10:5555/v3/index.json
+
+ - name: 'Setup'
+ shell: bash
+ run: ./scripts/setup.sh -InstallCUDA -BypassDRIVER
+
+
osx-vcpkg:
runs-on: macos-latest
steps:
@@ -419,6 +498,28 @@ jobs:
path: ${{ github.workspace }}/uselib*
+ win-setup-ps1:
+ runs-on: windows-latest
+ steps:
+ - uses: actions/checkout@v2
+
+ - name: 'Setup vcpkg and NuGet artifacts backend'
+ shell: bash
+ run: >
+ git clone https://github.com/microsoft/vcpkg ;
+ ./vcpkg/bootstrap-vcpkg.sh ;
+ $(./vcpkg/vcpkg fetch nuget | tail -n 1) sources add
+ -Name "vcpkgbinarycache"
+ -Source http://93.49.111.10:5555/v3/index.json ;
+ $(./vcpkg/vcpkg fetch nuget | tail -n 1)
+ setapikey ${{ secrets.BAGET_API_KEY }}
+ -Source http://93.49.111.10:5555/v3/index.json
+
+ - name: 'Setup'
+ shell: pwsh
+ run: ./scripts/setup.ps1 -InstallCUDA
+
+
win-intlibs-cpp:
runs-on: windows-latest
steps:
@@ -431,6 +532,18 @@ jobs:
run: ./build.ps1 -ForceCPP -DisableInteractive -DoNotUpdateDARKNET
+ win-csharp:
+ runs-on: windows-latest
+ steps:
+ - uses: actions/checkout@v2
+
+ - uses: lukka/get-cmake@latest
+
+ - name: 'Build'
+ shell: pwsh
+ run: ./build.ps1 -EnableCSharpWrapper -DisableInteractive -DoNotUpdateDARKNET
+
+
win-intlibs-cuda:
runs-on: windows-latest
steps:
diff --git a/.github/workflows/on_pr.yml b/.github/workflows/on_pr.yml
index 198d84fc4e0..6b6aface5b8 100644
--- a/.github/workflows/on_pr.yml
+++ b/.github/workflows/on_pr.yml
@@ -17,24 +17,13 @@ jobs:
run: sudo apt install libopencv-dev
- name: 'Install CUDA'
+ run: ./scripts/deploy-cuda.sh
+
+ - name: 'Create softlinks for CUDA'
run: |
- sudo apt update
- sudo apt-get dist-upgrade -y
- sudo wget -O /etc/apt/preferences.d/cuda-repository-pin-600 https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/cuda-ubuntu2004.pin
- sudo apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/7fa2af80.pub
- sudo add-apt-repository "deb http://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/ /"
- sudo add-apt-repository "deb http://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu2004/x86_64/ /"
- sudo apt-get install -y --no-install-recommends cuda-compiler-11-2 cuda-libraries-dev-11-2 cuda-driver-dev-11-2 cuda-cudart-dev-11-2
- sudo apt-get install -y --no-install-recommends libcudnn8-dev
- sudo rm -rf /usr/local/cuda
sudo ln -s /usr/local/cuda-11.2/lib64/stubs/libcuda.so /usr/local/cuda-11.2/lib64/stubs/libcuda.so.1
sudo ln -s /usr/local/cuda-11.2/lib64/stubs/libcuda.so /usr/local/cuda-11.2/lib64/libcuda.so.1
sudo ln -s /usr/local/cuda-11.2/lib64/stubs/libcuda.so /usr/local/cuda-11.2/lib64/libcuda.so
- sudo ln -s /usr/local/cuda-11.2 /usr/local/cuda
- export PATH=/usr/local/cuda/bin:$PATH
- export LD_LIBRARY_PATH=/usr/local/cuda/lib64:/usr/local/cuda/lib64/stubs:$LD_LIBRARY_PATH
- nvcc --version
- gcc --version
- name: 'LIBSO=1 GPU=0 CUDNN=0 OPENCV=0'
run: |
@@ -72,37 +61,26 @@ jobs:
make clean
- ubuntu-vcpkg-cuda:
+ ubuntu-vcpkg-opencv4-cuda:
runs-on: ubuntu-20.04
steps:
- uses: actions/checkout@v2
+ - uses: lukka/get-cmake@latest
+
- name: Update apt
run: sudo apt update
- name: Install dependencies
run: sudo apt install yasm nasm
- - uses: lukka/get-cmake@latest
-
- name: 'Install CUDA'
+ run: ./scripts/deploy-cuda.sh
+
+ - name: 'Create softlinks for CUDA'
run: |
- sudo apt update
- sudo apt-get dist-upgrade -y
- sudo wget -O /etc/apt/preferences.d/cuda-repository-pin-600 https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/cuda-ubuntu2004.pin
- sudo apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/7fa2af80.pub
- sudo add-apt-repository "deb http://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/ /"
- sudo add-apt-repository "deb http://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu2004/x86_64/ /"
- sudo apt-get install -y --no-install-recommends cuda-compiler-11-2 cuda-libraries-dev-11-2 cuda-driver-dev-11-2 cuda-cudart-dev-11-2
- sudo apt-get install -y --no-install-recommends libcudnn8-dev
- sudo rm -rf /usr/local/cuda
sudo ln -s /usr/local/cuda-11.2/lib64/stubs/libcuda.so /usr/local/cuda-11.2/lib64/stubs/libcuda.so.1
sudo ln -s /usr/local/cuda-11.2/lib64/stubs/libcuda.so /usr/local/cuda-11.2/lib64/libcuda.so.1
sudo ln -s /usr/local/cuda-11.2/lib64/stubs/libcuda.so /usr/local/cuda-11.2/lib64/libcuda.so
- sudo ln -s /usr/local/cuda-11.2 /usr/local/cuda
- export PATH=/usr/local/cuda/bin:$PATH
- export LD_LIBRARY_PATH=/usr/local/cuda/lib64:/usr/local/cuda/lib64/stubs:$LD_LIBRARY_PATH
- nvcc --version
- gcc --version
- name: 'Setup vcpkg and NuGet artifacts backend'
shell: bash
@@ -120,7 +98,7 @@ jobs:
CUDA_PATH: "/usr/local/cuda"
CUDA_TOOLKIT_ROOT_DIR: "/usr/local/cuda"
LD_LIBRARY_PATH: "/usr/local/cuda/lib64:/usr/local/cuda/lib64/stubs:$LD_LIBRARY_PATH"
- run: ./build.ps1 -UseVCPKG -DoNotUpdateVCPKG -EnableOPENCV -EnableCUDA -DisableInteractive -DoNotUpdateDARKNET
+ run: ./build.ps1 -UseVCPKG -DoNotUpdateVCPKG -EnableOPENCV -EnableCUDA -EnableCUDNN -DisableInteractive -DoNotUpdateDARKNET
- uses: actions/upload-artifact@v2
with:
@@ -140,6 +118,86 @@ jobs:
path: ${{ github.workspace }}/uselib*
+ ubuntu-vcpkg-opencv3-cuda:
+ runs-on: ubuntu-20.04
+ steps:
+ - uses: actions/checkout@v2
+
+ - uses: lukka/get-cmake@latest
+
+ - name: Update apt
+ run: sudo apt update
+ - name: Install dependencies
+ run: sudo apt install yasm nasm
+
+ - name: 'Install CUDA'
+ run: ./scripts/deploy-cuda.sh
+
+ - name: 'Create softlinks for CUDA'
+ run: |
+ sudo ln -s /usr/local/cuda-11.2/lib64/stubs/libcuda.so /usr/local/cuda-11.2/lib64/stubs/libcuda.so.1
+ sudo ln -s /usr/local/cuda-11.2/lib64/stubs/libcuda.so /usr/local/cuda-11.2/lib64/libcuda.so.1
+ sudo ln -s /usr/local/cuda-11.2/lib64/stubs/libcuda.so /usr/local/cuda-11.2/lib64/libcuda.so
+
+ - name: 'Setup vcpkg and NuGet artifacts backend'
+ shell: bash
+ run: >
+ git clone https://github.com/microsoft/vcpkg ;
+ ./vcpkg/bootstrap-vcpkg.sh ;
+ mono $(./vcpkg/vcpkg fetch nuget | tail -n 1) sources add
+ -Name "vcpkgbinarycache"
+ -Source http://93.49.111.10:5555/v3/index.json
+
+ - name: 'Build'
+ shell: pwsh
+ env:
+ CUDACXX: "/usr/local/cuda/bin/nvcc"
+ CUDA_PATH: "/usr/local/cuda"
+ CUDA_TOOLKIT_ROOT_DIR: "/usr/local/cuda"
+ LD_LIBRARY_PATH: "/usr/local/cuda/lib64:/usr/local/cuda/lib64/stubs:$LD_LIBRARY_PATH"
+ run: ./build.ps1 -UseVCPKG -DoNotUpdateVCPKG -EnableOPENCV -EnableCUDA -EnableCUDNN -ForceOpenCVVersion 3 -DisableInteractive -DoNotUpdateDARKNET
+
+
+ ubuntu-vcpkg-opencv2-cuda:
+ runs-on: ubuntu-20.04
+ steps:
+ - uses: actions/checkout@v2
+
+ - uses: lukka/get-cmake@latest
+
+ - name: Update apt
+ run: sudo apt update
+ - name: Install dependencies
+ run: sudo apt install yasm nasm
+
+ - name: 'Install CUDA'
+ run: ./scripts/deploy-cuda.sh
+
+ - name: 'Create softlinks for CUDA'
+ run: |
+ sudo ln -s /usr/local/cuda-11.2/lib64/stubs/libcuda.so /usr/local/cuda-11.2/lib64/stubs/libcuda.so.1
+ sudo ln -s /usr/local/cuda-11.2/lib64/stubs/libcuda.so /usr/local/cuda-11.2/lib64/libcuda.so.1
+ sudo ln -s /usr/local/cuda-11.2/lib64/stubs/libcuda.so /usr/local/cuda-11.2/lib64/libcuda.so
+
+ - name: 'Setup vcpkg and NuGet artifacts backend'
+ shell: bash
+ run: >
+ git clone https://github.com/microsoft/vcpkg ;
+ ./vcpkg/bootstrap-vcpkg.sh ;
+ mono $(./vcpkg/vcpkg fetch nuget | tail -n 1) sources add
+ -Name "vcpkgbinarycache"
+ -Source http://93.49.111.10:5555/v3/index.json
+
+ - name: 'Build'
+ shell: pwsh
+ env:
+ CUDACXX: "/usr/local/cuda/bin/nvcc"
+ CUDA_PATH: "/usr/local/cuda"
+ CUDA_TOOLKIT_ROOT_DIR: "/usr/local/cuda"
+ LD_LIBRARY_PATH: "/usr/local/cuda/lib64:/usr/local/cuda/lib64/stubs:$LD_LIBRARY_PATH"
+ run: ./build.ps1 -UseVCPKG -DoNotUpdateVCPKG -EnableOPENCV -EnableCUDA -EnableCUDNN -ForceOpenCVVersion 2 -DisableInteractive -DoNotUpdateDARKNET
+
+
ubuntu:
runs-on: ubuntu-20.04
steps:
@@ -192,24 +250,13 @@ jobs:
- uses: lukka/get-cmake@latest
- name: 'Install CUDA'
+ run: ./scripts/deploy-cuda.sh
+
+ - name: 'Create softlinks for CUDA'
run: |
- sudo apt update
- sudo apt-get dist-upgrade -y
- sudo wget -O /etc/apt/preferences.d/cuda-repository-pin-600 https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/cuda-ubuntu2004.pin
- sudo apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/7fa2af80.pub
- sudo add-apt-repository "deb http://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/ /"
- sudo add-apt-repository "deb http://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu2004/x86_64/ /"
- sudo apt-get install -y --no-install-recommends cuda-compiler-11-2 cuda-libraries-dev-11-2 cuda-driver-dev-11-2 cuda-cudart-dev-11-2
- sudo apt-get install -y --no-install-recommends libcudnn8-dev
- sudo rm -rf /usr/local/cuda
sudo ln -s /usr/local/cuda-11.2/lib64/stubs/libcuda.so /usr/local/cuda-11.2/lib64/stubs/libcuda.so.1
sudo ln -s /usr/local/cuda-11.2/lib64/stubs/libcuda.so /usr/local/cuda-11.2/lib64/libcuda.so.1
sudo ln -s /usr/local/cuda-11.2/lib64/stubs/libcuda.so /usr/local/cuda-11.2/lib64/libcuda.so
- sudo ln -s /usr/local/cuda-11.2 /usr/local/cuda
- export PATH=/usr/local/cuda/bin:$PATH
- export LD_LIBRARY_PATH=/usr/local/cuda/lib64:/usr/local/cuda/lib64/stubs:$LD_LIBRARY_PATH
- nvcc --version
- gcc --version
- name: 'Build'
shell: pwsh
@@ -218,7 +265,7 @@ jobs:
CUDA_PATH: "/usr/local/cuda"
CUDA_TOOLKIT_ROOT_DIR: "/usr/local/cuda"
LD_LIBRARY_PATH: "/usr/local/cuda/lib64:/usr/local/cuda/lib64/stubs:$LD_LIBRARY_PATH"
- run: ./build.ps1 -EnableOPENCV -EnableCUDA -DisableInteractive -DoNotUpdateDARKNET
+ run: ./build.ps1 -EnableOPENCV -EnableCUDA -EnableCUDNN -DisableInteractive -DoNotUpdateDARKNET
- uses: actions/upload-artifact@v2
with:
@@ -250,6 +297,25 @@ jobs:
run: ./build.ps1 -ForceCPP -DisableInteractive -DoNotUpdateDARKNET
+ ubuntu-setup-sh:
+ runs-on: ubuntu-20.04
+ steps:
+ - uses: actions/checkout@v2
+
+ - name: 'Setup vcpkg and NuGet artifacts backend'
+ shell: bash
+ run: >
+ git clone https://github.com/microsoft/vcpkg ;
+ ./vcpkg/bootstrap-vcpkg.sh ;
+ mono $(./vcpkg/vcpkg fetch nuget | tail -n 1) sources add
+ -Name "vcpkgbinarycache"
+ -Source http://93.49.111.10:5555/v3/index.json
+
+ - name: 'Setup'
+ shell: bash
+ run: ./scripts/setup.sh -InstallCUDA -BypassDRIVER
+
+
osx-vcpkg:
runs-on: macos-latest
steps:
@@ -410,6 +476,25 @@ jobs:
path: ${{ github.workspace }}/uselib*
+ win-setup-ps1:
+ runs-on: windows-latest
+ steps:
+ - uses: actions/checkout@v2
+
+ - name: 'Setup vcpkg and NuGet artifacts backend'
+ shell: bash
+ run: >
+ git clone https://github.com/microsoft/vcpkg ;
+ ./vcpkg/bootstrap-vcpkg.sh ;
+ $(./vcpkg/vcpkg fetch nuget | tail -n 1) sources add
+ -Name "vcpkgbinarycache"
+ -Source http://93.49.111.10:5555/v3/index.json
+
+ - name: 'Setup'
+ shell: pwsh
+ run: ./scripts/setup.ps1 -InstallCUDA
+
+
win-intlibs-cpp:
runs-on: windows-latest
steps:
@@ -422,6 +507,18 @@ jobs:
run: ./build.ps1 -ForceCPP -DisableInteractive -DoNotUpdateDARKNET
+ win-csharp:
+ runs-on: windows-latest
+ steps:
+ - uses: actions/checkout@v2
+
+ - uses: lukka/get-cmake@latest
+
+ - name: 'Build'
+ shell: pwsh
+ run: ./build.ps1 -EnableCSharpWrapper -DisableInteractive -DoNotUpdateDARKNET
+
+
win-intlibs-cuda:
runs-on: windows-latest
steps:
diff --git a/.gitignore b/.gitignore
index 174f0b5a378..916cfb88461 100644
--- a/.gitignore
+++ b/.gitignore
@@ -22,6 +22,8 @@ cfg/
temp/
build/darknet/*
build_*/
+ninja/
+ninja.zip
vcpkg_installed/
!build/darknet/YoloWrapper.cs
.fuse*
@@ -36,6 +38,7 @@ build/.ninja_deps
build/.ninja_log
build/Makefile
*/vcpkg-manifest-install.log
+build.log
# OS Generated #
.DS_Store*
diff --git a/.travis.yml b/.travis.yml
index 447a72a179d..f208498dbcd 100644
--- a/.travis.yml
+++ b/.travis.yml
@@ -16,32 +16,6 @@ matrix:
- additional_defines=" -DENABLE_CUDA=OFF -DENABLE_CUDNN=OFF -DENABLE_OPENCV=OFF"
- MATRIX_EVAL=""
- - os: osx
- compiler: gcc
- name: macOS - gcc (llvm backend) - opencv@2
- osx_image: xcode12.3
- env:
- - OpenCV_DIR="/usr/local/opt/opencv@2/"
- - additional_defines="-DOpenCV_DIR=${OpenCV_DIR} -DENABLE_CUDA=OFF"
- - MATRIX_EVAL="brew install opencv@2"
-
- - os: osx
- compiler: gcc
- name: macOS - gcc (llvm backend) - opencv@3
- osx_image: xcode12.3
- env:
- - OpenCV_DIR="/usr/local/opt/opencv@3/"
- - additional_defines="-DOpenCV_DIR=${OpenCV_DIR} -DENABLE_CUDA=OFF"
- - MATRIX_EVAL="brew install opencv@3"
-
- - os: osx
- compiler: gcc
- name: macOS - gcc (llvm backend) - opencv(latest)
- osx_image: xcode12.3
- env:
- - additional_defines=" -DENABLE_CUDA=OFF"
- - MATRIX_EVAL="brew install opencv"
-
- os: osx
compiler: clang
name: macOS - clang
@@ -58,40 +32,6 @@ matrix:
- additional_defines="-DBUILD_AS_CPP:BOOL=TRUE -DENABLE_CUDA=OFF -DENABLE_CUDNN=OFF -DENABLE_OPENCV=OFF"
- MATRIX_EVAL=""
- - os: osx
- compiler: clang
- name: macOS - clang - opencv@2
- osx_image: xcode12.3
- env:
- - OpenCV_DIR="/usr/local/opt/opencv@2/"
- - additional_defines="-DOpenCV_DIR=${OpenCV_DIR} -DENABLE_CUDA=OFF"
- - MATRIX_EVAL="brew install opencv@2"
-
- - os: osx
- compiler: clang
- name: macOS - clang - opencv@3
- osx_image: xcode12.3
- env:
- - OpenCV_DIR="/usr/local/opt/opencv@3/"
- - additional_defines="-DOpenCV_DIR=${OpenCV_DIR} -DENABLE_CUDA=OFF"
- - MATRIX_EVAL="brew install opencv@3"
-
- - os: osx
- compiler: clang
- name: macOS - clang - opencv(latest)
- osx_image: xcode12.3
- env:
- - additional_defines=" -DENABLE_CUDA=OFF"
- - MATRIX_EVAL="brew install opencv"
-
- - os: osx
- compiler: clang
- name: macOS - clang - opencv(latest) - libomp
- osx_image: xcode12.3
- env:
- - additional_defines=" -DENABLE_CUDA=OFF"
- - MATRIX_EVAL="brew install opencv libomp"
-
- os: linux
compiler: clang
dist: bionic
diff --git a/CMakeLists.txt b/CMakeLists.txt
index 0029abe78ee..0e1abf32d9c 100644
--- a/CMakeLists.txt
+++ b/CMakeLists.txt
@@ -7,6 +7,8 @@ set(Darknet_PATCH_VERSION 5)
set(Darknet_TWEAK_VERSION 4)
set(Darknet_VERSION ${Darknet_MAJOR_VERSION}.${Darknet_MINOR_VERSION}.${Darknet_PATCH_VERSION}.${Darknet_TWEAK_VERSION})
+message("Darknet_VERSION: ${Darknet_VERSION}")
+
option(CMAKE_VERBOSE_MAKEFILE "Create verbose makefile" ON)
option(CUDA_VERBOSE_BUILD "Create verbose CUDA build" ON)
option(BUILD_SHARED_LIBS "Create dark as a shared library" ON)
@@ -19,20 +21,50 @@ option(ENABLE_CUDNN "Enable CUDNN" ON)
option(ENABLE_CUDNN_HALF "Enable CUDNN Half precision" ON)
option(ENABLE_ZED_CAMERA "Enable ZED Camera support" ON)
option(ENABLE_VCPKG_INTEGRATION "Enable VCPKG integration" ON)
+option(ENABLE_CSHARP_WRAPPER "Enable building a csharp wrapper" OFF)
option(VCPKG_BUILD_OPENCV_WITH_CUDA "Build OpenCV with CUDA extension integration" ON)
+option(VCPKG_USE_OPENCV2 "Use legacy OpenCV 2" OFF)
+option(VCPKG_USE_OPENCV3 "Use legacy OpenCV 3" OFF)
+option(VCPKG_USE_OPENCV4 "Use OpenCV 4" ON)
-if(VCPKG_BUILD_OPENCV_WITH_CUDA AND NOT APPLE)
- list(APPEND VCPKG_MANIFEST_FEATURES "opencv-cuda")
+if(VCPKG_USE_OPENCV4 AND VCPKG_USE_OPENCV2)
+ message(STATUS "You required vcpkg feature related to OpenCV 2 but forgot to turn off those for OpenCV 4, doing that for you")
+ set(VCPKG_USE_OPENCV4 OFF CACHE BOOL "Use OpenCV 4" FORCE)
+endif()
+if(VCPKG_USE_OPENCV4 AND VCPKG_USE_OPENCV3)
+ message(STATUS "You required vcpkg feature related to OpenCV 3 but forgot to turn off those for OpenCV 4, doing that for you")
+ set(VCPKG_USE_OPENCV4 OFF CACHE BOOL "Use OpenCV 4" FORCE)
+endif()
+if(VCPKG_USE_OPENCV2 AND VCPKG_USE_OPENCV3)
+ message(STATUS "You required vcpkg features related to both OpenCV 2 and OpenCV 3. Impossible to satisfy, keeping only OpenCV 3")
+ set(VCPKG_USE_OPENCV2 OFF CACHE BOOL "Use legacy OpenCV 2" FORCE)
endif()
+
if(ENABLE_CUDA AND NOT APPLE)
list(APPEND VCPKG_MANIFEST_FEATURES "cuda")
endif()
-if(ENABLE_OPENCV)
- list(APPEND VCPKG_MANIFEST_FEATURES "opencv-base")
-endif()
if(ENABLE_CUDNN AND ENABLE_CUDA AND NOT APPLE)
list(APPEND VCPKG_MANIFEST_FEATURES "cudnn")
endif()
+if(ENABLE_OPENCV)
+ if(VCPKG_BUILD_OPENCV_WITH_CUDA AND NOT APPLE)
+ if(VCPKG_USE_OPENCV4)
+ list(APPEND VCPKG_MANIFEST_FEATURES "opencv-cuda")
+ elseif(VCPKG_USE_OPENCV3)
+ list(APPEND VCPKG_MANIFEST_FEATURES "opencv3-cuda")
+ elseif(VCPKG_USE_OPENCV2)
+ list(APPEND VCPKG_MANIFEST_FEATURES "opencv2-cuda")
+ endif()
+ else()
+ if(VCPKG_USE_OPENCV4)
+ list(APPEND VCPKG_MANIFEST_FEATURES "opencv-base")
+ elseif(VCPKG_USE_OPENCV3)
+ list(APPEND VCPKG_MANIFEST_FEATURES "opencv3-base")
+ elseif(VCPKG_USE_OPENCV2)
+ list(APPEND VCPKG_MANIFEST_FEATURES "opencv2-base")
+ endif()
+ endif()
+endif()
if(NOT CMAKE_HOST_SYSTEM_PROCESSOR AND NOT WIN32)
execute_process(COMMAND "uname" "-m" OUTPUT_VARIABLE CMAKE_HOST_SYSTEM_PROCESSOR OUTPUT_STRIP_TRAILING_WHITESPACE)
@@ -235,17 +267,19 @@ set(CMAKE_CXX_FLAGS "${ADDITIONAL_CXX_FLAGS} ${SHAREDLIB_CXX_FLAGS} ${CMAKE_CXX_
set(CMAKE_C_FLAGS "${ADDITIONAL_C_FLAGS} ${SHAREDLIB_C_FLAGS} ${CMAKE_C_FLAGS}")
if(OpenCV_FOUND)
- if(ENABLE_CUDA AND NOT OpenCV_CUDA_VERSION)
- set(BUILD_USELIB_TRACK "FALSE" CACHE BOOL "Build uselib_track" FORCE)
- message(STATUS " -> darknet is fine for now, but uselib_track has been disabled!")
- message(STATUS " -> Please rebuild OpenCV from sources with CUDA support to enable it")
- elseif(ENABLE_CUDA AND OpenCV_CUDA_VERSION)
+ if(ENABLE_CUDA AND OpenCV_CUDA_VERSION)
if(TARGET opencv_cudaoptflow)
list(APPEND OpenCV_LINKED_COMPONENTS "opencv_cudaoptflow")
endif()
if(TARGET opencv_cudaimgproc)
list(APPEND OpenCV_LINKED_COMPONENTS "opencv_cudaimgproc")
endif()
+ elseif(ENABLE_CUDA AND NOT OpenCV_CUDA_VERSION)
+ set(BUILD_USELIB_TRACK "FALSE" CACHE BOOL "Build uselib_track" FORCE)
+ message(STATUS " -> darknet is fine for now, but uselib_track has been disabled!")
+ message(STATUS " -> Please rebuild OpenCV from sources with CUDA support to enable it")
+ else()
+ set(BUILD_USELIB_TRACK "FALSE" CACHE BOOL "Build uselib_track" FORCE)
endif()
endif()
@@ -543,3 +577,7 @@ install(FILES
"${PROJECT_BINARY_DIR}/DarknetConfigVersion.cmake"
DESTINATION "${INSTALL_CMAKE_DIR}"
)
+
+if(ENABLE_CSHARP_WRAPPER)
+ add_subdirectory(src/csharp)
+endif()
diff --git a/README.md b/README.md
index 4a4a67f49f8..337d095d44f 100644
--- a/README.md
+++ b/README.md
@@ -6,16 +6,18 @@ Paper YOLO v4: https://arxiv.org/abs/2004.10934
Paper Scaled YOLO v4: https://arxiv.org/abs/2011.08036 use to reproduce results: [ScaledYOLOv4](https://github.com/WongKinYiu/ScaledYOLOv4)
-More details in articles on medium:
- * [Scaled_YOLOv4](https://alexeyab84.medium.com/scaled-yolo-v4-is-the-best-neural-network-for-object-detection-on-ms-coco-dataset-39dfa22fa982?source=friends_link&sk=c8553bfed861b1a7932f739d26f487c8)
- * [YOLOv4](https://medium.com/@alexeyab84/yolov4-the-most-accurate-real-time-neural-network-on-ms-coco-dataset-73adfd3602fe?source=friends_link&sk=6039748846bbcf1d960c3061542591d7)
+More details in articles on medium:
+
+- [Scaled_YOLOv4](https://alexeyab84.medium.com/scaled-yolo-v4-is-the-best-neural-network-for-object-detection-on-ms-coco-dataset-39dfa22fa982?source=friends_link&sk=c8553bfed861b1a7932f739d26f487c8)
+- [YOLOv4](https://medium.com/@alexeyab84/yolov4-the-most-accurate-real-time-neural-network-on-ms-coco-dataset-73adfd3602fe?source=friends_link&sk=6039748846bbcf1d960c3061542591d7)
Manual: https://github.com/AlexeyAB/darknet/wiki
-Discussion:
- - [Reddit](https://www.reddit.com/r/MachineLearning/comments/gydxzd/p_yolov4_the_most_accurate_realtime_neural/)
- - [Google-groups](https://groups.google.com/forum/#!forum/darknet)
- - [Discord](https://discord.gg/zSq8rtW)
+Discussion:
+
+- [Reddit](https://www.reddit.com/r/MachineLearning/comments/gydxzd/p_yolov4_the_most_accurate_realtime_neural/)
+- [Google-groups](https://groups.google.com/forum/#!forum/darknet)
+- [Discord](https://discord.gg/zSq8rtW)
About Darknet framework: http://pjreddie.com/darknet/
@@ -29,73 +31,72 @@ About Darknet framework: http://pjreddie.com/darknet/
[![colab](https://user-images.githubusercontent.com/4096485/86174089-b2709f80-bb29-11ea-9faf-3d8dc668a1a5.png)](https://colab.research.google.com/drive/12QusaaRj_lUwCGDvQNfICpa7kA7_a2dE)
[![colab](https://user-images.githubusercontent.com/4096485/86174097-b56b9000-bb29-11ea-9240-c17f6bacfc34.png)](https://colab.research.google.com/drive/1_GdoqCJWXsChrOiY8sZMr_zbr_fH-0Fg)
-
-* [YOLOv4 model zoo](https://github.com/AlexeyAB/darknet/wiki/YOLOv4-model-zoo)
-* [Requirements (and how to install dependencies)](#requirements)
-* [Pre-trained models](#pre-trained-models)
-* [FAQ - frequently asked questions](https://github.com/AlexeyAB/darknet/wiki/FAQ---frequently-asked-questions)
-* [Explanations in issues](https://github.com/AlexeyAB/darknet/issues?q=is%3Aopen+is%3Aissue+label%3AExplanations)
-* [Yolo v4 in other frameworks (TensorRT, TensorFlow, PyTorch, OpenVINO, OpenCV-dnn, TVM,...)](#yolo-v4-in-other-frameworks)
-* [Datasets](#datasets)
+- [YOLOv4 model zoo](https://github.com/AlexeyAB/darknet/wiki/YOLOv4-model-zoo)
+- [Requirements (and how to install dependencies)](#requirements)
+- [Pre-trained models](#pre-trained-models)
+- [FAQ - frequently asked questions](https://github.com/AlexeyAB/darknet/wiki/FAQ---frequently-asked-questions)
+- [Explanations in issues](https://github.com/AlexeyAB/darknet/issues?q=is%3Aopen+is%3Aissue+label%3AExplanations)
+- [Yolo v4 in other frameworks (TensorRT, TensorFlow, PyTorch, OpenVINO, OpenCV-dnn, TVM,...)](#yolo-v4-in-other-frameworks)
+- [Datasets](#datasets)
- [Yolo v4, v3 and v2 for Windows and Linux](#yolo-v4-v3-and-v2-for-windows-and-linux)
- [(neural networks for object detection)](#neural-networks-for-object-detection)
- - [GeForce RTX 2080 Ti:](#geforce-rtx-2080-ti)
+ - [GeForce RTX 2080 Ti](#geforce-rtx-2080-ti)
- [Youtube video of results](#youtube-video-of-results)
- [How to evaluate AP of YOLOv4 on the MS COCO evaluation server](#how-to-evaluate-ap-of-yolov4-on-the-ms-coco-evaluation-server)
- [How to evaluate FPS of YOLOv4 on GPU](#how-to-evaluate-fps-of-yolov4-on-gpu)
- [Pre-trained models](#pre-trained-models)
- - [Requirements](#requirements)
+ - [Requirements for Windows, Linux and macOS](#requirements-for-windows-linux-and-macos)
- [Yolo v4 in other frameworks](#yolo-v4-in-other-frameworks)
- [Datasets](#datasets)
- [Improvements in this repository](#improvements-in-this-repository)
- [How to use on the command line](#how-to-use-on-the-command-line)
- [For using network video-camera mjpeg-stream with any Android smartphone](#for-using-network-video-camera-mjpeg-stream-with-any-android-smartphone)
- [How to compile on Linux/macOS (using `CMake`)](#how-to-compile-on-linuxmacos-using-cmake)
- - [Using `vcpkg`](#using-vcpkg)
- - [Using libraries manually provided](#using-libraries-manually-provided)
+ - [Using also PowerShell](#using-also-powershell)
- [How to compile on Linux (using `make`)](#how-to-compile-on-linux-using-make)
- [How to compile on Windows (using `CMake`)](#how-to-compile-on-windows-using-cmake)
- [How to compile on Windows (using `vcpkg`)](#how-to-compile-on-windows-using-vcpkg)
- [How to train with multi-GPU](#how-to-train-with-multi-gpu)
- [How to train (to detect your custom objects)](#how-to-train-to-detect-your-custom-objects)
- - [How to train tiny-yolo (to detect your custom objects):](#how-to-train-tiny-yolo-to-detect-your-custom-objects)
- - [When should I stop training:](#when-should-i-stop-training)
- - [Custom object detection:](#custom-object-detection)
- - [How to improve object detection:](#how-to-improve-object-detection)
- - [How to mark bounded boxes of objects and create annotation files:](#how-to-mark-bounded-boxes-of-objects-and-create-annotation-files)
+ - [How to train tiny-yolo (to detect your custom objects)](#how-to-train-tiny-yolo-to-detect-your-custom-objects)
+ - [When should I stop training](#when-should-i-stop-training)
+ - [Custom object detection](#custom-object-detection)
+ - [How to improve object detection](#how-to-improve-object-detection)
+ - [How to mark bounded boxes of objects and create annotation files](#how-to-mark-bounded-boxes-of-objects-and-create-annotation-files)
- [How to use Yolo as DLL and SO libraries](#how-to-use-yolo-as-dll-and-so-libraries)
-![Darknet Logo](http://pjreddie.com/media/files/darknet-black-small.png)
+![Darknet Logo](http://pjreddie.com/media/files/darknet-black-small.png)
![scaled_yolov4](https://user-images.githubusercontent.com/4096485/112776361-281d8380-9048-11eb-8083-8728b12dcd55.png) AP50:95 - FPS (Tesla V100) Paper: https://arxiv.org/abs/2011.08036
----
-![modern_gpus](https://user-images.githubusercontent.com/4096485/82835867-f1c62380-9ecd-11ea-9134-1598ed2abc4b.png) AP50:95 / AP50 - FPS (Tesla V100) Paper: https://arxiv.org/abs/2004.10934
-
+![modern_gpus](https://user-images.githubusercontent.com/4096485/82835867-f1c62380-9ecd-11ea-9134-1598ed2abc4b.png) AP50:95 / AP50 - FPS (Tesla V100) Paper: https://arxiv.org/abs/2004.10934
tkDNN-TensorRT accelerates YOLOv4 **~2x** times for batch=1 and **3x-4x** times for batch=4.
-* tkDNN: https://github.com/ceccocats/tkDNN
-* OpenCV: https://gist.github.com/YashasSamaga/48bdb167303e10f4d07b754888ddbdcf
-
-#### GeForce RTX 2080 Ti:
-| Network Size | Darknet, FPS (avg)| tkDNN TensorRT FP32, FPS | tkDNN TensorRT FP16, FPS | OpenCV FP16, FPS | tkDNN TensorRT FP16 batch=4, FPS | OpenCV FP16 batch=4, FPS | tkDNN Speedup |
-|:-----:|:--------:|--------:|--------:|--------:|--------:|--------:|------:|
-|320 | 100 | 116 | **202** | 183 | 423 | **430** | **4.3x** |
-|416 | 82 | 103 | **162** | 159 | 284 | **294** | **3.6x** |
-|512 | 69 | 91 | 134 | **138** | 206 | **216** | **3.1x** |
-|608 | 53 | 62 | 103 | **115**| 150 | **150** | **2.8x** |
-|Tiny 416 | 443 | 609 | **790** | 773 | **1774** | 1353 | **3.5x** |
-|Tiny 416 CPU Core i7 7700HQ | 3.4 | - | - | 42 | - | 39 | **12x** |
-
-* Yolo v4 Full comparison: [map_fps](https://user-images.githubusercontent.com/4096485/80283279-0e303e00-871f-11ea-814c-870967d77fd1.png)
-* Yolo v4 tiny comparison: [tiny_fps](https://user-images.githubusercontent.com/4096485/85734112-6e366700-b705-11ea-95d1-fcba0de76d72.png)
-* CSPNet: [paper](https://arxiv.org/abs/1911.11929) and [map_fps](https://user-images.githubusercontent.com/4096485/71702416-6645dc00-2de0-11ea-8d65-de7d4b604021.png) comparison: https://github.com/WongKinYiu/CrossStagePartialNetworks
-* Yolo v3 on MS COCO: [Speed / Accuracy (mAP@0.5) chart](https://user-images.githubusercontent.com/4096485/52151356-e5d4a380-2683-11e9-9d7d-ac7bc192c477.jpg)
-* Yolo v3 on MS COCO (Yolo v3 vs RetinaNet) - Figure 3: https://arxiv.org/pdf/1804.02767v1.pdf
-* Yolo v2 on Pascal VOC 2007: https://hsto.org/files/a24/21e/068/a2421e0689fb43f08584de9d44c2215f.jpg
-* Yolo v2 on Pascal VOC 2012 (comp4): https://hsto.org/files/3a6/fdf/b53/3a6fdfb533f34cee9b52bdd9bb0b19d9.jpg
+
+- tkDNN: https://github.com/ceccocats/tkDNN
+- OpenCV: https://gist.github.com/YashasSamaga/48bdb167303e10f4d07b754888ddbdcf
+
+### GeForce RTX 2080 Ti
+
+| Network Size | Darknet, FPS (avg) | tkDNN TensorRT FP32, FPS | tkDNN TensorRT FP16, FPS | OpenCV FP16, FPS | tkDNN TensorRT FP16 batch=4, FPS | OpenCV FP16 batch=4, FPS | tkDNN Speedup |
+|:--------------------------:|:------------------:|-------------------------:|-------------------------:|-----------------:|---------------------------------:|-------------------------:|--------------:|
+|320 | 100 | 116 | **202** | 183 | 423 | **430** | **4.3x** |
+|416 | 82 | 103 | **162** | 159 | 284 | **294** | **3.6x** |
+|512 | 69 | 91 | 134 | **138** | 206 | **216** | **3.1x** |
+|608 | 53 | 62 | 103 | **115** | 150 | **150** | **2.8x** |
+|Tiny 416 | 443 | 609 | **790** | 773 | **1774** | 1353 | **3.5x** |
+|Tiny 416 CPU Core i7 7700HQ | 3.4 | - | - | 42 | - | 39 | **12x** |
+
+- Yolo v4 Full comparison: [map_fps](https://user-images.githubusercontent.com/4096485/80283279-0e303e00-871f-11ea-814c-870967d77fd1.png)
+- Yolo v4 tiny comparison: [tiny_fps](https://user-images.githubusercontent.com/4096485/85734112-6e366700-b705-11ea-95d1-fcba0de76d72.png)
+- CSPNet: [paper](https://arxiv.org/abs/1911.11929) and [map_fps](https://user-images.githubusercontent.com/4096485/71702416-6645dc00-2de0-11ea-8d65-de7d4b604021.png) comparison: https://github.com/WongKinYiu/CrossStagePartialNetworks
+- Yolo v3 on MS COCO: [Speed / Accuracy (mAP@0.5) chart](https://user-images.githubusercontent.com/4096485/52151356-e5d4a380-2683-11e9-9d7d-ac7bc192c477.jpg)
+- Yolo v3 on MS COCO (Yolo v3 vs RetinaNet) - Figure 3: https://arxiv.org/pdf/1804.02767v1.pdf
+- Yolo v2 on Pascal VOC 2007: https://hsto.org/files/a24/21e/068/a2421e0689fb43f08584de9d44c2215f.jpg
+- Yolo v2 on Pascal VOC 2012 (comp4): https://hsto.org/files/3a6/fdf/b53/3a6fdfb533f34cee9b52bdd9bb0b19d9.jpg
#### Youtube video of results
@@ -132,9 +133,9 @@ eval=coco
3. Get any .avi/.mp4 video file (preferably not more than 1920x1080 to avoid bottlenecks in CPU performance)
4. Run one of two commands and look at the AVG FPS:
-* include video_capturing + NMS + drawing_bboxes:
+- include video_capturing + NMS + drawing_bboxes:
`./darknet detector demo cfg/coco.data cfg/yolov4.cfg yolov4.weights test.mp4 -dont_show -ext_output`
-* exclude video_capturing + NMS + drawing_bboxes:
+- exclude video_capturing + NMS + drawing_bboxes:
`./darknet detector demo cfg/coco.data cfg/yolov4.cfg yolov4.weights test.mp4 -benchmark`
#### Pre-trained models
@@ -143,52 +144,52 @@ There are weights-file for different cfg-files (trained for MS COCO dataset):
FPS on RTX 2070 (R) and Tesla V100 (V):
-* [yolov4x-mish.cfg](https://raw.githubusercontent.com/AlexeyAB/darknet/master/cfg/yolov4x-mish.cfg) - 640x640 - **67.9% mAP@0.5 (49.4% AP@0.5:0.95) - 23(R) FPS / 50(V) FPS** - 221 BFlops (110 FMA) - 381 MB: [yolov4x-mish.weights](https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v4_pre/yolov4x-mish.weights)
- * pre-trained weights for training: https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v4_pre/yolov4x-mish.conv.166
+- [yolov4x-mish.cfg](https://raw.githubusercontent.com/AlexeyAB/darknet/master/cfg/yolov4x-mish.cfg) - 640x640 - **67.9% mAP@0.5 (49.4% AP@0.5:0.95) - 23(R) FPS / 50(V) FPS** - 221 BFlops (110 FMA) - 381 MB: [yolov4x-mish.weights](https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v4_pre/yolov4x-mish.weights)
+ - pre-trained weights for training: https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v4_pre/yolov4x-mish.conv.166
-* [yolov4-csp.cfg](https://raw.githubusercontent.com/AlexeyAB/darknet/master/cfg/yolov4-csp.cfg) - 202 MB: [yolov4-csp.weights](https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v4_pre/yolov4-csp.weights) paper [Scaled Yolo v4](https://arxiv.org/abs/2011.08036)
+- [yolov4-csp.cfg](https://raw.githubusercontent.com/AlexeyAB/darknet/master/cfg/yolov4-csp.cfg) - 202 MB: [yolov4-csp.weights](https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v4_pre/yolov4-csp.weights) paper [Scaled Yolo v4](https://arxiv.org/abs/2011.08036)
just change `width=` and `height=` parameters in `yolov4-csp.cfg` file and use the same `yolov4-csp.weights` file for all cases:
- * `width=640 height=640` in cfg: **66.2% mAP@0.5 (47.5% AP@0.5:0.95) - 70(V) FPS** - 120 (60 FMA) BFlops
- * `width=512 height=512` in cfg: **64.8% mAP@0.5 (46.2% AP@0.5:0.95) - 93(V) FPS** - 77 (39 FMA) BFlops
- * pre-trained weights for training: https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v4_pre/yolov4-csp.conv.142
-
-* [yolov4.cfg](https://raw.githubusercontent.com/AlexeyAB/darknet/master/cfg/yolov4.cfg) - 245 MB: [yolov4.weights](https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v3_optimal/yolov4.weights) (Google-drive mirror [yolov4.weights](https://drive.google.com/open?id=1cewMfusmPjYWbrnuJRuKhPMwRe_b9PaT) ) paper [Yolo v4](https://arxiv.org/abs/2004.10934)
+ - `width=640 height=640` in cfg: **66.2% mAP@0.5 (47.5% AP@0.5:0.95) - 70(V) FPS** - 120 (60 FMA) BFlops
+ - `width=512 height=512` in cfg: **64.8% mAP@0.5 (46.2% AP@0.5:0.95) - 93(V) FPS** - 77 (39 FMA) BFlops
+ - pre-trained weights for training: https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v4_pre/yolov4-csp.conv.142
+
+- [yolov4.cfg](https://raw.githubusercontent.com/AlexeyAB/darknet/master/cfg/yolov4.cfg) - 245 MB: [yolov4.weights](https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v3_optimal/yolov4.weights) (Google-drive mirror [yolov4.weights](https://drive.google.com/open?id=1cewMfusmPjYWbrnuJRuKhPMwRe_b9PaT) ) paper [Yolo v4](https://arxiv.org/abs/2004.10934)
just change `width=` and `height=` parameters in `yolov4.cfg` file and use the same `yolov4.weights` file for all cases:
- * `width=608 height=608` in cfg: **65.7% mAP@0.5 (43.5% AP@0.5:0.95) - 34(R) FPS / 62(V) FPS** - 128.5 BFlops
- * `width=512 height=512` in cfg: **64.9% mAP@0.5 (43.0% AP@0.5:0.95) - 45(R) FPS / 83(V) FPS** - 91.1 BFlops
- * `width=416 height=416` in cfg: **62.8% mAP@0.5 (41.2% AP@0.5:0.95) - 55(R) FPS / 96(V) FPS** - 60.1 BFlops
- * `width=320 height=320` in cfg: **60% mAP@0.5 ( 38% AP@0.5:0.95) - 63(R) FPS / 123(V) FPS** - 35.5 BFlops
+ - `width=608 height=608` in cfg: **65.7% mAP@0.5 (43.5% AP@0.5:0.95) - 34(R) FPS / 62(V) FPS** - 128.5 BFlops
+ - `width=512 height=512` in cfg: **64.9% mAP@0.5 (43.0% AP@0.5:0.95) - 45(R) FPS / 83(V) FPS** - 91.1 BFlops
+ - `width=416 height=416` in cfg: **62.8% mAP@0.5 (41.2% AP@0.5:0.95) - 55(R) FPS / 96(V) FPS** - 60.1 BFlops
+ - `width=320 height=320` in cfg: **60% mAP@0.5 ( 38% AP@0.5:0.95) - 63(R) FPS / 123(V) FPS** - 35.5 BFlops
-* [yolov4-tiny.cfg](https://raw.githubusercontent.com/AlexeyAB/darknet/master/cfg/yolov4-tiny.cfg) - **40.2% mAP@0.5 - 371(1080Ti) FPS / 330(RTX2070) FPS** - 6.9 BFlops - 23.1 MB: [yolov4-tiny.weights](https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v4_pre/yolov4-tiny.weights)
+- [yolov4-tiny.cfg](https://raw.githubusercontent.com/AlexeyAB/darknet/master/cfg/yolov4-tiny.cfg) - **40.2% mAP@0.5 - 371(1080Ti) FPS / 330(RTX2070) FPS** - 6.9 BFlops - 23.1 MB: [yolov4-tiny.weights](https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v4_pre/yolov4-tiny.weights)
-* [enet-coco.cfg (EfficientNetB0-Yolov3)](https://raw.githubusercontent.com/AlexeyAB/darknet/master/cfg/enet-coco.cfg) - **45.5% mAP@0.5 - 55(R) FPS** - 3.7 BFlops - 18.3 MB: [enetb0-coco_final.weights](https://drive.google.com/file/d/1FlHeQjWEQVJt0ay1PVsiuuMzmtNyv36m/view)
+- [enet-coco.cfg (EfficientNetB0-Yolov3)](https://raw.githubusercontent.com/AlexeyAB/darknet/master/cfg/enet-coco.cfg) - **45.5% mAP@0.5 - 55(R) FPS** - 3.7 BFlops - 18.3 MB: [enetb0-coco_final.weights](https://drive.google.com/file/d/1FlHeQjWEQVJt0ay1PVsiuuMzmtNyv36m/view)
-* [yolov3-openimages.cfg](https://raw.githubusercontent.com/AlexeyAB/darknet/master/cfg/yolov3-openimages.cfg) - 247 MB - 18(R) FPS - OpenImages dataset: [yolov3-openimages.weights](https://pjreddie.com/media/files/yolov3-openimages.weights)
+- [yolov3-openimages.cfg](https://raw.githubusercontent.com/AlexeyAB/darknet/master/cfg/yolov3-openimages.cfg) - 247 MB - 18(R) FPS - OpenImages dataset: [yolov3-openimages.weights](https://pjreddie.com/media/files/yolov3-openimages.weights)
CLICK ME - Yolo v3 models
-* [csresnext50-panet-spp-original-optimal.cfg](https://raw.githubusercontent.com/AlexeyAB/darknet/master/cfg/csresnext50-panet-spp-original-optimal.cfg) - **65.4% mAP@0.5 (43.2% AP@0.5:0.95) - 32(R) FPS** - 100.5 BFlops - 217 MB: [csresnext50-panet-spp-original-optimal_final.weights](https://drive.google.com/open?id=1_NnfVgj0EDtb_WLNoXV8Mo7WKgwdYZCc)
+- [csresnext50-panet-spp-original-optimal.cfg](https://raw.githubusercontent.com/AlexeyAB/darknet/master/cfg/csresnext50-panet-spp-original-optimal.cfg) - **65.4% mAP@0.5 (43.2% AP@0.5:0.95) - 32(R) FPS** - 100.5 BFlops - 217 MB: [csresnext50-panet-spp-original-optimal_final.weights](https://drive.google.com/open?id=1_NnfVgj0EDtb_WLNoXV8Mo7WKgwdYZCc)
-* [yolov3-spp.cfg](https://raw.githubusercontent.com/AlexeyAB/darknet/master/cfg/yolov3-spp.cfg) - **60.6% mAP@0.5 - 38(R) FPS** - 141.5 BFlops - 240 MB: [yolov3-spp.weights](https://pjreddie.com/media/files/yolov3-spp.weights)
+- [yolov3-spp.cfg](https://raw.githubusercontent.com/AlexeyAB/darknet/master/cfg/yolov3-spp.cfg) - **60.6% mAP@0.5 - 38(R) FPS** - 141.5 BFlops - 240 MB: [yolov3-spp.weights](https://pjreddie.com/media/files/yolov3-spp.weights)
-* [csresnext50-panet-spp.cfg](https://raw.githubusercontent.com/AlexeyAB/darknet/master/cfg/csresnext50-panet-spp.cfg) - **60.0% mAP@0.5 - 44 FPS** - 71.3 BFlops - 217 MB: [csresnext50-panet-spp_final.weights](https://drive.google.com/file/d/1aNXdM8qVy11nqTcd2oaVB3mf7ckr258-/view?usp=sharing)
+- [csresnext50-panet-spp.cfg](https://raw.githubusercontent.com/AlexeyAB/darknet/master/cfg/csresnext50-panet-spp.cfg) - **60.0% mAP@0.5 - 44 FPS** - 71.3 BFlops - 217 MB: [csresnext50-panet-spp_final.weights](https://drive.google.com/file/d/1aNXdM8qVy11nqTcd2oaVB3mf7ckr258-/view?usp=sharing)
-* [yolov3.cfg](https://raw.githubusercontent.com/AlexeyAB/darknet/master/cfg/yolov3.cfg) - **55.3% mAP@0.5 - 66(R) FPS** - 65.9 BFlops - 236 MB: [yolov3.weights](https://pjreddie.com/media/files/yolov3.weights)
+- [yolov3.cfg](https://raw.githubusercontent.com/AlexeyAB/darknet/master/cfg/yolov3.cfg) - **55.3% mAP@0.5 - 66(R) FPS** - 65.9 BFlops - 236 MB: [yolov3.weights](https://pjreddie.com/media/files/yolov3.weights)
-* [yolov3-tiny.cfg](https://raw.githubusercontent.com/AlexeyAB/darknet/master/cfg/yolov3-tiny.cfg) - **33.1% mAP@0.5 - 345(R) FPS** - 5.6 BFlops - 33.7 MB: [yolov3-tiny.weights](https://pjreddie.com/media/files/yolov3-tiny.weights)
+- [yolov3-tiny.cfg](https://raw.githubusercontent.com/AlexeyAB/darknet/master/cfg/yolov3-tiny.cfg) - **33.1% mAP@0.5 - 345(R) FPS** - 5.6 BFlops - 33.7 MB: [yolov3-tiny.weights](https://pjreddie.com/media/files/yolov3-tiny.weights)
-* [yolov3-tiny-prn.cfg](https://raw.githubusercontent.com/AlexeyAB/darknet/master/cfg/yolov3-tiny-prn.cfg) - **33.1% mAP@0.5 - 370(R) FPS** - 3.5 BFlops - 18.8 MB: [yolov3-tiny-prn.weights](https://drive.google.com/file/d/18yYZWyKbo4XSDVyztmsEcF9B_6bxrhUY/view?usp=sharing)
+- [yolov3-tiny-prn.cfg](https://raw.githubusercontent.com/AlexeyAB/darknet/master/cfg/yolov3-tiny-prn.cfg) - **33.1% mAP@0.5 - 370(R) FPS** - 3.5 BFlops - 18.8 MB: [yolov3-tiny-prn.weights](https://drive.google.com/file/d/18yYZWyKbo4XSDVyztmsEcF9B_6bxrhUY/view?usp=sharing)
CLICK ME - Yolo v2 models
-* `yolov2.cfg` (194 MB COCO Yolo v2) - requires 4 GB GPU-RAM: https://pjreddie.com/media/files/yolov2.weights
-* `yolo-voc.cfg` (194 MB VOC Yolo v2) - requires 4 GB GPU-RAM: http://pjreddie.com/media/files/yolo-voc.weights
-* `yolov2-tiny.cfg` (43 MB COCO Yolo v2) - requires 1 GB GPU-RAM: https://pjreddie.com/media/files/yolov2-tiny.weights
-* `yolov2-tiny-voc.cfg` (60 MB VOC Yolo v2) - requires 1 GB GPU-RAM: http://pjreddie.com/media/files/yolov2-tiny-voc.weights
-* `yolo9000.cfg` (186 MB Yolo9000-model) - requires 4 GB GPU-RAM: http://pjreddie.com/media/files/yolo9000.weights
+- `yolov2.cfg` (194 MB COCO Yolo v2) - requires 4 GB GPU-RAM: https://pjreddie.com/media/files/yolov2.weights
+- `yolo-voc.cfg` (194 MB VOC Yolo v2) - requires 4 GB GPU-RAM: http://pjreddie.com/media/files/yolo-voc.weights
+- `yolov2-tiny.cfg` (43 MB COCO Yolo v2) - requires 1 GB GPU-RAM: https://pjreddie.com/media/files/yolov2-tiny.weights
+- `yolov2-tiny-voc.cfg` (60 MB VOC Yolo v2) - requires 1 GB GPU-RAM: http://pjreddie.com/media/files/yolov2-tiny-voc.weights
+- `yolo9000.cfg` (186 MB Yolo9000-model) - requires 4 GB GPU-RAM: http://pjreddie.com/media/files/yolo9000.weights
@@ -196,76 +197,77 @@ Put it near compiled: darknet.exe
You can get cfg-files by path: `darknet/cfg/`
-### Requirements
+### Requirements for Windows, Linux and macOS
-* **CMake >= 3.18**: https://cmake.org/download/
-* **Powershell** (already installed on windows): https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell
-* **CUDA >= 10.2**: https://developer.nvidia.com/cuda-toolkit-archive (on Linux do [Post-installation Actions](https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#post-installation-actions))
-* **OpenCV >= 2.4**: use your preferred package manager (brew, apt), build from source using [vcpkg](https://github.com/Microsoft/vcpkg) or download from [OpenCV official site](https://opencv.org/releases.html) (on Windows set system variable `OpenCV_DIR` = `C:\opencv\build` - where are the `include` and `x64` folders [image](https://user-images.githubusercontent.com/4096485/53249516-5130f480-36c9-11e9-8238-a6e82e48c6f2.png))
-* **cuDNN >= 8.0.2** https://developer.nvidia.com/rdp/cudnn-archive (on **Linux** copy `cudnn.h`,`libcudnn.so`... as described here https://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html#installlinux-tar , on **Windows** copy `cudnn.h`,`cudnn64_7.dll`, `cudnn64_7.lib` as described here https://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html#installwindows )
-* **GPU with CC >= 3.0**: https://en.wikipedia.org/wiki/CUDA#GPUs_supported
+- **CMake >= 3.18**: https://cmake.org/download/
+- **Powershell** (already installed on windows): https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell
+- **CUDA >= 10.2**: https://developer.nvidia.com/cuda-toolkit-archive (on Linux do [Post-installation Actions](https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#post-installation-actions))
+- **OpenCV >= 2.4**: use your preferred package manager (brew, apt), build from source using [vcpkg](https://github.com/Microsoft/vcpkg) or download from [OpenCV official site](https://opencv.org/releases.html) (on Windows set system variable `OpenCV_DIR` = `C:\opencv\build` - where are the `include` and `x64` folders [image](https://user-images.githubusercontent.com/4096485/53249516-5130f480-36c9-11e9-8238-a6e82e48c6f2.png))
+- **cuDNN >= 8.0.2** https://developer.nvidia.com/rdp/cudnn-archive (on **Linux** copy `cudnn.h`,`libcudnn.so`... as described here https://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html#installlinux-tar , on **Windows** copy `cudnn.h`,`cudnn64_7.dll`, `cudnn64_7.lib` as described here https://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html#installwindows )
+- **GPU with CC >= 3.0**: https://en.wikipedia.org/wiki/CUDA#GPUs_supported
### Yolo v4 in other frameworks
-* **Pytorch - Scaled-YOLOv4:** https://github.com/WongKinYiu/ScaledYOLOv4
-* **TensorFlow:** `pip install yolov4` YOLOv4 on TensorFlow 2.0 / TFlite / Android: https://github.com/hunglc007/tensorflow-yolov4-tflite
+- **Pytorch - Scaled-YOLOv4:** https://github.com/WongKinYiu/ScaledYOLOv4
+- **TensorFlow:** `pip install yolov4` YOLOv4 on TensorFlow 2.0 / TFlite / Android: https://github.com/hunglc007/tensorflow-yolov4-tflite
Official TF models: https://github.com/tensorflow/models/tree/master/official/vision/beta/projects/yolo
For YOLOv4 - convert `yolov4.weights`/`cfg` files to `yolov4.pb` by using [TNTWEN](https://github.com/TNTWEN/OpenVINO-YOLOV4) project, and to `yolov4.tflite` [TensorFlow-lite](https://www.tensorflow.org/lite/guide/get_started#2_convert_the_model_format)
-* **OpenCV** the fastest implementation of YOLOv4 for CPU (x86/ARM-Android), OpenCV can be compiled with [OpenVINO-backend](https://github.com/opencv/opencv/wiki/Intel's-Deep-Learning-Inference-Engine-backend) for running on (Myriad X / USB Neural Compute Stick / Arria FPGA), use `yolov4.weights`/`cfg` with: [C++ example](https://github.com/opencv/opencv/blob/8c25a8eb7b10fb50cda323ee6bec68aa1a9ce43c/samples/dnn/object_detection.cpp#L192-L221) or [Python example](https://github.com/opencv/opencv/blob/8c25a8eb7b10fb50cda323ee6bec68aa1a9ce43c/samples/dnn/object_detection.py#L129-L150)
-* **Intel OpenVINO 2021.2:** supports YOLOv4 (NPU Myriad X / USB Neural Compute Stick / Arria FPGA): https://devmesh.intel.com/projects/openvino-yolov4-49c756 read this [manual](https://github.com/TNTWEN/OpenVINO-YOLOV4) (old [manual](https://software.intel.com/en-us/articles/OpenVINO-Using-TensorFlow#converting-a-darknet-yolo-model) ) (for [Scaled-YOLOv4](https://github.com/WongKinYiu/ScaledYOLOv4/tree/yolov4-large) models use https://github.com/Chen-MingChang/pytorch_YOLO_OpenVINO_demo )
-* **PyTorch > ONNX**:
- * [WongKinYiu/PyTorch_YOLOv4](https://github.com/WongKinYiu/PyTorch_YOLOv4)
- * [maudzung/3D-YOLOv4](https://github.com/maudzung/Complex-YOLOv4-Pytorch)
- * [Tianxiaomo/pytorch-YOLOv4](https://github.com/Tianxiaomo/pytorch-YOLOv4)
- * [YOLOv5](https://github.com/ultralytics/yolov5)
-* **ONNX** on Jetson for YOLOv4: https://developer.nvidia.com/blog/announcing-onnx-runtime-for-jetson/
-* **TensorRT+tkDNN**: https://github.com/ceccocats/tkDNN#fps-results
-* **Deepstream 5.0 / TensorRT for YOLOv4** https://github.com/NVIDIA-AI-IOT/yolov4_deepstream or https://github.com/marcoslucianops/DeepStream-Yolo read [Yolo is natively supported in DeepStream 4.0](https://news.developer.nvidia.com/deepstream-sdk-4-now-available/) and [PDF](https://docs.nvidia.com/metropolis/deepstream/Custom_YOLO_Model_in_the_DeepStream_YOLO_App.pdf). Additionally [jkjung-avt/tensorrt_demos](https://github.com/jkjung-avt/tensorrt_demos) or [wang-xinyu/tensorrtx](https://github.com/wang-xinyu/tensorrtx)
-* **Triton Inference Server / TensorRT** https://github.com/isarsoft/yolov4-triton-tensorrt
-* **DirectML** https://github.com/microsoft/DirectML/tree/master/Samples/yolov4
-* **OpenCL** (Intel, AMD, Mali GPUs for macOS & GNU/Linux) https://github.com/sowson/darknet
-* **HIP** for Training and Detection on AMD GPU https://github.com/os-hackathon/darknet
-* **ROS** (Robot Operating System) https://github.com/engcang/ros-yolo-sort
-* **Xilinx Zynq Ultrascale+ Deep Learning Processor (DPU) ZCU102/ZCU104:** https://github.com/Xilinx/Vitis-In-Depth-Tutorial/tree/master/Machine_Learning/Design_Tutorials/07-yolov4-tutorial
-* **Amazon Neurochip / Amazon EC2 Inf1 instances** 1.85 times higher throughput and 37% lower cost per image for TensorFlow based YOLOv4 model, using Keras [URL](https://aws.amazon.com/ru/blogs/machine-learning/improving-performance-for-deep-learning-based-object-detection-with-an-aws-neuron-compiled-yolov4-model-on-aws-inferentia/)
-* **TVM** - compilation of deep learning models (Keras, MXNet, PyTorch, Tensorflow, CoreML, DarkNet) into minimum deployable modules on diverse hardware backend (CPUs, GPUs, FPGA, and specialized accelerators): https://tvm.ai/about
-* **Tencent/ncnn:** the fastest inference of YOLOv4 on mobile phone CPU: https://github.com/Tencent/ncnn
-* **OpenDataCam** - It detects, tracks and counts moving objects by using YOLOv4: https://github.com/opendatacam/opendatacam#-hardware-pre-requisite
-* **Netron** - Visualizer for neural networks: https://github.com/lutzroeder/netron
+- **OpenCV** the fastest implementation of YOLOv4 for CPU (x86/ARM-Android), OpenCV can be compiled with [OpenVINO-backend](https://github.com/opencv/opencv/wiki/Intel's-Deep-Learning-Inference-Engine-backend) for running on (Myriad X / USB Neural Compute Stick / Arria FPGA), use `yolov4.weights`/`cfg` with: [C++ example](https://github.com/opencv/opencv/blob/8c25a8eb7b10fb50cda323ee6bec68aa1a9ce43c/samples/dnn/object_detection.cpp#L192-L221) or [Python example](https://github.com/opencv/opencv/blob/8c25a8eb7b10fb50cda323ee6bec68aa1a9ce43c/samples/dnn/object_detection.py#L129-L150)
+- **Intel OpenVINO 2021.2:** supports YOLOv4 (NPU Myriad X / USB Neural Compute Stick / Arria FPGA): https://devmesh.intel.com/projects/openvino-yolov4-49c756 read this [manual](https://github.com/TNTWEN/OpenVINO-YOLOV4) (old [manual](https://software.intel.com/en-us/articles/OpenVINO-Using-TensorFlow#converting-a-darknet-yolo-model) ) (for [Scaled-YOLOv4](https://github.com/WongKinYiu/ScaledYOLOv4/tree/yolov4-large) models use https://github.com/Chen-MingChang/pytorch_YOLO_OpenVINO_demo )
+- **PyTorch > ONNX**:
+ - [WongKinYiu/PyTorch_YOLOv4](https://github.com/WongKinYiu/PyTorch_YOLOv4)
+ - [maudzung/3D-YOLOv4](https://github.com/maudzung/Complex-YOLOv4-Pytorch)
+ - [Tianxiaomo/pytorch-YOLOv4](https://github.com/Tianxiaomo/pytorch-YOLOv4)
+ - [YOLOv5](https://github.com/ultralytics/yolov5)
+- **ONNX** on Jetson for YOLOv4: https://developer.nvidia.com/blog/announcing-onnx-runtime-for-jetson/
+- **nVidia Transfer Learning Toolkit (TLT>=3.0)** Training and Detection https://docs.nvidia.com/metropolis/TLT/tlt-user-guide/text/object_detection/yolo_v4.html
+- **TensorRT+tkDNN**: https://github.com/ceccocats/tkDNN#fps-results
+- **Deepstream 5.0 / TensorRT for YOLOv4** https://github.com/NVIDIA-AI-IOT/yolov4_deepstream or https://github.com/marcoslucianops/DeepStream-Yolo read [Yolo is natively supported in DeepStream 4.0](https://news.developer.nvidia.com/deepstream-sdk-4-now-available/) and [PDF](https://docs.nvidia.com/metropolis/deepstream/Custom_YOLO_Model_in_the_DeepStream_YOLO_App.pdf). Additionally [jkjung-avt/tensorrt_demos](https://github.com/jkjung-avt/tensorrt_demos) or [wang-xinyu/tensorrtx](https://github.com/wang-xinyu/tensorrtx)
+- **Triton Inference Server / TensorRT** https://github.com/isarsoft/yolov4-triton-tensorrt
+- **DirectML** https://github.com/microsoft/DirectML/tree/master/Samples/yolov4
+- **OpenCL** (Intel, AMD, Mali GPUs for macOS & GNU/Linux) https://github.com/sowson/darknet
+- **HIP** for Training and Detection on AMD GPU https://github.com/os-hackathon/darknet
+- **ROS** (Robot Operating System) https://github.com/engcang/ros-yolo-sort
+- **Xilinx Zynq Ultrascale+ Deep Learning Processor (DPU) ZCU102/ZCU104:** https://github.com/Xilinx/Vitis-In-Depth-Tutorial/tree/master/Machine_Learning/Design_Tutorials/07-yolov4-tutorial
+- **Amazon Neurochip / Amazon EC2 Inf1 instances** 1.85 times higher throughput and 37% lower cost per image for TensorFlow based YOLOv4 model, using Keras [URL](https://aws.amazon.com/ru/blogs/machine-learning/improving-performance-for-deep-learning-based-object-detection-with-an-aws-neuron-compiled-yolov4-model-on-aws-inferentia/)
+- **TVM** - compilation of deep learning models (Keras, MXNet, PyTorch, Tensorflow, CoreML, DarkNet) into minimum deployable modules on diverse hardware backend (CPUs, GPUs, FPGA, and specialized accelerators): https://tvm.ai/about
+- **Tencent/ncnn:** the fastest inference of YOLOv4 on mobile phone CPU: https://github.com/Tencent/ncnn
+- **OpenDataCam** - It detects, tracks and counts moving objects by using YOLOv4: https://github.com/opendatacam/opendatacam#-hardware-pre-requisite
+- **Netron** - Visualizer for neural networks: https://github.com/lutzroeder/netron
#### Datasets
-* MS COCO: use `./scripts/get_coco_dataset.sh` to get labeled MS COCO detection dataset
-* OpenImages: use `python ./scripts/get_openimages_dataset.py` for labeling train detection dataset
-* Pascal VOC: use `python ./scripts/voc_label.py` for labeling Train/Test/Val detection datasets
-* ILSVRC2012 (ImageNet classification): use `./scripts/get_imagenet_train.sh` (also `imagenet_label.sh` for labeling valid set)
-* German/Belgium/Russian/LISA/MASTIF Traffic Sign Datasets for Detection - use this parsers: https://github.com/angeligareta/Datasets2Darknet#detection-task
-* List of other datasets: https://github.com/AlexeyAB/darknet/tree/master/scripts#datasets
+- MS COCO: use `./scripts/get_coco_dataset.sh` to get labeled MS COCO detection dataset
+- OpenImages: use `python ./scripts/get_openimages_dataset.py` for labeling train detection dataset
+- Pascal VOC: use `python ./scripts/voc_label.py` for labeling Train/Test/Val detection datasets
+- ILSVRC2012 (ImageNet classification): use `./scripts/get_imagenet_train.sh` (also `imagenet_label.sh` for labeling valid set)
+- German/Belgium/Russian/LISA/MASTIF Traffic Sign Datasets for Detection - use this parsers: https://github.com/angeligareta/Datasets2Darknet#detection-task
+- List of other datasets: https://github.com/AlexeyAB/darknet/tree/master/scripts#datasets
### Improvements in this repository
-* developed State-of-the-Art object detector YOLOv4
-* added State-of-Art models: CSP, PRN, EfficientNet
-* added layers: [conv_lstm], [scale_channels] SE/ASFF/BiFPN, [local_avgpool], [sam], [Gaussian_yolo], [reorg3d] (fixed [reorg]), fixed [batchnorm]
-* added the ability for training recurrent models (with layers conv-lstm`[conv_lstm]`/conv-rnn`[crnn]`) for accurate detection on video
-* added data augmentation: `[net] mixup=1 cutmix=1 mosaic=1 blur=1`. Added activations: SWISH, MISH, NORM_CHAN, NORM_CHAN_SOFTMAX
-* added the ability for training with GPU-processing using CPU-RAM to increase the mini_batch_size and increase accuracy (instead of batch-norm sync)
-* improved binary neural network performance **2x-4x times** for Detection on CPU and GPU if you trained your own weights by using this XNOR-net model (bit-1 inference) : https://github.com/AlexeyAB/darknet/blob/master/cfg/yolov3-tiny_xnor.cfg
-* improved neural network performance **~7%** by fusing 2 layers into 1: Convolutional + Batch-norm
-* improved performance: Detection **2x times**, on GPU Volta/Turing (Tesla V100, GeForce RTX, ...) using Tensor Cores if `CUDNN_HALF` defined in the `Makefile` or `darknet.sln`
-* improved performance **~1.2x** times on FullHD, **~2x** times on 4K, for detection on the video (file/stream) using `darknet detector demo`...
-* improved performance **3.5 X times** of data augmentation for training (using OpenCV SSE/AVX functions instead of hand-written functions) - removes bottleneck for training on multi-GPU or GPU Volta
-* improved performance of detection and training on Intel CPU with AVX (Yolo v3 **~85%**)
-* optimized memory allocation during network resizing when `random=1`
-* optimized GPU initialization for detection - we use batch=1 initially instead of re-init with batch=1
-* added correct calculation of **mAP, F1, IoU, Precision-Recall** using command `darknet detector map`...
-* added drawing of chart of average-Loss and accuracy-mAP (`-map` flag) during training
-* run `./darknet detector demo ... -json_port 8070 -mjpeg_port 8090` as JSON and MJPEG server to get results online over the network by using your soft or Web-browser
-* added calculation of anchors for training
-* added example of Detection and Tracking objects: https://github.com/AlexeyAB/darknet/blob/master/src/yolo_console_dll.cpp
-* run-time tips and warnings if you use incorrect cfg-file or dataset
-* added support for Windows
-* many other fixes of code...
+- developed State-of-the-Art object detector YOLOv4
+- added State-of-Art models: CSP, PRN, EfficientNet
+- added layers: [conv_lstm], [scale_channels] SE/ASFF/BiFPN, [local_avgpool], [sam], [Gaussian_yolo], [reorg3d] (fixed [reorg]), fixed [batchnorm]
+- added the ability for training recurrent models (with layers conv-lstm`[conv_lstm]`/conv-rnn`[crnn]`) for accurate detection on video
+- added data augmentation: `[net] mixup=1 cutmix=1 mosaic=1 blur=1`. Added activations: SWISH, MISH, NORM_CHAN, NORM_CHAN_SOFTMAX
+- added the ability for training with GPU-processing using CPU-RAM to increase the mini_batch_size and increase accuracy (instead of batch-norm sync)
+- improved binary neural network performance **2x-4x times** for Detection on CPU and GPU if you trained your own weights by using this XNOR-net model (bit-1 inference) : https://github.com/AlexeyAB/darknet/blob/master/cfg/yolov3-tiny_xnor.cfg
+- improved neural network performance **~7%** by fusing 2 layers into 1: Convolutional + Batch-norm
+- improved performance: Detection **2x times**, on GPU Volta/Turing (Tesla V100, GeForce RTX, ...) using Tensor Cores if `CUDNN_HALF` defined in the `Makefile` or `darknet.sln`
+- improved performance **~1.2x** times on FullHD, **~2x** times on 4K, for detection on the video (file/stream) using `darknet detector demo`...
+- improved performance **3.5 X times** of data augmentation for training (using OpenCV SSE/AVX functions instead of hand-written functions) - removes bottleneck for training on multi-GPU or GPU Volta
+- improved performance of detection and training on Intel CPU with AVX (Yolo v3 **~85%**)
+- optimized memory allocation during network resizing when `random=1`
+- optimized GPU initialization for detection - we use batch=1 initially instead of re-init with batch=1
+- added correct calculation of **mAP, F1, IoU, Precision-Recall** using command `darknet detector map`...
+- added drawing of chart of average-Loss and accuracy-mAP (`-map` flag) during training
+- run `./darknet detector demo ... -json_port 8070 -mjpeg_port 8090` as JSON and MJPEG server to get results online over the network by using your soft or Web-browser
+- added calculation of anchors for training
+- added example of Detection and Tracking objects: https://github.com/AlexeyAB/darknet/blob/master/src/yolo_console_dll.cpp
+- run-time tips and warnings if you use incorrect cfg-file or dataset
+- added support for Windows
+- many other fixes of code...
And added manual - [How to train Yolo v4-v2 (to detect your custom objects)](#how-to-train-to-detect-your-custom-objects)
@@ -275,77 +277,78 @@ Also, you might be interested in using a simplified repository where is implemen
On Linux use `./darknet` instead of `darknet.exe`, like this:`./darknet detector test ./cfg/coco.data ./cfg/yolov4.cfg ./yolov4.weights`
-On Linux find executable file `./darknet` in the root directory, while on Windows find it in the directory `\build\darknet\x64`
-
-* Yolo v4 COCO - **image**: `darknet.exe detector test cfg/coco.data cfg/yolov4.cfg yolov4.weights -thresh 0.25`
-* **Output coordinates** of objects: `darknet.exe detector test cfg/coco.data yolov4.cfg yolov4.weights -ext_output dog.jpg`
-* Yolo v4 COCO - **video**: `darknet.exe detector demo cfg/coco.data cfg/yolov4.cfg yolov4.weights -ext_output test.mp4`
-* Yolo v4 COCO - **WebCam 0**: `darknet.exe detector demo cfg/coco.data cfg/yolov4.cfg yolov4.weights -c 0`
-* Yolo v4 COCO for **net-videocam** - Smart WebCam: `darknet.exe detector demo cfg/coco.data cfg/yolov4.cfg yolov4.weights http://192.168.0.80:8080/video?dummy=param.mjpg`
-* Yolo v4 - **save result videofile res.avi**: `darknet.exe detector demo cfg/coco.data cfg/yolov4.cfg yolov4.weights test.mp4 -out_filename res.avi`
-* Yolo v3 **Tiny** COCO - video: `darknet.exe detector demo cfg/coco.data cfg/yolov3-tiny.cfg yolov3-tiny.weights test.mp4`
-* **JSON and MJPEG server** that allows multiple connections from your soft or Web-browser `ip-address:8070` and 8090: `./darknet detector demo ./cfg/coco.data ./cfg/yolov3.cfg ./yolov3.weights test50.mp4 -json_port 8070 -mjpeg_port 8090 -ext_output`
-* Yolo v3 Tiny **on GPU #1**: `darknet.exe detector demo cfg/coco.data cfg/yolov3-tiny.cfg yolov3-tiny.weights -i 1 test.mp4`
-* Alternative method Yolo v3 COCO - image: `darknet.exe detect cfg/yolov4.cfg yolov4.weights -i 0 -thresh 0.25`
-* Train on **Amazon EC2**, to see mAP & Loss-chart using URL like: `http://ec2-35-160-228-91.us-west-2.compute.amazonaws.com:8090` in the Chrome/Firefox (**Darknet should be compiled with OpenCV**):
+On Linux find executable file `./darknet` in the root directory, while on Windows find it in the directory `\build\darknet\x64`
+
+- Yolo v4 COCO - **image**: `darknet.exe detector test cfg/coco.data cfg/yolov4.cfg yolov4.weights -thresh 0.25`
+- **Output coordinates** of objects: `darknet.exe detector test cfg/coco.data yolov4.cfg yolov4.weights -ext_output dog.jpg`
+- Yolo v4 COCO - **video**: `darknet.exe detector demo cfg/coco.data cfg/yolov4.cfg yolov4.weights -ext_output test.mp4`
+- Yolo v4 COCO - **WebCam 0**: `darknet.exe detector demo cfg/coco.data cfg/yolov4.cfg yolov4.weights -c 0`
+- Yolo v4 COCO for **net-videocam** - Smart WebCam: `darknet.exe detector demo cfg/coco.data cfg/yolov4.cfg yolov4.weights http://192.168.0.80:8080/video?dummy=param.mjpg`
+- Yolo v4 - **save result videofile res.avi**: `darknet.exe detector demo cfg/coco.data cfg/yolov4.cfg yolov4.weights test.mp4 -out_filename res.avi`
+- Yolo v3 **Tiny** COCO - video: `darknet.exe detector demo cfg/coco.data cfg/yolov3-tiny.cfg yolov3-tiny.weights test.mp4`
+- **JSON and MJPEG server** that allows multiple connections from your soft or Web-browser `ip-address:8070` and 8090: `./darknet detector demo ./cfg/coco.data ./cfg/yolov3.cfg ./yolov3.weights test50.mp4 -json_port 8070 -mjpeg_port 8090 -ext_output`
+- Yolo v3 Tiny **on GPU #1**: `darknet.exe detector demo cfg/coco.data cfg/yolov3-tiny.cfg yolov3-tiny.weights -i 1 test.mp4`
+- Alternative method Yolo v3 COCO - image: `darknet.exe detect cfg/yolov4.cfg yolov4.weights -i 0 -thresh 0.25`
+- Train on **Amazon EC2**, to see mAP & Loss-chart using URL like: `http://ec2-35-160-228-91.us-west-2.compute.amazonaws.com:8090` in the Chrome/Firefox (**Darknet should be compiled with OpenCV**):
`./darknet detector train cfg/coco.data yolov4.cfg yolov4.conv.137 -dont_show -mjpeg_port 8090 -map`
-* 186 MB Yolo9000 - image: `darknet.exe detector test cfg/combine9k.data cfg/yolo9000.cfg yolo9000.weights`
-* Remember to put data/9k.tree and data/coco9k.map under the same folder of your app if you use the cpp api to build an app
-* To process a list of images `data/train.txt` and save results of detection to `result.json` file use:
+- 186 MB Yolo9000 - image: `darknet.exe detector test cfg/combine9k.data cfg/yolo9000.cfg yolo9000.weights`
+- Remember to put data/9k.tree and data/coco9k.map under the same folder of your app if you use the cpp api to build an app
+- To process a list of images `data/train.txt` and save results of detection to `result.json` file use:
`darknet.exe detector test cfg/coco.data cfg/yolov4.cfg yolov4.weights -ext_output -dont_show -out result.json < data/train.txt`
-* To process a list of images `data/train.txt` and save results of detection to `result.txt` use:
+- To process a list of images `data/train.txt` and save results of detection to `result.txt` use:
`darknet.exe detector test cfg/coco.data cfg/yolov4.cfg yolov4.weights -dont_show -ext_output < data/train.txt > result.txt`
-* Pseudo-labelling - to process a list of images `data/new_train.txt` and save results of detection in Yolo training format for each image as label `.txt` (in this way you can increase the amount of training data) use:
+- Pseudo-labelling - to process a list of images `data/new_train.txt` and save results of detection in Yolo training format for each image as label `.txt` (in this way you can increase the amount of training data) use:
`darknet.exe detector test cfg/coco.data cfg/yolov4.cfg yolov4.weights -thresh 0.25 -dont_show -save_labels < data/new_train.txt`
-* To calculate anchors: `darknet.exe detector calc_anchors data/obj.data -num_of_clusters 9 -width 416 -height 416`
-* To check accuracy mAP@IoU=50: `darknet.exe detector map data/obj.data yolo-obj.cfg backup\yolo-obj_7000.weights`
-* To check accuracy mAP@IoU=75: `darknet.exe detector map data/obj.data yolo-obj.cfg backup\yolo-obj_7000.weights -iou_thresh 0.75`
+- To calculate anchors: `darknet.exe detector calc_anchors data/obj.data -num_of_clusters 9 -width 416 -height 416`
+- To check accuracy mAP@IoU=50: `darknet.exe detector map data/obj.data yolo-obj.cfg backup\yolo-obj_7000.weights`
+- To check accuracy mAP@IoU=75: `darknet.exe detector map data/obj.data yolo-obj.cfg backup\yolo-obj_7000.weights -iou_thresh 0.75`
##### For using network video-camera mjpeg-stream with any Android smartphone
1. Download for Android phone mjpeg-stream soft: IP Webcam / Smart WebCam
- * Smart WebCam - preferably: https://play.google.com/store/apps/details?id=com.acontech.android.SmartWebCam2
- * IP Webcam: https://play.google.com/store/apps/details?id=com.pas.webcam
+ - Smart WebCam - preferably: https://play.google.com/store/apps/details?id=com.acontech.android.SmartWebCam2
+ - IP Webcam: https://play.google.com/store/apps/details?id=com.pas.webcam
2. Connect your Android phone to computer by WiFi (through a WiFi-router) or USB
3. Start Smart WebCam on your phone
4. Replace the address below, on shown in the phone application (Smart WebCam) and launch:
-* Yolo v4 COCO-model: `darknet.exe detector demo data/coco.data yolov4.cfg yolov4.weights http://192.168.0.80:8080/video?dummy=param.mjpg -i 0`
+- Yolo v4 COCO-model: `darknet.exe detector demo data/coco.data yolov4.cfg yolov4.weights http://192.168.0.80:8080/video?dummy=param.mjpg -i 0`
### How to compile on Linux/macOS (using `CMake`)
The `CMakeLists.txt` will attempt to find installed optional dependencies like CUDA, cudnn, ZED and build against those. It will also create a shared object library file to use `darknet` for code development.
-Install powershell if you do not already have it ([guide here](https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell)).
+To update CMake on Ubuntu, it's better to follow guide here: https://apt.kitware.com/ or https://cmake.org/download/
-To update CMake on Ubuntu, it's better to follow guide here: https://apt.kitware.com/
-
-### Using `vcpkg`
-
-Open a shell and type these commands
-
-```PowerShell
-PS Code/> git clone https://github.com/AlexeyAB/darknet
-PS Code/> cd darknet
-PS Code/darknet> ./build.ps1 -UseVCPKG -EnableOPENCV -EnableCUDA -EnableCUDNN
+```bash
+git clone https://github.com/AlexeyAB/darknet
+cd darknet
+mkdir build_release
+cd build_release
+cmake ..
+cmake --build . --target install --parallel 8
```
-(add option `-EnableOPENCV_CUDA` if you want to build OpenCV with CUDA support - very slow to build!)
-If you open the `build.ps1` script at the beginning you will find all available switches.
+### Using also PowerShell
-### Using libraries manually provided
+Install: `Cmake`, `CUDA`, `cuDNN` [How to install dependencies](#requirements)
-Open a shell and type these commands
+Install powershell for your OS (Linux or MacOS) ([guide here](https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell)).
+
+Open PowerShell type these commands
```PowerShell
-PS Code/> git clone https://github.com/AlexeyAB/darknet
-PS Code/> cd darknet
-PS Code/darknet> ./build.ps1 -EnableOPENCV -EnableCUDA -EnableCUDNN
+git clone https://github.com/AlexeyAB/darknet
+cd darknet
+./build.ps1 -UseVCPKG -EnableOPENCV -EnableCUDA -EnableCUDNN
```
-(remove options like `-EnableCUDA` or `-EnableCUDNN` if you are not interested into).
+- remove options like `-EnableCUDA` or `-EnableCUDNN` if you are not interested into
+- remove option `-UseVCPKG` if you plan to manually provide OpenCV library to darknet or if you do not want to enable OpenCV integration
+- add option `-EnableOPENCV_CUDA` if you want to build OpenCV with CUDA support - very slow to build! (requires `-UseVCPKG`)
+
If you open the `build.ps1` script at the beginning you will find all available switches.
### How to compile on Linux (using `make`)
@@ -353,17 +356,17 @@ If you open the `build.ps1` script at the beginning you will find all available
Just do `make` in the darknet directory. (You can try to compile and run it on Google Colab in cloud [link](https://colab.research.google.com/drive/12QusaaRj_lUwCGDvQNfICpa7kA7_a2dE) (press «Open in Playground» button at the top-left corner) and watch the video [link](https://www.youtube.com/watch?v=mKAEGSxwOAY) )
Before make, you can set such options in the `Makefile`: [link](https://github.com/AlexeyAB/darknet/blob/9c1b9a2cf6363546c152251be578a21f3c3caec6/Makefile#L1)
-* `GPU=1` to build with CUDA to accelerate by using GPU (CUDA should be in `/usr/local/cuda`)
-* `CUDNN=1` to build with cuDNN v5-v7 to accelerate training by using GPU (cuDNN should be in `/usr/local/cudnn`)
-* `CUDNN_HALF=1` to build for Tensor Cores (on Titan V / Tesla V100 / DGX-2 and later) speedup Detection 3x, Training 2x
-* `OPENCV=1` to build with OpenCV 4.x/3.x/2.4.x - allows to detect on video files and video streams from network cameras or web-cams
-* `DEBUG=1` to build debug version of Yolo
-* `OPENMP=1` to build with OpenMP support to accelerate Yolo by using multi-core CPU
-* `LIBSO=1` to build a library `darknet.so` and binary runnable file `uselib` that uses this library. Or you can try to run so `LD_LIBRARY_PATH=./:$LD_LIBRARY_PATH ./uselib test.mp4` How to use this SO-library from your own code - you can look at C++ example: https://github.com/AlexeyAB/darknet/blob/master/src/yolo_console_dll.cpp
+- `GPU=1` to build with CUDA to accelerate by using GPU (CUDA should be in `/usr/local/cuda`)
+- `CUDNN=1` to build with cuDNN v5-v7 to accelerate training by using GPU (cuDNN should be in `/usr/local/cudnn`)
+- `CUDNN_HALF=1` to build for Tensor Cores (on Titan V / Tesla V100 / DGX-2 and later) speedup Detection 3x, Training 2x
+- `OPENCV=1` to build with OpenCV 4.x/3.x/2.4.x - allows to detect on video files and video streams from network cameras or web-cams
+- `DEBUG=1` to build debug version of Yolo
+- `OPENMP=1` to build with OpenMP support to accelerate Yolo by using multi-core CPU
+- `LIBSO=1` to build a library `darknet.so` and binary runnable file `uselib` that uses this library. Or you can try to run so `LD_LIBRARY_PATH=./:$LD_LIBRARY_PATH ./uselib test.mp4` How to use this SO-library from your own code - you can look at C++ example: https://github.com/AlexeyAB/darknet/blob/master/src/yolo_console_dll.cpp
or use in such a way: `LD_LIBRARY_PATH=./:$LD_LIBRARY_PATH ./uselib data/coco.names cfg/yolov4.cfg yolov4.weights test.mp4`
-* `ZED_CAMERA=1` to build a library with ZED-3D-camera support (should be ZED SDK installed), then run
+- `ZED_CAMERA=1` to build a library with ZED-3D-camera support (should be ZED SDK installed), then run
`LD_LIBRARY_PATH=./:$LD_LIBRARY_PATH ./uselib data/coco.names cfg/yolov4.cfg yolov4.weights zed_camera`
-* You also need to specify for which graphics card the code is generated. This is done by setting `ARCH=`. If you use a never version than CUDA 11 you further need to edit line 20 from Makefile and remove `-gencode arch=compute_30,code=sm_30 \` as Kepler GPU support was dropped in CUDA 11. You can also drop the general `ARCH=` and just uncomment `ARCH=` for your graphics card.
+- You also need to specify for which graphics card the code is generated. This is done by setting `ARCH=`. If you use a never version than CUDA 11 you further need to edit line 20 from Makefile and remove `-gencode arch=compute_30,code=sm_30 \` as Kepler GPU support was dropped in CUDA 11. You can also drop the general `ARCH=` and just uncomment `ARCH=` for your graphics card.
To run Darknet on Linux use examples from this article, just use `./darknet` instead of `darknet.exe`, i.e. use this command: `./darknet detector test ./cfg/coco.data ./cfg/yolov4.cfg ./yolov4.weights`
@@ -371,37 +374,37 @@ To run Darknet on Linux use examples from this article, just use `./darknet` ins
Requires:
-* MSVC: https://visualstudio.microsoft.com/thank-you-downloading-visual-studio/?sku=Community
-* CMake GUI: `Windows win64-x64 Installer`https://cmake.org/download/
-* Download Darknet zip-archive with the latest commit and uncompress it: [master.zip](https://github.com/AlexeyAB/darknet/archive/master.zip)
+- MSVC: https://visualstudio.microsoft.com/thank-you-downloading-visual-studio/?sku=Community
+- CMake GUI: `Windows win64-x64 Installer`https://cmake.org/download/
+- Download Darknet zip-archive with the latest commit and uncompress it: [master.zip](https://github.com/AlexeyAB/darknet/archive/master.zip)
In Windows:
-* Start (button) -> All programs -> CMake -> CMake (gui) ->
+- Start (button) -> All programs -> CMake -> CMake (gui) ->
-* [look at image](https://habrastorage.org/webt/pz/s1/uu/pzs1uu4heb7vflfcjqn-lxy-aqu.jpeg) In CMake: Enter input path to the darknet Source, and output path to the Binaries -> Configure (button) -> Optional platform for generator: `x64` -> Finish -> Generate -> Open Project ->
+- [look at image](https://habrastorage.org/webt/pz/s1/uu/pzs1uu4heb7vflfcjqn-lxy-aqu.jpeg) In CMake: Enter input path to the darknet Source, and output path to the Binaries -> Configure (button) -> Optional platform for generator: `x64` -> Finish -> Generate -> Open Project ->
-* in MS Visual Studio: Select: x64 and Release -> Build -> Build solution
+- in MS Visual Studio: Select: x64 and Release -> Build -> Build solution
-* find the executable file `darknet.exe` in the output path to the binaries you specified
+- find the executable file `darknet.exe` in the output path to the binaries you specified
![x64 and Release](https://habrastorage.org/webt/ay/ty/f-/aytyf-8bufe7q-16yoecommlwys.jpeg)
-
### How to compile on Windows (using `vcpkg`)
This is the recommended approach to build Darknet on Windows.
-1. Install Visual Studio 2017 or 2019. In case you need to download it, please go here: [Visual Studio Community](http://visualstudio.com)
+1. Install Visual Studio 2017 or 2019. In case you need to download it, please go here: [Visual Studio Community](http://visualstudio.com). Remember to install English language pack, this is mandatory for vcpkg!
-2. Install CUDA (at least v10.0) enabling VS Integration during installation.
+2. Install CUDA enabling VS Integration during installation.
3. Open Powershell (Start -> All programs -> Windows Powershell) and type these commands:
```PowerShell
-PS Code/> git clone https://github.com/AlexeyAB/darknet
-PS Code/> cd darknet
-PS Code/darknet> .\build.ps1 -UseVCPKG -EnableOPENCV -EnableCUDA -EnableCUDNN
+Set-ExecutionPolicy unrestricted -Scope CurrentUser -Force
+git clone https://github.com/AlexeyAB/darknet
+cd darknet
+.\build.ps1 -UseVCPKG -EnableOPENCV -EnableCUDA -EnableCUDNN
```
(add option `-EnableOPENCV_CUDA` if you want to build OpenCV with CUDA support - very slow to build! - or remove options like `-EnableCUDA` or `-EnableCUDNN` if you are not interested in them). If you open the `build.ps1` script at the beginning you will find all available switches.
@@ -423,31 +426,29 @@ https://groups.google.com/d/msg/darknet/NbJqonJBTSY/Te5PfIpuCAAJ
Training Yolo v4 (and v3):
0. For training `cfg/yolov4-custom.cfg` download the pre-trained weights-file (162 MB): [yolov4.conv.137](https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v3_optimal/yolov4.conv.137) (Google drive mirror [yolov4.conv.137](https://drive.google.com/open?id=1JKF-bdIklxOOVy-2Cr5qdvjgGpmGfcbp) )
-
1. Create file `yolo-obj.cfg` with the same content as in `yolov4-custom.cfg` (or copy `yolov4-custom.cfg` to `yolo-obj.cfg)` and:
-* change line batch to [`batch=64`](https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L3)
-* change line subdivisions to [`subdivisions=16`](https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L4)
-* change line max_batches to (`classes*2000`, but not less than number of training images and not less than `6000`), f.e. [`max_batches=6000`](https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L20) if you train for 3 classes
-* change line steps to 80% and 90% of max_batches, f.e. [`steps=4800,5400`](https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L22)
-* set network size `width=416 height=416` or any value multiple of 32: https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L8-L9
-* change line `classes=80` to your number of objects in each of 3 `[yolo]`-layers:
- * https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L610
- * https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L696
- * https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L783
-* change [`filters=255`] to filters=(classes + 5)x3 in the 3 `[convolutional]` before each `[yolo]` layer, keep in mind that it only has to be the last `[convolutional]` before each of the `[yolo]` layers.
- * https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L603
- * https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L689
- * https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L776
-* when using [`[Gaussian_yolo]`](https://github.com/AlexeyAB/darknet/blob/6e5bdf1282ad6b06ed0e962c3f5be67cf63d96dc/cfg/Gaussian_yolov3_BDD.cfg#L608) layers, change [`filters=57`] filters=(classes + 9)x3 in the 3 `[convolutional]` before each `[Gaussian_yolo]` layer
- * https://github.com/AlexeyAB/darknet/blob/6e5bdf1282ad6b06ed0e962c3f5be67cf63d96dc/cfg/Gaussian_yolov3_BDD.cfg#L604
- * https://github.com/AlexeyAB/darknet/blob/6e5bdf1282ad6b06ed0e962c3f5be67cf63d96dc/cfg/Gaussian_yolov3_BDD.cfg#L696
- * https://github.com/AlexeyAB/darknet/blob/6e5bdf1282ad6b06ed0e962c3f5be67cf63d96dc/cfg/Gaussian_yolov3_BDD.cfg#L789
+- change line batch to [`batch=64`](https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L3)
+- change line subdivisions to [`subdivisions=16`](https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L4)
+- change line max_batches to (`classes*2000`, but not less than number of training images and not less than `6000`), f.e. [`max_batches=6000`](https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L20) if you train for 3 classes
+- change line steps to 80% and 90% of max_batches, f.e. [`steps=4800,5400`](https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L22)
+- set network size `width=416 height=416` or any value multiple of 32: https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L8-L9
+- change line `classes=80` to your number of objects in each of 3 `[yolo]`-layers:
+ - https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L610
+ - https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L696
+ - https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L783
+- change [`filters=255`] to filters=(classes + 5)x3 in the 3 `[convolutional]` before each `[yolo]` layer, keep in mind that it only has to be the last `[convolutional]` before each of the `[yolo]` layers.
+ - https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L603
+ - https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L689
+ - https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L776
+- when using [`[Gaussian_yolo]`](https://github.com/AlexeyAB/darknet/blob/6e5bdf1282ad6b06ed0e962c3f5be67cf63d96dc/cfg/Gaussian_yolov3_BDD.cfg#L608) layers, change [`filters=57`] filters=(classes + 9)x3 in the 3 `[convolutional]` before each `[Gaussian_yolo]` layer
+ - https://github.com/AlexeyAB/darknet/blob/6e5bdf1282ad6b06ed0e962c3f5be67cf63d96dc/cfg/Gaussian_yolov3_BDD.cfg#L604
+ - https://github.com/AlexeyAB/darknet/blob/6e5bdf1282ad6b06ed0e962c3f5be67cf63d96dc/cfg/Gaussian_yolov3_BDD.cfg#L696
+ - https://github.com/AlexeyAB/darknet/blob/6e5bdf1282ad6b06ed0e962c3f5be67cf63d96dc/cfg/Gaussian_yolov3_BDD.cfg#L789
So if `classes=1` then should be `filters=18`. If `classes=2` then write `filters=21`.
-
**(Do not write in the cfg-file: filters=(classes + 5)x3)**
-
+
(Generally `filters` depends on the `classes`, `coords` and number of `mask`s, i.e. filters=`(classes + coords + 1)*`, where `mask` is indices of anchors. If `mask` is absence, then filters=`(classes + coords + 1)*num`)
So for example, for 2 objects, your file `yolo-obj.cfg` should differ from `yolov4-custom.cfg` in such lines in each of **3** [yolo]-layers:
@@ -461,7 +462,6 @@ classes=2
```
2. Create file `obj.names` in the directory `build\darknet\x64\data\`, with objects names - each in new line
-
3. Create file `obj.data` in the directory `build\darknet\x64\data\`, containing (where **classes = number of objects**):
```ini
@@ -473,22 +473,22 @@ classes=2
```
4. Put image-files (.jpg) of your objects in the directory `build\darknet\x64\data\obj\`
-
5. You should label each object on images from your dataset. Use this visual GUI-software for marking bounded boxes of objects and generating annotation files for Yolo v2 & v3: https://github.com/AlexeyAB/Yolo_mark
-It will create `.txt`-file for each `.jpg`-image-file - in the same directory and with the same name, but with `.txt`-extension, and put to file: object number and object coordinates on this image, for each object in new line:
+It will create `.txt`-file for each `.jpg`-image-file - in the same directory and with the same name, but with `.txt`-extension, and put to file: object number and object coordinates on this image, for each object in new line:
` `
- Where:
- * `` - integer object number from `0` to `(classes-1)`
- * ` ` - float values **relative** to width and height of image, it can be equal from `(0.0 to 1.0]`
- * for example: ` = / ` or ` = / `
- * attention: ` ` - are center of rectangle (are not top-left corner)
+ Where:
+
+- `` - integer object number from `0` to `(classes-1)`
+- ` ` - float values **relative** to width and height of image, it can be equal from `(0.0 to 1.0]`
+- for example: ` = / ` or ` = / `
+- attention: ` ` - are center of rectangle (are not top-left corner)
For example for `img1.jpg` you will be created `img1.txt` containing:
- ```
+ ```csv
1 0.716797 0.395833 0.216406 0.147222
0 0.687109 0.379167 0.255469 0.158333
1 0.420312 0.395833 0.140625 0.166667
@@ -496,60 +496,60 @@ It will create `.txt`-file for each `.jpg`-image-file - in the same directory an
6. Create file `train.txt` in directory `build\darknet\x64\data\`, with filenames of your images, each filename in new line, with path relative to `darknet.exe`, for example containing:
- ```
+ ```csv
data/obj/img1.jpg
data/obj/img2.jpg
data/obj/img3.jpg
```
7. Download pre-trained weights for the convolutional layers and put to the directory `build\darknet\x64`
- * for `yolov4.cfg`, `yolov4-custom.cfg` (162 MB): [yolov4.conv.137](https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v3_optimal/yolov4.conv.137) (Google drive mirror [yolov4.conv.137](https://drive.google.com/open?id=1JKF-bdIklxOOVy-2Cr5qdvjgGpmGfcbp) )
- * for `yolov4-tiny.cfg`, `yolov4-tiny-3l.cfg`, `yolov4-tiny-custom.cfg` (19 MB): [yolov4-tiny.conv.29](https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v4_pre/yolov4-tiny.conv.29)
- * for `csresnext50-panet-spp.cfg` (133 MB): [csresnext50-panet-spp.conv.112](https://drive.google.com/file/d/16yMYCLQTY_oDlCIZPfn_sab6KD3zgzGq/view?usp=sharing)
- * for `yolov3.cfg, yolov3-spp.cfg` (154 MB): [darknet53.conv.74](https://pjreddie.com/media/files/darknet53.conv.74)
- * for `yolov3-tiny-prn.cfg , yolov3-tiny.cfg` (6 MB): [yolov3-tiny.conv.11](https://drive.google.com/file/d/18v36esoXCh-PsOKwyP2GWrpYDptDY8Zf/view?usp=sharing)
- * for `enet-coco.cfg (EfficientNetB0-Yolov3)` (14 MB): [enetb0-coco.conv.132](https://drive.google.com/file/d/1uhh3D6RSn0ekgmsaTcl-ZW53WBaUDo6j/view?usp=sharing)
-
+ - for `yolov4.cfg`, `yolov4-custom.cfg` (162 MB): [yolov4.conv.137](https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v3_optimal/yolov4.conv.137) (Google drive mirror [yolov4.conv.137](https://drive.google.com/open?id=1JKF-bdIklxOOVy-2Cr5qdvjgGpmGfcbp) )
+ - for `yolov4-tiny.cfg`, `yolov4-tiny-3l.cfg`, `yolov4-tiny-custom.cfg` (19 MB): [yolov4-tiny.conv.29](https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v4_pre/yolov4-tiny.conv.29)
+ - for `csresnext50-panet-spp.cfg` (133 MB): [csresnext50-panet-spp.conv.112](https://drive.google.com/file/d/16yMYCLQTY_oDlCIZPfn_sab6KD3zgzGq/view?usp=sharing)
+ - for `yolov3.cfg, yolov3-spp.cfg` (154 MB): [darknet53.conv.74](https://pjreddie.com/media/files/darknet53.conv.74)
+ - for `yolov3-tiny-prn.cfg , yolov3-tiny.cfg` (6 MB): [yolov3-tiny.conv.11](https://drive.google.com/file/d/18v36esoXCh-PsOKwyP2GWrpYDptDY8Zf/view?usp=sharing)
+ - for `enet-coco.cfg (EfficientNetB0-Yolov3)` (14 MB): [enetb0-coco.conv.132](https://drive.google.com/file/d/1uhh3D6RSn0ekgmsaTcl-ZW53WBaUDo6j/view?usp=sharing)
8. Start training by using the command line: `darknet.exe detector train data/obj.data yolo-obj.cfg yolov4.conv.137`
-
+
To train on Linux use command: `./darknet detector train data/obj.data yolo-obj.cfg yolov4.conv.137` (just use `./darknet` instead of `darknet.exe`)
-
- * (file `yolo-obj_last.weights` will be saved to the `build\darknet\x64\backup\` for each 100 iterations)
- * (file `yolo-obj_xxxx.weights` will be saved to the `build\darknet\x64\backup\` for each 1000 iterations)
- * (to disable Loss-Window use `darknet.exe detector train data/obj.data yolo-obj.cfg yolov4.conv.137 -dont_show`, if you train on computer without monitor like a cloud Amazon EC2)
- * (to see the mAP & Loss-chart during training on remote server without GUI, use command `darknet.exe detector train data/obj.data yolo-obj.cfg yolov4.conv.137 -dont_show -mjpeg_port 8090 -map` then open URL `http://ip-address:8090` in Chrome/Firefox browser)
+
+ - (file `yolo-obj_last.weights` will be saved to the `build\darknet\x64\backup\` for each 100 iterations)
+ - (file `yolo-obj_xxxx.weights` will be saved to the `build\darknet\x64\backup\` for each 1000 iterations)
+ - (to disable Loss-Window use `darknet.exe detector train data/obj.data yolo-obj.cfg yolov4.conv.137 -dont_show`, if you train on computer without monitor like a cloud Amazon EC2)
+ - (to see the mAP & Loss-chart during training on remote server without GUI, use command `darknet.exe detector train data/obj.data yolo-obj.cfg yolov4.conv.137 -dont_show -mjpeg_port 8090 -map` then open URL `http://ip-address:8090` in Chrome/Firefox browser)
8.1. For training with mAP (mean average precisions) calculation for each 4 Epochs (set `valid=valid.txt` or `train.txt` in `obj.data` file) and run: `darknet.exe detector train data/obj.data yolo-obj.cfg yolov4.conv.137 -map`
9. After training is complete - get result `yolo-obj_final.weights` from path `build\darknet\x64\backup\`
- * After each 100 iterations you can stop and later start training from this point. For example, after 2000 iterations you can stop training, and later just start training using: `darknet.exe detector train data/obj.data yolo-obj.cfg backup\yolo-obj_2000.weights`
+ - After each 100 iterations you can stop and later start training from this point. For example, after 2000 iterations you can stop training, and later just start training using: `darknet.exe detector train data/obj.data yolo-obj.cfg backup\yolo-obj_2000.weights`
(in the original repository https://github.com/pjreddie/darknet the weights-file is saved only once every 10 000 iterations `if(iterations > 1000)`)
- * Also you can get result earlier than all 45000 iterations.
-
+ - Also you can get result earlier than all 45000 iterations.
+
**Note:** If during training you see `nan` values for `avg` (loss) field - then training goes wrong, but if `nan` is in some other lines - then training goes well.
-
+
**Note:** If you changed width= or height= in your cfg-file, then new width and height must be divisible by 32.
-
+
**Note:** After training use such command for detection: `darknet.exe detector test data/obj.data yolo-obj.cfg yolo-obj_8000.weights`
-
+
**Note:** if error `Out of memory` occurs then in `.cfg`-file you should increase `subdivisions=16`, 32 or 64: [link](https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L4)
-
-### How to train tiny-yolo (to detect your custom objects):
+
+### How to train tiny-yolo (to detect your custom objects)
Do all the same steps as for the full yolo model as described above. With the exception of:
-* Download file with the first 29-convolutional layers of yolov4-tiny: https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v4_pre/yolov4-tiny.conv.29
+
+- Download file with the first 29-convolutional layers of yolov4-tiny: https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v4_pre/yolov4-tiny.conv.29
(Or get this file from yolov4-tiny.weights file by using command: `darknet.exe partial cfg/yolov4-tiny-custom.cfg yolov4-tiny.weights yolov4-tiny.conv.29 29`
-* Make your custom model `yolov4-tiny-obj.cfg` based on `cfg/yolov4-tiny-custom.cfg` instead of `yolov4.cfg`
-* Start training: `darknet.exe detector train data/obj.data yolov4-tiny-obj.cfg yolov4-tiny.conv.29`
+- Make your custom model `yolov4-tiny-obj.cfg` based on `cfg/yolov4-tiny-custom.cfg` instead of `yolov4.cfg`
+- Start training: `darknet.exe detector train data/obj.data yolov4-tiny-obj.cfg yolov4-tiny.conv.29`
For training Yolo based on other models ([DenseNet201-Yolo](https://github.com/AlexeyAB/darknet/blob/master/build/darknet/x64/densenet201_yolo.cfg) or [ResNet50-Yolo](https://github.com/AlexeyAB/darknet/blob/master/build/darknet/x64/resnet50_yolo.cfg)), you can download and get pre-trained weights as showed in this file: https://github.com/AlexeyAB/darknet/blob/master/build/darknet/x64/partial.cmd
If you made you custom model that isn't based on other models, then you can train it without pre-trained weights, then will be used random initial weights.
-
-## When should I stop training:
+
+## When should I stop training
Usually sufficient 2000 iterations for each class(object), but not less than number of training images and not less than 6000 iterations in total. But for a more precise definition when you should stop training, use the following manual:
@@ -561,18 +561,18 @@ Usually sufficient 2000 iterations for each class(object), but not less than num
> **9002**: 0.211667, **0.60730 avg**, 0.001000 rate, 3.868000 seconds, 576128 images
> Loaded: 0.000000 seconds
- * **9002** - iteration number (number of batch)
- * **0.60730 avg** - average loss (error) - **the lower, the better**
+- **9002** - iteration number (number of batch)
+- **0.60730 avg** - average loss (error) - **the lower, the better**
When you see that average loss **0.xxxxxx avg** no longer decreases at many iterations then you should stop training. The final average loss can be from `0.05` (for a small model and easy dataset) to `3.0` (for a big model and a difficult dataset).
- Or if you train with flag `-map` then you will see mAP indicator `Last accuracy mAP@0.5 = 18.50%` in the console - this indicator is better than Loss, so train while mAP increases.
+ Or if you train with flag `-map` then you will see mAP indicator `Last accuracy mAP@0.5 = 18.50%` in the console - this indicator is better than Loss, so train while mAP increases.
2. Once training is stopped, you should take some of last `.weights`-files from `darknet\build\darknet\x64\backup` and choose the best of them:
For example, you stopped training after 9000 iterations, but the best result can give one of previous weights (7000, 8000, 9000). It can happen due to over-fitting. **Over-fitting** - is case when you can detect objects on images from training-dataset, but can't detect objects on any others images. You should get weights from **Early Stopping Point**:
-![Over-fitting](https://hsto.org/files/5dc/7ae/7fa/5dc7ae7fad9d4e3eb3a484c58bfc1ff5.png)
+![Over-fitting](https://hsto.org/files/5dc/7ae/7fa/5dc7ae7fad9d4e3eb3a484c58bfc1ff5.png)
To get weights from Early Stopping Point:
@@ -582,9 +582,9 @@ To get weights from Early Stopping Point:
(If you use another GitHub repository, then use `darknet.exe detector recall`... instead of `darknet.exe detector map`...)
-* `darknet.exe detector map data/obj.data yolo-obj.cfg backup\yolo-obj_7000.weights`
-* `darknet.exe detector map data/obj.data yolo-obj.cfg backup\yolo-obj_8000.weights`
-* `darknet.exe detector map data/obj.data yolo-obj.cfg backup\yolo-obj_9000.weights`
+- `darknet.exe detector map data/obj.data yolo-obj.cfg backup\yolo-obj_7000.weights`
+- `darknet.exe detector map data/obj.data yolo-obj.cfg backup\yolo-obj_8000.weights`
+- `darknet.exe detector map data/obj.data yolo-obj.cfg backup\yolo-obj_9000.weights`
And compare last output lines for each weights (7000, 8000, 9000):
@@ -592,9 +592,9 @@ Choose weights-file **with the highest mAP (mean average precision)** or IoU (in
For example, **bigger mAP** gives weights `yolo-obj_8000.weights` - then **use this weights for detection**.
-Or just train with `-map` flag:
+Or just train with `-map` flag:
-`darknet.exe detector train data/obj.data yolo-obj.cfg yolov4.conv.137 -map`
+`darknet.exe detector train data/obj.data yolo-obj.cfg yolov4.conv.137 -map`
So you will see mAP-chart (red-line) in the Loss-chart Window. mAP will be calculated for each 4 Epochs using `valid=valid.txt` file that is specified in `obj.data` file (`1 Epoch = images_in_train_txt / batch` iterations)
@@ -604,83 +604,82 @@ So you will see mAP-chart (red-line) in the Loss-chart Window. mAP will be calcu
Example of custom object detection: `darknet.exe detector test data/obj.data yolo-obj.cfg yolo-obj_8000.weights`
-* **IoU** (intersect over union) - average intersect over union of objects and detections for a certain threshold = 0.24
+- **IoU** (intersect over union) - average intersect over union of objects and detections for a certain threshold = 0.24
-* **mAP** (mean average precision) - mean value of `average precisions` for each class, where `average precision` is average value of 11 points on PR-curve for each possible threshold (each probability of detection) for the same class (Precision-Recall in terms of PascalVOC, where Precision=TP/(TP+FP) and Recall=TP/(TP+FN) ), page-11: http://homepages.inf.ed.ac.uk/ckiw/postscript/ijcv_voc09.pdf
+- **mAP** (mean average precision) - mean value of `average precisions` for each class, where `average precision` is average value of 11 points on PR-curve for each possible threshold (each probability of detection) for the same class (Precision-Recall in terms of PascalVOC, where Precision=TP/(TP+FP) and Recall=TP/(TP+FN) ), page-11: http://homepages.inf.ed.ac.uk/ckiw/postscript/ijcv_voc09.pdf
**mAP** is default metric of precision in the PascalVOC competition, **this is the same as AP50** metric in the MS COCO competition.
In terms of Wiki, indicators Precision and Recall have a slightly different meaning than in the PascalVOC competition, but **IoU always has the same meaning**.
![precision_recall_iou](https://hsto.org/files/ca8/866/d76/ca8866d76fb840228940dbf442a7f06a.jpg)
-
-### Custom object detection:
+### Custom object detection
Example of custom object detection: `darknet.exe detector test data/obj.data yolo-obj.cfg yolo-obj_8000.weights`
| ![Yolo_v2_training](https://hsto.org/files/d12/1e7/515/d121e7515f6a4eb694913f10de5f2b61.jpg) | ![Yolo_v2_training](https://hsto.org/files/727/c7e/5e9/727c7e5e99bf4d4aa34027bb6a5e4bab.jpg) |
|---|---|
-## How to improve object detection:
+## How to improve object detection
1. Before training:
-* set flag `random=1` in your `.cfg`-file - it will increase precision by training Yolo for different resolutions: [link](https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L788)
+- set flag `random=1` in your `.cfg`-file - it will increase precision by training Yolo for different resolutions: [link](https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L788)
-* increase network resolution in your `.cfg`-file (`height=608`, `width=608` or any value multiple of 32) - it will increase precision
+- increase network resolution in your `.cfg`-file (`height=608`, `width=608` or any value multiple of 32) - it will increase precision
-* check that each object that you want to detect is mandatory labeled in your dataset - no one object in your data set should not be without label. In the most training issues - there are wrong labels in your dataset (got labels by using some conversion script, marked with a third-party tool, ...). Always check your dataset by using: https://github.com/AlexeyAB/Yolo_mark
+- check that each object that you want to detect is mandatory labeled in your dataset - no one object in your data set should not be without label. In the most training issues - there are wrong labels in your dataset (got labels by using some conversion script, marked with a third-party tool, ...). Always check your dataset by using: https://github.com/AlexeyAB/Yolo_mark
-* my Loss is very high and mAP is very low, is training wrong? Run training with ` -show_imgs` flag at the end of training command, do you see correct bounded boxes of objects (in windows or in files `aug_...jpg`)? If no - your training dataset is wrong.
+- my Loss is very high and mAP is very low, is training wrong? Run training with `-show_imgs` flag at the end of training command, do you see correct bounded boxes of objects (in windows or in files `aug_...jpg`)? If no - your training dataset is wrong.
-* for each object which you want to detect - there must be at least 1 similar object in the Training dataset with about the same: shape, side of object, relative size, angle of rotation, tilt, illumination. So desirable that your training dataset include images with objects at different: scales, rotations, lightings, from different sides, on different backgrounds - you should preferably have 2000 different images for each class or more, and you should train `2000*classes` iterations or more
+- for each object which you want to detect - there must be at least 1 similar object in the Training dataset with about the same: shape, side of object, relative size, angle of rotation, tilt, illumination. So desirable that your training dataset include images with objects at different: scales, rotations, lightings, from different sides, on different backgrounds - you should preferably have 2000 different images for each class or more, and you should train `2000*classes` iterations or more
-* desirable that your training dataset include images with non-labeled objects that you do not want to detect - negative samples without bounded box (empty `.txt` files) - use as many images of negative samples as there are images with objects
+- desirable that your training dataset include images with non-labeled objects that you do not want to detect - negative samples without bounded box (empty `.txt` files) - use as many images of negative samples as there are images with objects
-* What is the best way to mark objects: label only the visible part of the object, or label the visible and overlapped part of the object, or label a little more than the entire object (with a little gap)? Mark as you like - how would you like it to be detected.
+- What is the best way to mark objects: label only the visible part of the object, or label the visible and overlapped part of the object, or label a little more than the entire object (with a little gap)? Mark as you like - how would you like it to be detected.
-* for training with a large number of objects in each image, add the parameter `max=200` or higher value in the last `[yolo]`-layer or `[region]`-layer in your cfg-file (the global maximum number of objects that can be detected by YoloV3 is `0,0615234375*(width*height)` where are width and height are parameters from `[net]` section in cfg-file)
+- for training with a large number of objects in each image, add the parameter `max=200` or higher value in the last `[yolo]`-layer or `[region]`-layer in your cfg-file (the global maximum number of objects that can be detected by YoloV3 is `0,0615234375*(width*height)` where are width and height are parameters from `[net]` section in cfg-file)
-* for training for small objects (smaller than 16x16 after the image is resized to 416x416) - set `layers = 23` instead of https://github.com/AlexeyAB/darknet/blob/6f718c257815a984253346bba8fb7aa756c55090/cfg/yolov4.cfg#L895
- * set `stride=4` instead of https://github.com/AlexeyAB/darknet/blob/6f718c257815a984253346bba8fb7aa756c55090/cfg/yolov4.cfg#L892
- * set `stride=4` instead of https://github.com/AlexeyAB/darknet/blob/6f718c257815a984253346bba8fb7aa756c55090/cfg/yolov4.cfg#L989
+- for training for small objects (smaller than 16x16 after the image is resized to 416x416) - set `layers = 23` instead of https://github.com/AlexeyAB/darknet/blob/6f718c257815a984253346bba8fb7aa756c55090/cfg/yolov4.cfg#L895
+ - set `stride=4` instead of https://github.com/AlexeyAB/darknet/blob/6f718c257815a984253346bba8fb7aa756c55090/cfg/yolov4.cfg#L892
+ - set `stride=4` instead of https://github.com/AlexeyAB/darknet/blob/6f718c257815a984253346bba8fb7aa756c55090/cfg/yolov4.cfg#L989
-* for training for both small and large objects use modified models:
- * Full-model: 5 yolo layers: https://raw.githubusercontent.com/AlexeyAB/darknet/master/cfg/yolov3_5l.cfg
- * Tiny-model: 3 yolo layers: https://raw.githubusercontent.com/AlexeyAB/darknet/master/cfg/yolov4-tiny_3l.cfg
- * YOLOv4: 3 yolo layers: https://raw.githubusercontent.com/AlexeyAB/darknet/master/cfg/yolov4-custom.cfg
+- for training for both small and large objects use modified models:
+ - Full-model: 5 yolo layers: https://raw.githubusercontent.com/AlexeyAB/darknet/master/cfg/yolov3_5l.cfg
+ - Tiny-model: 3 yolo layers: https://raw.githubusercontent.com/AlexeyAB/darknet/master/cfg/yolov4-tiny_3l.cfg
+ - YOLOv4: 3 yolo layers: https://raw.githubusercontent.com/AlexeyAB/darknet/master/cfg/yolov4-custom.cfg
-* If you train the model to distinguish Left and Right objects as separate classes (left/right hand, left/right-turn on road signs, ...) then for disabling flip data augmentation - add `flip=0` here: https://github.com/AlexeyAB/darknet/blob/3d2d0a7c98dbc8923d9ff705b81ff4f7940ea6ff/cfg/yolov3.cfg#L17
+- If you train the model to distinguish Left and Right objects as separate classes (left/right hand, left/right-turn on road signs, ...) then for disabling flip data augmentation - add `flip=0` here: https://github.com/AlexeyAB/darknet/blob/3d2d0a7c98dbc8923d9ff705b81ff4f7940ea6ff/cfg/yolov3.cfg#L17
-* General rule - your training dataset should include such a set of relative sizes of objects that you want to detect:
- * `train_network_width * train_obj_width / train_image_width ~= detection_network_width * detection_obj_width / detection_image_width`
- * `train_network_height * train_obj_height / train_image_height ~= detection_network_height * detection_obj_height / detection_image_height`
+- General rule - your training dataset should include such a set of relative sizes of objects that you want to detect:
+ - `train_network_width * train_obj_width / train_image_width ~= detection_network_width * detection_obj_width / detection_image_width`
+ - `train_network_height * train_obj_height / train_image_height ~= detection_network_height * detection_obj_height / detection_image_height`
I.e. for each object from Test dataset there must be at least 1 object in the Training dataset with the same class_id and about the same relative size:
- `object width in percent from Training dataset` ~= `object width in percent from Test dataset`
+ `object width in percent from Training dataset` ~= `object width in percent from Test dataset`
That is, if only objects that occupied 80-90% of the image were present in the training set, then the trained network will not be able to detect objects that occupy 1-10% of the image.
-* to speedup training (with decreasing detection accuracy) set param `stopbackward=1` for layer-136 in cfg-file
+- to speedup training (with decreasing detection accuracy) set param `stopbackward=1` for layer-136 in cfg-file
-* each: `model of object, side, illumination, scale, each 30 grad` of the turn and inclination angles - these are *different objects* from an internal perspective of the neural network. So the more *different objects* you want to detect, the more complex network model should be used.
+- each: `model of object, side, illumination, scale, each 30 grad` of the turn and inclination angles - these are *different objects* from an internal perspective of the neural network. So the more *different objects* you want to detect, the more complex network model should be used.
-* to make the detected bounded boxes more accurate, you can add 3 parameters `ignore_thresh = .9 iou_normalizer=0.5 iou_loss=giou` to each `[yolo]` layer and train, it will increase mAP@0.9, but decrease mAP@0.5.
+- to make the detected bounded boxes more accurate, you can add 3 parameters `ignore_thresh = .9 iou_normalizer=0.5 iou_loss=giou` to each `[yolo]` layer and train, it will increase mAP@0.9, but decrease mAP@0.5.
-* Only if you are an **expert** in neural detection networks - recalculate anchors for your dataset for `width` and `height` from cfg-file:
+- Only if you are an **expert** in neural detection networks - recalculate anchors for your dataset for `width` and `height` from cfg-file:
`darknet.exe detector calc_anchors data/obj.data -num_of_clusters 9 -width 416 -height 416`
then set the same 9 `anchors` in each of 3 `[yolo]`-layers in your cfg-file. But you should change indexes of anchors `masks=` for each [yolo]-layer, so for YOLOv4 the 1st-[yolo]-layer has anchors smaller than 30x30, 2nd smaller than 60x60, 3rd remaining, and vice versa for YOLOv3. Also you should change the `filters=(classes + 5)*` before each [yolo]-layer. If many of the calculated anchors do not fit under the appropriate layers - then just try using all the default anchors.
2. After training - for detection:
-* Increase network-resolution by set in your `.cfg`-file (`height=608` and `width=608`) or (`height=832` and `width=832`) or (any value multiple of 32) - this increases the precision and makes it possible to detect small objects: [link](https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L8-L9)
+- Increase network-resolution by set in your `.cfg`-file (`height=608` and `width=608`) or (`height=832` and `width=832`) or (any value multiple of 32) - this increases the precision and makes it possible to detect small objects: [link](https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L8-L9)
-* it is not necessary to train the network again, just use `.weights`-file already trained for 416x416 resolution
+- it is not necessary to train the network again, just use `.weights`-file already trained for 416x416 resolution
-* to get even greater accuracy you should train with higher resolution 608x608 or 832x832, note: if error `Out of memory` occurs then in `.cfg`-file you should increase `subdivisions=16`, 32 or 64: [link](https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L4)
+- to get even greater accuracy you should train with higher resolution 608x608 or 832x832, note: if error `Out of memory` occurs then in `.cfg`-file you should increase `subdivisions=16`, 32 or 64: [link](https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L4)
-## How to mark bounded boxes of objects and create annotation files:
+## How to mark bounded boxes of objects and create annotation files
Here you can find repository with GUI-software for marking bounded boxes of objects and generating annotation files for Yolo v2 - v4: https://github.com/AlexeyAB/Yolo_mark
@@ -700,40 +699,40 @@ Different tools for marking objects in images:
## How to use Yolo as DLL and SO libraries
-* on Linux
- * using `build.sh` or
- * build `darknet` using `cmake` or
- * set `LIBSO=1` in the `Makefile` and do `make`
-* on Windows
- * using `build.ps1` or
- * build `darknet` using `cmake` or
- * compile `build\darknet\yolo_cpp_dll.sln` solution or `build\darknet\yolo_cpp_dll_no_gpu.sln` solution
+- on Linux
+ - using `build.sh` or
+ - build `darknet` using `cmake` or
+ - set `LIBSO=1` in the `Makefile` and do `make`
+- on Windows
+ - using `build.ps1` or
+ - build `darknet` using `cmake` or
+ - compile `build\darknet\yolo_cpp_dll.sln` solution or `build\darknet\yolo_cpp_dll_no_gpu.sln` solution
There are 2 APIs:
-* C API: https://github.com/AlexeyAB/darknet/blob/master/include/darknet.h
- * Python examples using the C API:
- * https://github.com/AlexeyAB/darknet/blob/master/darknet.py
- * https://github.com/AlexeyAB/darknet/blob/master/darknet_video.py
+- C API: https://github.com/AlexeyAB/darknet/blob/master/include/darknet.h
+ - Python examples using the C API:
+ - https://github.com/AlexeyAB/darknet/blob/master/darknet.py
+ - https://github.com/AlexeyAB/darknet/blob/master/darknet_video.py
-* C++ API: https://github.com/AlexeyAB/darknet/blob/master/include/yolo_v2_class.hpp
- * C++ example that uses C++ API: https://github.com/AlexeyAB/darknet/blob/master/src/yolo_console_dll.cpp
+- C++ API: https://github.com/AlexeyAB/darknet/blob/master/include/yolo_v2_class.hpp
+ - C++ example that uses C++ API: https://github.com/AlexeyAB/darknet/blob/master/src/yolo_console_dll.cpp
----
1. To compile Yolo as C++ DLL-file `yolo_cpp_dll.dll` - open the solution `build\darknet\yolo_cpp_dll.sln`, set **x64** and **Release**, and do the: Build -> Build yolo_cpp_dll
- * You should have installed **CUDA 10.0**
- * To use cuDNN do: (right click on project) -> properties -> C/C++ -> Preprocessor -> Preprocessor Definitions, and add at the beginning of line: `CUDNN;`
+ - You should have installed **CUDA 10.2**
+ - To use cuDNN do: (right click on project) -> properties -> C/C++ -> Preprocessor -> Preprocessor Definitions, and add at the beginning of line: `CUDNN;`
2. To use Yolo as DLL-file in your C++ console application - open the solution `build\darknet\yolo_console_dll.sln`, set **x64** and **Release**, and do the: Build -> Build yolo_console_dll
- * you can run your console application from Windows Explorer `build\darknet\x64\yolo_console_dll.exe`
+ - you can run your console application from Windows Explorer `build\darknet\x64\yolo_console_dll.exe`
**use this command**: `yolo_console_dll.exe data/coco.names yolov4.cfg yolov4.weights test.mp4`
- * after launching your console application and entering the image file name - you will see info for each object:
+ - after launching your console application and entering the image file name - you will see info for each object:
` `
- * to use simple OpenCV-GUI you should uncomment line `//#define OPENCV` in `yolo_console_dll.cpp`-file: [link](https://github.com/AlexeyAB/darknet/blob/a6cbaeecde40f91ddc3ea09aa26a03ab5bbf8ba8/src/yolo_console_dll.cpp#L5)
- * you can see source code of simple example for detection on the video file: [link](https://github.com/AlexeyAB/darknet/blob/ab1c5f9e57b4175f29a6ef39e7e68987d3e98704/src/yolo_console_dll.cpp#L75)
+ - to use simple OpenCV-GUI you should uncomment line `//#define OPENCV` in `yolo_console_dll.cpp`-file: [link](https://github.com/AlexeyAB/darknet/blob/a6cbaeecde40f91ddc3ea09aa26a03ab5bbf8ba8/src/yolo_console_dll.cpp#L5)
+ - you can see source code of simple example for detection on the video file: [link](https://github.com/AlexeyAB/darknet/blob/ab1c5f9e57b4175f29a6ef39e7e68987d3e98704/src/yolo_console_dll.cpp#L75)
`yolo_cpp_dll.dll`-API: [link](https://github.com/AlexeyAB/darknet/blob/master/src/yolo_v2_class.hpp#L42)
diff --git a/build.ps1 b/build.ps1
index 07fb47aafa1..d230622e9a5 100755
--- a/build.ps1
+++ b/build.ps1
@@ -1,5 +1,6 @@
#!/usr/bin/env pwsh
+
param (
[switch]$DisableInteractive = $false,
[switch]$EnableCUDA = $false,
@@ -14,13 +15,26 @@ param (
[switch]$DoNotUseNinja = $false,
[switch]$ForceCPP = $false,
[switch]$ForceStaticLib = $false,
+ [switch]$ForceVCPKGCacheRemoval = $false,
[switch]$ForceSetupVS = $false,
- [switch]$ForceGCC8 = $false
+ [switch]$EnableCSharpWrapper = $false,
+ [Int32]$ForceGCCVersion = 0,
+ [Int32]$ForceOpenCVVersion = 0,
+ [Int32]$NumberOfBuildWorkers = 8,
+ [string]$AdditionalBuildSetup = "" # "-DCMAKE_CUDA_ARCHITECTURES=30"
)
+$build_ps1_version = "0.9.5"
+
+$ErrorActionPreference = "SilentlyContinue"
+Stop-Transcript | out-null
+$ErrorActionPreference = "Continue"
+Start-Transcript -Path $PSScriptRoot/build.log
+
Function MyThrow ($Message) {
if ($DisableInteractive) {
- Throw $Message
+ Write-Host $Message -ForegroundColor Red
+ throw
}
else {
# Check if running in PowerShell ISE
@@ -29,7 +43,7 @@ Function MyThrow ($Message) {
# Show MessageBox UI
$Shell = New-Object -ComObject "WScript.Shell"
$Shell.Popup($Message, 0, "OK", 0)
- return
+ throw
}
$Ignore =
@@ -61,53 +75,79 @@ Function MyThrow ($Message) {
182, # Application 1
183 # Application 2
- Write-Host $Message
+ Write-Host $Message -ForegroundColor Red
Write-Host -NoNewline "Press any key to continue..."
- while ($null -eq $KeyInfo.VirtualKeyCode -or $Ignore -contains $KeyInfo.VirtualKeyCode) {
+ while (($null -eq $KeyInfo.VirtualKeyCode) -or ($Ignore -contains $KeyInfo.VirtualKeyCode)) {
$KeyInfo = $Host.UI.RawUI.ReadKey("NoEcho, IncludeKeyDown")
}
- exit
+ Write-Host ""
+ throw
}
}
-if ($PSVersionTable.PSVersion.Major -eq 5) {
- $IsWindowsPowerShell = $true
+Function DownloadNinja() {
+ Write-Host "Unable to find Ninja, downloading a portable version on-the-fly" -ForegroundColor Yellow
+ Remove-Item -Force -Recurse -ErrorAction SilentlyContinue ninja
+ Remove-Item -Force -ErrorAction SilentlyContinue ninja.zip
+ if ($IsWindows -or $IsWindowsPowerShell) {
+ $url = "https://github.com/ninja-build/ninja/releases/download/v1.10.2/ninja-win.zip"
+ }
+ elseif ($IsLinux) {
+ $url = "https://github.com/ninja-build/ninja/releases/download/v1.10.2/ninja-linux.zip"
+ }
+ elseif ($IsMacOS) {
+ $url = "https://github.com/ninja-build/ninja/releases/download/v1.10.2/ninja-mac.zip"
+ }
+ else {
+ MyThrow("Unknown OS, unsupported")
+ }
+ Invoke-RestMethod -Uri $url -Method Get -ContentType application/zip -OutFile "ninja.zip"
+ Expand-Archive -Path ninja.zip
+ Remove-Item -Force -ErrorAction SilentlyContinue ninja.zip
}
-if ($PSVersionTable.PSVersion.Major -lt 5) {
- MyThrow("Your PowerShell version is too old, please update it.")
-}
-if (-Not $DisableInteractive -and -Not $UseVCPKG) {
+Write-Host "Darknet build script version ${build_ps1_version}"
+
+if ((-Not $DisableInteractive) -and (-Not $UseVCPKG)) {
$Result = Read-Host "Enable vcpkg to install darknet dependencies (yes/no)"
- if ($Result -eq 'Yes' -or $Result -eq 'Y' -or $Result -eq 'yes' -or $Result -eq 'y') {
+ if (($Result -eq 'Yes') -or ($Result -eq 'Y') -or ($Result -eq 'yes') -or ($Result -eq 'y')) {
$UseVCPKG = $true
}
}
-if (-Not $DisableInteractive -and -Not $EnableCUDA -and -Not $IsMacOS) {
+if ((-Not $DisableInteractive) -and (-Not $EnableCUDA) -and (-Not $IsMacOS)) {
$Result = Read-Host "Enable CUDA integration (yes/no)"
- if ($Result -eq 'Yes' -or $Result -eq 'Y' -or $Result -eq 'yes' -or $Result -eq 'y') {
+ if (($Result -eq 'Yes') -or ($Result -eq 'Y') -or ($Result -eq 'yes') -or ($Result -eq 'y')) {
$EnableCUDA = $true
}
}
-if ($EnableCUDA -and -Not $DisableInteractive -and -Not $EnableCUDNN) {
+if ($EnableCUDA -and (-Not $DisableInteractive) -and (-Not $EnableCUDNN)) {
$Result = Read-Host "Enable CUDNN optional dependency (yes/no)"
- if ($Result -eq 'Yes' -or $Result -eq 'Y' -or $Result -eq 'yes' -or $Result -eq 'y') {
+ if (($Result -eq 'Yes') -or ($Result -eq 'Y') -or ($Result -eq 'yes') -or ($Result -eq 'y')) {
$EnableCUDNN = $true
}
}
-if (-Not $DisableInteractive -and -Not $EnableOPENCV) {
+if ((-Not $DisableInteractive) -and (-Not $EnableOPENCV)) {
$Result = Read-Host "Enable OpenCV optional dependency (yes/no)"
- if ($Result -eq 'Yes' -or $Result -eq 'Y' -or $Result -eq 'yes' -or $Result -eq 'y') {
+ if (($Result -eq 'Yes') -or ($Result -eq 'Y') -or ($Result -eq 'yes') -or ($Result -eq 'y')) {
$EnableOPENCV = $true
}
}
-$number_of_build_workers = 8
-#$additional_build_setup = " -DCMAKE_CUDA_ARCHITECTURES=30"
+Write-Host -NoNewLine "PowerShell version:"
+$PSVersionTable.PSVersion
+
+if ($PSVersionTable.PSVersion.Major -eq 5) {
+ $IsWindowsPowerShell = $true
+}
+
+if ($PSVersionTable.PSVersion.Major -lt 5) {
+ MyThrow("Your PowerShell version is too old, please update it.")
+}
+
if ($IsLinux -or $IsMacOS) {
$bootstrap_ext = ".sh"
@@ -115,24 +155,26 @@ if ($IsLinux -or $IsMacOS) {
elseif ($IsWindows -or $IsWindowsPowerShell) {
$bootstrap_ext = ".bat"
}
-Write-Host "Native shell script extension: ${bootstrap_ext}"
+if ($UseVCPKG) {
+ Write-Host "vcpkg bootstrap script: bootstrap-vcpkg${bootstrap_ext}"
+}
-if (-Not $IsWindows -and -not $IsWindowsPowerShell -and -Not $ForceSetupVS) {
+if ((-Not $IsWindows) -and (-Not $IsWindowsPowerShell) -and (-Not $ForceSetupVS)) {
$DoNotSetupVS = $true
}
if ($ForceStaticLib) {
Write-Host "Forced CMake to produce a static library"
- $additional_build_setup = " -DBUILD_SHARED_LIBS=OFF "
+ $AdditionalBuildSetup = $AdditionalBuildSetup + " -DBUILD_SHARED_LIBS=OFF "
}
-if ($IsLinux -and $ForceGCC8) {
- Write-Host "Manually setting CC and CXX variables to gcc-8 and g++-8"
- $env:CC = "gcc-8"
- $env:CXX = "g++-8"
+if (($IsLinux -or $IsMacOS) -and ($ForceGCCVersion -gt 0)) {
+ Write-Host "Manually setting CC and CXX variables to gcc version $ForceGCCVersion"
+ $env:CC = "gcc-$ForceGCCVersion"
+ $env:CXX = "g++-$ForceGCCVersion"
}
-if (($IsWindows -or $IsWindowsPowerShell) -and -Not $env:VCPKG_DEFAULT_TRIPLET) {
+if (($IsWindows -or $IsWindowsPowerShell) -and (-Not $env:VCPKG_DEFAULT_TRIPLET)) {
$env:VCPKG_DEFAULT_TRIPLET = "x64-windows"
}
@@ -165,18 +207,18 @@ else {
Write-Host "OPENCV is disabled, please pass -EnableOPENCV to the script to enable"
}
-if ($EnableCUDA -and $EnableOPENCV -and -not $EnableOPENCV_CUDA) {
+if ($EnableCUDA -and $EnableOPENCV -and (-Not $EnableOPENCV_CUDA)) {
Write-Host "OPENCV with CUDA extension is not enabled, you can enable it passing -EnableOPENCV_CUDA"
}
-elseif ($EnableOPENCV -and $EnableOPENCV_CUDA -and -not $EnableCUDA) {
+elseif ($EnableOPENCV -and $EnableOPENCV_CUDA -and (-Not $EnableCUDA)) {
Write-Host "OPENCV with CUDA extension was requested, but CUDA is not enabled, you can enable it passing -EnableCUDA"
$EnableOPENCV_CUDA = $false
}
-elseif ($EnableCUDA -and $EnableOPENCV_CUDA -and -not $EnableOPENCV) {
+elseif ($EnableCUDA -and $EnableOPENCV_CUDA -and (-Not $EnableOPENCV)) {
Write-Host "OPENCV with CUDA extension was requested, but OPENCV is not enabled, you can enable it passing -EnableOPENCV"
$EnableOPENCV_CUDA = $false
}
-elseif ($EnableOPENCV_CUDA -and -not $EnableCUDA -and -not $EnableOPENCV) {
+elseif ($EnableOPENCV_CUDA -and (-Not $EnableCUDA) -and (-Not $EnableOPENCV)) {
Write-Host "OPENCV with CUDA extension was requested, but OPENCV and CUDA are not enabled, you can enable them passing -EnableOPENCV -EnableCUDA"
$EnableOPENCV_CUDA = $false
}
@@ -201,6 +243,15 @@ else {
Write-Host "VisualStudio integration is enabled, please pass -DoNotSetupVS to the script to disable"
}
+if ($EnableCSharpWrapper -and ($IsWindowsPowerShell -or $IsWindows)) {
+ Write-Host "Yolo C# wrapper integration is enabled. Will be built with Visual Studio generator. Disabling Ninja"
+ $DoNotUseNinja = $true
+}
+else {
+ $EnableCSharpWrapper = $false
+ Write-Host "Yolo C# wrapper integration is disabled, please pass -EnableCSharpWrapper to the script to enable. You must be on Windows!"
+}
+
if ($DoNotUseNinja) {
Write-Host "Ninja is disabled"
}
@@ -217,7 +268,7 @@ else {
Push-Location $PSScriptRoot
-$GIT_EXE = Get-Command git 2> $null | Select-Object -ExpandProperty Definition
+$GIT_EXE = Get-Command "git" -ErrorAction SilentlyContinue | Select-Object -ExpandProperty Definition
if (-Not $GIT_EXE) {
MyThrow("Could not find git, please install it")
}
@@ -225,32 +276,64 @@ else {
Write-Host "Using git from ${GIT_EXE}"
}
-if ((Test-Path "$PSScriptRoot/.git") -and -not $DoNotUpdateDARKNET) {
- $proc = Start-Process -NoNewWindow -PassThru -FilePath $GIT_EXE -ArgumentList "pull"
- $proc.WaitForExit()
- $exitCode = $proc.ExitCode
- if (-not $exitCode -eq 0) {
- MyThrow("Updating darknet sources failed! Exited with $exitCode.")
+if (Test-Path "$PSScriptRoot/.git") {
+ Write-Host "Darknet has been cloned with git and supports self-updating mechanism"
+ if ($DoNotUpdateDARKNET) {
+ Write-Host "Darknet will not self-update sources" -ForegroundColor Yellow
+ }
+ else {
+ Write-Host "Darknet will self-update sources, please pass -DoNotUpdateDARKNET to the script to disable"
+ $proc = Start-Process -NoNewWindow -PassThru -FilePath $GIT_EXE -ArgumentList "pull"
+ $handle = $proc.Handle
+ $proc.WaitForExit()
+ $exitCode = $proc.ExitCode
+ if (-Not ($exitCode -eq 0)) {
+ MyThrow("Updating darknet sources failed! Exited with error code $exitCode.")
+ }
}
}
-$CMAKE_EXE = Get-Command cmake 2> $null | Select-Object -ExpandProperty Definition
+$CMAKE_EXE = Get-Command "cmake" -ErrorAction SilentlyContinue | Select-Object -ExpandProperty Definition
if (-Not $CMAKE_EXE) {
MyThrow("Could not find CMake, please install it")
}
else {
Write-Host "Using CMake from ${CMAKE_EXE}"
+ $proc = Start-Process -NoNewWindow -PassThru -FilePath ${CMAKE_EXE} -ArgumentList "--version"
+ $handle = $proc.Handle
+ $proc.WaitForExit()
+ $exitCode = $proc.ExitCode
+ if (-Not ($exitCode -eq 0)) {
+ MyThrow("CMake version check failed! Exited with error code $exitCode.")
+ }
}
if (-Not $DoNotUseNinja) {
- $NINJA_EXE = Get-Command ninja 2> $null | Select-Object -ExpandProperty Definition
+ $NINJA_EXE = Get-Command "ninja" -ErrorAction SilentlyContinue | Select-Object -ExpandProperty Definition
if (-Not $NINJA_EXE) {
- $DoNotUseNinja = $true
- Write-Host "Could not find Ninja, using msbuild or make backends as a fallback" -ForegroundColor Yellow
+ DownloadNinja
+ $env:PATH += ";${PSScriptRoot}/ninja"
+ $NINJA_EXE = Get-Command "ninja" -ErrorAction SilentlyContinue | Select-Object -ExpandProperty Definition
+ if (-Not $NINJA_EXE) {
+ $DoNotUseNinja = $true
+ Write-Host "Could not find Ninja, unable to download a portable ninja, using msbuild or make backends as a fallback" -ForegroundColor Yellow
+ }
}
- else {
+ if ($NINJA_EXE) {
Write-Host "Using Ninja from ${NINJA_EXE}"
- $generator = "Ninja"
+ Write-Host -NoNewLine "Ninja version "
+ $proc = Start-Process -NoNewWindow -PassThru -FilePath ${NINJA_EXE} -ArgumentList "--version"
+ $handle = $proc.Handle
+ $proc.WaitForExit()
+ $exitCode = $proc.ExitCode
+ if (-Not ($exitCode -eq 0)) {
+ $DoNotUseNinja = $true
+ Write-Host "Unable to run Ninja previously found, using msbuild or make backends as a fallback" -ForegroundColor Yellow
+ }
+ else {
+ $generator = "Ninja"
+ $AdditionalBuildSetup = $AdditionalBuildSetup + " -DCMAKE_BUILD_TYPE=Release"
+ }
}
}
@@ -322,58 +405,65 @@ function getLatestVisualStudioWithDesktopWorkloadVersion() {
return $installationVersion
}
+$vcpkg_root_set_by_this_script = $false
if ((Test-Path env:VCPKG_ROOT) -and $UseVCPKG) {
$vcpkg_path = "$env:VCPKG_ROOT"
Write-Host "Found vcpkg in VCPKG_ROOT: $vcpkg_path"
- $additional_build_setup = $additional_build_setup + " -DENABLE_VCPKG_INTEGRATION:BOOL=ON"
+ $AdditionalBuildSetup = $AdditionalBuildSetup + " -DENABLE_VCPKG_INTEGRATION:BOOL=ON"
}
elseif ((Test-Path "${env:WORKSPACE}/vcpkg") -and $UseVCPKG) {
$vcpkg_path = "${env:WORKSPACE}/vcpkg"
$env:VCPKG_ROOT = "${env:WORKSPACE}/vcpkg"
+ $vcpkg_root_set_by_this_script = $true
Write-Host "Found vcpkg in WORKSPACE/vcpkg: $vcpkg_path"
- $additional_build_setup = $additional_build_setup + " -DENABLE_VCPKG_INTEGRATION:BOOL=ON"
+ $AdditionalBuildSetup = $AdditionalBuildSetup + " -DENABLE_VCPKG_INTEGRATION:BOOL=ON"
}
elseif (-not($null -eq ${RUNVCPKG_VCPKG_ROOT_OUT})) {
- if((Test-Path "${RUNVCPKG_VCPKG_ROOT_OUT}") -and $UseVCPKG) {
+ if ((Test-Path "${RUNVCPKG_VCPKG_ROOT_OUT}") -and $UseVCPKG) {
$vcpkg_path = "${RUNVCPKG_VCPKG_ROOT_OUT}"
$env:VCPKG_ROOT = "${RUNVCPKG_VCPKG_ROOT_OUT}"
+ $vcpkg_root_set_by_this_script = $true
Write-Host "Found vcpkg in RUNVCPKG_VCPKG_ROOT_OUT: ${vcpkg_path}"
- $additional_build_setup = $additional_build_setup + " -DENABLE_VCPKG_INTEGRATION:BOOL=ON"
+ $AdditionalBuildSetup = $AdditionalBuildSetup + " -DENABLE_VCPKG_INTEGRATION:BOOL=ON"
}
}
elseif ($UseVCPKG) {
if (-Not (Test-Path "$PWD/vcpkg")) {
$proc = Start-Process -NoNewWindow -PassThru -FilePath $GIT_EXE -ArgumentList "clone https://github.com/microsoft/vcpkg"
+ $handle = $proc.Handle
$proc.WaitForExit()
$exitCode = $proc.ExitCode
- if (-not $exitCode -eq 0) {
- MyThrow("Cloning vcpkg sources failed! Exited with $exitCode.")
+ if (-not ($exitCode -eq 0)) {
+ MyThrow("Cloning vcpkg sources failed! Exited with error code $exitCode.")
}
}
$vcpkg_path = "$PWD/vcpkg"
$env:VCPKG_ROOT = "$PWD/vcpkg"
+ $vcpkg_root_set_by_this_script = $true
Write-Host "Found vcpkg in $PWD/vcpkg: $PWD/vcpkg"
- $additional_build_setup = $additional_build_setup + " -DENABLE_VCPKG_INTEGRATION:BOOL=ON"
+ $AdditionalBuildSetup = $AdditionalBuildSetup + " -DENABLE_VCPKG_INTEGRATION:BOOL=ON"
}
else {
Write-Host "Skipping vcpkg integration`n" -ForegroundColor Yellow
- $additional_build_setup = $additional_build_setup + " -DENABLE_VCPKG_INTEGRATION:BOOL=OFF"
+ $AdditionalBuildSetup = $AdditionalBuildSetup + " -DENABLE_VCPKG_INTEGRATION:BOOL=OFF"
}
-if ($UseVCPKG -and (Test-Path "$vcpkg_path/.git") -and -not $DoNotUpdateVCPKG) {
+if ($UseVCPKG -and (Test-Path "$vcpkg_path/.git") -and (-Not $DoNotUpdateVCPKG)) {
Push-Location $vcpkg_path
$proc = Start-Process -NoNewWindow -PassThru -FilePath $GIT_EXE -ArgumentList "pull"
+ $handle = $proc.Handle
$proc.WaitForExit()
$exitCode = $proc.ExitCode
- if (-not $exitCode -eq 0) {
- MyThrow("Updating vcpkg sources failed! Exited with $exitCode.")
+ if (-Not ($exitCode -eq 0)) {
+ MyThrow("Updating vcpkg sources failed! Exited with error code $exitCode.")
}
$proc = Start-Process -NoNewWindow -PassThru -FilePath $PWD/bootstrap-vcpkg${bootstrap_ext} -ArgumentList "-disableMetrics"
+ $handle = $proc.Handle
$proc.WaitForExit()
$exitCode = $proc.ExitCode
- if (-not $exitCode -eq 0) {
- MyThrow("Bootstrapping vcpkg failed! Exited with $exitCode.")
+ if (-Not ($exitCode -eq 0)) {
+ MyThrow("Bootstrapping vcpkg failed! Exited with error code $exitCode.")
}
Pop-Location
}
@@ -384,14 +474,46 @@ if ($UseVCPKG -and ($vcpkg_path.length -gt 40) -and ($IsWindows -or $IsWindowsPo
Write-Host "You can use the subst command to ease the process if necessary" -ForegroundColor Yellow
if (-Not $DisableInteractive) {
$Result = Read-Host "Do you still want to continue? (yes/no)"
- if ($Result -eq 'No' -or $Result -eq 'N' -or $Result -eq 'no' -or $Result -eq 'n') {
+ if (($Result -eq 'No') -or ($Result -eq 'N') -or ($Result -eq 'no') -or ($Result -eq 'n')) {
MyThrow("Build aborted")
}
}
}
+if ($ForceVCPKGCacheRemoval -and (-Not $UseVCPKG)) {
+ Write-Host "VCPKG is not enabled, so local vcpkg binary cache will not be deleted even if requested" -ForegroundColor Yellow
+}
+
+if (($ForceOpenCVVersion -eq 2) -and $UseVCPKG) {
+ Write-Host "You requested OpenCV version 2, so vcpkg will install that version" -ForegroundColor Yellow
+ $AdditionalBuildSetup = $AdditionalBuildSetup + " -DVCPKG_USE_OPENCV4=OFF -DVCPKG_USE_OPENCV2=ON"
+}
+
+if (($ForceOpenCVVersion -eq 3) -and $UseVCPKG) {
+ Write-Host "You requested OpenCV version 3, so vcpkg will install that version" -ForegroundColor Yellow
+ $AdditionalBuildSetup = $AdditionalBuildSetup + " -DVCPKG_USE_OPENCV4=OFF -DVCPKG_USE_OPENCV3=ON"
+}
+
+if ($UseVCPKG -and $ForceVCPKGCacheRemoval) {
+ if ($IsWindows -or $IsWindowsPowerShell) {
+ $vcpkgbinarycachepath = "$env:LOCALAPPDATA/vcpkg/archive"
+ }
+ elseif ($IsLinux) {
+ $vcpkgbinarycachepath = "$env:HOME/.cache/vcpkg/archive"
+ }
+ elseif ($IsMacOS) {
+ $vcpkgbinarycachepath = "$env:HOME/.cache/vcpkg/archive"
+ }
+ else {
+ MyThrow("Unknown OS, unsupported")
+ }
+ Write-Host "Removing local vcpkg binary cache from $vcpkgbinarycachepath" -ForegroundColor Yellow
+ Remove-Item -Force -Recurse -ErrorAction SilentlyContinue $vcpkgbinarycachepath
+}
+
if (-Not $DoNotSetupVS) {
- if ($null -eq (Get-Command "cl.exe" -ErrorAction SilentlyContinue)) {
+ $CL_EXE = Get-Command "cl" -ErrorAction SilentlyContinue | Select-Object -ExpandProperty Definition
+ if ((-Not $CL_EXE) -or ($CL_EXE -match "HostX86\\x86") -or ($CL_EXE -match "HostX64\\x86")) {
$vsfound = getLatestVisualStudioWithDesktopWorkloadPath
Write-Host "Found VS in ${vsfound}"
Push-Location "${vsfound}\Common7\Tools"
@@ -412,15 +534,15 @@ if (-Not $DoNotSetupVS) {
$selectConfig = " --config Release "
if ($tokens[0] -eq "14") {
$generator = "Visual Studio 14 2015"
- $additional_build_setup = $additional_build_setup + " -T `"host=x64`" -A `"x64`""
+ $AdditionalBuildSetup = $AdditionalBuildSetup + " -T `"host=x64`" -A `"x64`""
}
elseif ($tokens[0] -eq "15") {
$generator = "Visual Studio 15 2017"
- $additional_build_setup = $additional_build_setup + " -T `"host=x64`" -A `"x64`""
+ $AdditionalBuildSetup = $AdditionalBuildSetup + " -T `"host=x64`" -A `"x64`""
}
elseif ($tokens[0] -eq "16") {
$generator = "Visual Studio 16 2019"
- $additional_build_setup = $additional_build_setup + " -T `"host=x64`" -A `"x64`""
+ $AdditionalBuildSetup = $AdditionalBuildSetup + " -T `"host=x64`" -A `"x64`""
}
else {
MyThrow("Unknown Visual Studio version, unsupported configuration")
@@ -432,11 +554,13 @@ if (-Not $DoNotSetupVS) {
}
if ($DoNotSetupVS -and $DoNotUseNinja) {
$generator = "Unix Makefiles"
+ $AdditionalBuildSetup = $AdditionalBuildSetup + " -DCMAKE_BUILD_TYPE=Release"
}
Write-Host "Setting up environment to use CMake generator: $generator"
if (-Not $IsMacOS -and $EnableCUDA) {
- if ($null -eq (Get-Command "nvcc" -ErrorAction SilentlyContinue)) {
+ $NVCC_EXE = Get-Command "nvcc" -ErrorAction SilentlyContinue | Select-Object -ExpandProperty Definition
+ if (-Not $NVCC_EXE) {
if (Test-Path env:CUDA_PATH) {
$env:PATH += ";${env:CUDA_PATH}/bin"
Write-Host "Found cuda in ${env:CUDA_PATH}"
@@ -459,23 +583,27 @@ if (-Not $IsMacOS -and $EnableCUDA) {
}
if ($ForceCPP) {
- $additional_build_setup = $additional_build_setup + " -DBUILD_AS_CPP:BOOL=ON"
+ $AdditionalBuildSetup = $AdditionalBuildSetup + " -DBUILD_AS_CPP:BOOL=ON"
+}
+
+if (-Not $EnableCUDA) {
+ $AdditionalBuildSetup = $AdditionalBuildSetup + " -DENABLE_CUDA:BOOL=OFF"
}
-if (-Not($EnableCUDA)) {
- $additional_build_setup = $additional_build_setup + " -DENABLE_CUDA:BOOL=OFF"
+if (-Not $EnableCUDNN) {
+ $AdditionalBuildSetup = $AdditionalBuildSetup + " -DENABLE_CUDNN:BOOL=OFF"
}
-if (-Not($EnableCUDNN)) {
- $additional_build_setup = $additional_build_setup + " -DENABLE_CUDNN:BOOL=OFF"
+if (-Not $EnableOPENCV) {
+ $AdditionalBuildSetup = $AdditionalBuildSetup + " -DENABLE_OPENCV:BOOL=OFF"
}
-if (-Not($EnableOPENCV)) {
- $additional_build_setup = $additional_build_setup + " -DENABLE_OPENCV:BOOL=OFF"
+if (-Not $EnableOPENCV_CUDA) {
+ $AdditionalBuildSetup = $AdditionalBuildSetup + " -DVCPKG_BUILD_OPENCV_WITH_CUDA:BOOL=OFF"
}
-if (-Not($EnableOPENCV_CUDA)) {
- $additional_build_setup = $additional_build_setup + " -DVCPKG_BUILD_OPENCV_WITH_CUDA:BOOL=OFF"
+if ($EnableCSharpWrapper) {
+ $additional_build_setup = $additional_build_setup + " -DENABLE_CSHARP_WRAPPER:BOOL=ON"
}
$build_folder = "./build_release"
@@ -484,28 +612,41 @@ if (-Not $DoNotDeleteBuildFolder) {
Remove-Item -Force -Recurse -ErrorAction SilentlyContinue $build_folder
}
-New-Item -Path $build_folder -ItemType directory -Force
+New-Item -Path $build_folder -ItemType directory -Force | Out-Null
Set-Location $build_folder
-$cmake_args = "-G `"$generator`" ${additional_build_setup} -S .."
+$cmake_args = "-G `"$generator`" ${AdditionalBuildSetup} -S .."
+Write-Host "Configuring CMake project" -ForegroundColor Green
Write-Host "CMake args: $cmake_args"
$proc = Start-Process -NoNewWindow -PassThru -FilePath $CMAKE_EXE -ArgumentList $cmake_args
+$handle = $proc.Handle
$proc.WaitForExit()
$exitCode = $proc.ExitCode
-if (-not $exitCode -eq 0) {
- MyThrow("Config failed! Exited with $exitCode.")
+if (-Not ($exitCode -eq 0)) {
+ MyThrow("Config failed! Exited with error code $exitCode.")
}
-$proc = Start-Process -NoNewWindow -PassThru -FilePath $CMAKE_EXE -ArgumentList "--build . ${selectConfig} --parallel ${number_of_build_workers} --target install"
+Write-Host "Building CMake project" -ForegroundColor Green
+$proc = Start-Process -NoNewWindow -PassThru -FilePath $CMAKE_EXE -ArgumentList "--build . ${selectConfig} --parallel ${NumberOfBuildWorkers} --target install"
+$handle = $proc.Handle
$proc.WaitForExit()
$exitCode = $proc.ExitCode
-if (-not $exitCode -eq 0) {
- MyThrow("Config failed! Exited with $exitCode.")
+if (-Not ($exitCode -eq 0)) {
+ MyThrow("Config failed! Exited with error code $exitCode.")
}
-Remove-Item DarknetConfig.cmake
-Remove-Item DarknetConfigVersion.cmake
+Remove-Item -Force -ErrorAction SilentlyContinue DarknetConfig.cmake
+Remove-Item -Force -ErrorAction SilentlyContinue DarknetConfigVersion.cmake
$dllfiles = Get-ChildItem ./${dllfolder}/*.dll
if ($dllfiles) {
Copy-Item $dllfiles ..
}
Set-Location ..
Copy-Item cmake/Modules/*.cmake share/darknet/
+Write-Host "Build complete!" -ForegroundColor Green
Pop-Location
+
+if ($vcpkg_root_set_by_this_script) {
+ $env:VCPKG_ROOT = $null
+}
+
+$ErrorActionPreference = "SilentlyContinue"
+Stop-Transcript | out-null
+$ErrorActionPreference = "Continue"
diff --git a/scripts/deploy-cuda.sh b/scripts/deploy-cuda.sh
new file mode 100755
index 00000000000..65f173aabaf
--- /dev/null
+++ b/scripts/deploy-cuda.sh
@@ -0,0 +1,38 @@
+#!/usr/bin/env bash
+
+if [[ "$OSTYPE" == "darwin"* ]]; then
+ echo "Unable to deploy CUDA on macOS, please wait for a future script update"
+else
+ if [[ $(cut -f2 <<< $(lsb_release -r)) == "18.04" ]]; then
+ sudo apt-get update
+ sudo apt-get install build-essential g++
+ sudo apt-get install apt-transport-https ca-certificates gnupg software-properties-common wget
+ wget http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/cuda-repo-ubuntu1804_10.2.89-1_amd64.deb
+ sudo apt-key adv --fetch-keys http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/7fa2af80.pub
+ sudo dpkg -i cuda-repo-ubuntu1804_10.2.89-1_amd64.deb
+ wget http://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1804/x86_64/nvidia-machine-learning-repo-ubuntu1804_1.0.0-1_amd64.deb
+ sudo dpkg -i nvidia-machine-learning-repo-ubuntu1804_1.0.0-1_amd64.deb
+ sudo apt-get update
+ sudo apt-get dist-upgrade -y
+ sudo apt-get install -y --no-install-recommends cuda-compiler-10-2 cuda-libraries-dev-10-2 cuda-driver-dev-10-2 cuda-cudart-dev-10-2 cuda-curand-dev-10-2
+ sudo apt-get install -y --no-install-recommends libcudnn7-dev
+ sudo rm -rf /usr/local/cuda
+ sudo ln -s /usr/local/cuda-10.2 /usr/local/cuda
+ elif [[ $(cut -f2 <<< $(lsb_release -r)) == "20.04" ]]; then
+ sudo apt-get update
+ sudo apt-get install build-essential g++
+ sudo apt-get install apt-transport-https ca-certificates gnupg software-properties-common wget
+ sudo wget -O /etc/apt/preferences.d/cuda-repository-pin-600 https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/cuda-ubuntu2004.pin
+ sudo apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/7fa2af80.pub
+ sudo add-apt-repository "deb http://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/ /"
+ sudo add-apt-repository "deb http://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu2004/x86_64/ /"
+ sudo apt-get update
+ sudo apt-get dist-upgrade -y
+ sudo apt-get install -y --no-install-recommends cuda-compiler-11-2 cuda-libraries-dev-11-2 cuda-driver-dev-11-2 cuda-cudart-dev-11-2
+ sudo apt-get install -y --no-install-recommends libcudnn8-dev
+ sudo rm -rf /usr/local/cuda
+ sudo ln -s /usr/local/cuda-11.2 /usr/local/cuda
+ else
+ echo "Unable to deploy CUDA on this Linux version, please wait for a future script update"
+ fi
+fi
diff --git a/scripts/dice_label.sh b/scripts/dice_label.sh
old mode 100644
new mode 100755
diff --git a/scripts/get_coco2017.sh b/scripts/get_coco2017.sh
old mode 100644
new mode 100755
diff --git a/scripts/get_coco_dataset.sh b/scripts/get_coco_dataset.sh
old mode 100644
new mode 100755
diff --git a/scripts/get_imagenet_train.sh b/scripts/get_imagenet_train.sh
old mode 100644
new mode 100755
diff --git a/scripts/imagenet_label.sh b/scripts/imagenet_label.sh
old mode 100644
new mode 100755
diff --git a/scripts/install_OpenCV4.sh b/scripts/install_OpenCV4.sh
old mode 100644
new mode 100755
diff --git a/scripts/setup.ps1 b/scripts/setup.ps1
index c5c2ae22b21..ca54dba9754 100755
--- a/scripts/setup.ps1
+++ b/scripts/setup.ps1
@@ -1,10 +1,11 @@
#!/usr/bin/env pwsh
-$install_cuda = $false
+param (
+ [switch]$InstallCUDA = $false
+)
if ($null -eq (Get-Command "choco.exe" -ErrorAction SilentlyContinue)) {
# Download and install Chocolatey
- Set-ExecutionPolicy unrestricted -Scope CurrentUser
Invoke-Expression ((New-Object System.Net.WebClient).DownloadString('https://chocolatey.org/install.ps1'))
Throw "Please close and re-open powershell and then re-run setup.ps1 script"
}
@@ -13,23 +14,26 @@ Start-Process -FilePath "choco" -Verb runAs -ArgumentList " install -y cmake nin
Start-Process -FilePath "choco" -Verb runAs -ArgumentList " install -y visualstudio2019buildtools --package-parameters `"--add Microsoft.VisualStudio.Component.VC.CoreBuildTools --includeRecommended --includeOptional --passive --locale en-US --lang en-US`""
Push-Location $PSScriptRoot
-if ($install_cuda) {
- & ./deploy-cuda.ps1
- $features = "full"
+if ($InstallCUDA) {
+ & $PSScriptRoot/deploy-cuda.ps1
+ $env:CUDA_PATH="C:\\Program Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v11.3"
+ $env:CUDA_TOOLKIT_ROOT_DIR="C:\\Program Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v11.3"
+ $env:CUDACXX="C:\\Program Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v11.3\\bin\\nvcc.exe"
+ $CUDAisAvailable = $true
}
else {
if (-not $null -eq $env:CUDA_PATH) {
- $features = "full"
+ $CUDAisAvailable = $true
}
else{
- $features = "opencv-base"
+ $CUDAisAvailable = $false
}
}
-git.exe clone https://github.com/microsoft/vcpkg ../vcpkg
-Set-Location ..\vcpkg
-.\bootstrap-vcpkg.bat -disableMetrics
-.\vcpkg.exe install darknet[${features}]:x64-windows
-Pop-Location
-
-Write-Host "Darknet installed in $pwd\x64-windows\tools\darknet" -ForegroundColor Yellow
+if ($CUDAisAvailable) {
+ & $PSScriptRoot/../build.ps1 -UseVCPKG -EnableOPENCV -EnableCUDA -DisableInteractive -DoNotUpdateDARKNET
+ #& $PSScriptRoot/../build.ps1 -UseVCPKG -EnableOPENCV -EnableCUDA -EnableOPENCV_CUDA -DisableInteractive -DoNotUpdateDARKNET
+}
+else {
+ & $PSScriptRoot/../build.ps1 -UseVCPKG -EnableOPENCV -DisableInteractive -DoNotUpdateDARKNET
+}
diff --git a/scripts/setup.sh b/scripts/setup.sh
index c33379e92ef..51d641bcea4 100755
--- a/scripts/setup.sh
+++ b/scripts/setup.sh
@@ -1,85 +1,102 @@
#!/usr/bin/env bash
-## enable or disable installed components
+install_tools=false
+bypass_driver_installation=false
-install_cuda=true
+POSITIONAL=()
+while [[ $# -gt 0 ]]
+do
+key="$1"
-###########################
+case $key in
+ -InstallCUDA|--InstallCUDA)
+ install_tools=true
+ shift
+ ;;
+ -BypassDRIVER|--BypassDRIVER)
+ bypass_driver_installation=true
+ shift
+ ;;
+ *) # unknown option
+ POSITIONAL+=("$1") # save it in an array for later
+ shift # past argument
+ ;;
+esac
+done
+set -- "${POSITIONAL[@]}" # restore positional parameters
+script_dir="$( cd "$( dirname "${BASH_SOURCE[0]}" )" &> /dev/null && pwd )"
+echo "This script is located in $script_dir"
+cd $script_dir/..
temp_folder="./temp"
mkdir -p $temp_folder
cd $temp_folder
-sudo apt-get install cmake git ninja-build build-essential g++
-
-if [ "$install_cuda" = true ] ; then
+if [ "$install_tools" = true ] ; then
+ $script_dir/deploy-cuda.sh
if [[ "$OSTYPE" == "darwin"* ]]; then
- echo "Unable to provide CUDA on macOS"
+ echo "Unable to provide tools on macOS, please wait for a future script update or do not put -InstallCUDA command line flag to continue"
else
- # Download and install CUDA
if [[ $(cut -f2 <<< $(lsb_release -r)) == "18.04" ]]; then
- wget http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/cuda-repo-ubuntu1804_10.2.89-1_amd64.deb
- sudo apt-key adv --fetch-keys http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/7fa2af80.pub
- sudo dpkg -i cuda-repo-ubuntu1804_10.2.89-1_amd64.deb
- wget http://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1804/x86_64/nvidia-machine-learning-repo-ubuntu1804_1.0.0-1_amd64.deb
- sudo dpkg -i nvidia-machine-learning-repo-ubuntu1804_1.0.0-1_amd64.deb
- sudo apt update
+ sudo apt-get update
+ sudo apt-get install git ninja-build build-essential g++ nasm yasm
+ sudo apt-get install apt-transport-https ca-certificates gnupg software-properties-common wget
+ wget -O - https://apt.kitware.com/keys/kitware-archive-latest.asc 2>/dev/null | gpg --dearmor - | sudo tee /etc/apt/trusted.gpg.d/kitware.gpg >/dev/null
+ sudo apt-add-repository 'deb https://apt.kitware.com/ubuntu/ bionic main'
+ wget -q https://packages.microsoft.com/config/ubuntu/18.04/packages-microsoft-prod.deb
+ sudo dpkg -i packages-microsoft-prod.deb
+ sudo add-apt-repository universe
+ sudo apt-get update
sudo apt-get dist-upgrade -y
- sudo apt-get install -y --no-install-recommends cuda-compiler-10-2 cuda-libraries-dev-10-2 cuda-driver-dev-10-2 cuda-cudart-dev-10-2 cuda-curand-dev-10-2
- sudo apt-get install -y --no-install-recommends libcudnn7-dev
- sudo rm -rf /usr/local/cuda
- sudo ln -s /usr/local/cuda-10.2 /usr/local/cuda
+ sudo apt-get install -y cmake
+ sudo apt-get install -y powershell
+ if [ "$bypass_driver_installation" = true ] ; then
+ sudo ln -s /usr/local/cuda-10.2/lib64/stubs/libcuda.so /usr/local/cuda-11.2/lib64/stubs/libcuda.so.1
+ sudo ln -s /usr/local/cuda-10.2/lib64/stubs/libcuda.so /usr/local/cuda-11.2/lib64/libcuda.so.1
+ sudo ln -s /usr/local/cuda-10.2/lib64/stubs/libcuda.so /usr/local/cuda-11.2/lib64/libcuda.so
+ fi
export PATH=/usr/local/cuda/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH
export CUDACXX=/usr/local/cuda/bin/nvcc
export CUDA_PATH=/usr/local/cuda
export CUDA_TOOLKIT_ROOT_DIR=/usr/local/cuda
- features="full"
+ cuda_is_available=true
elif [[ $(cut -f2 <<< $(lsb_release -r)) == "20.04" ]]; then
- sudo apt update
+ sudo apt-get update
+ sudo apt-get install git ninja-build build-essential g++ nasm yasm
+ sudo apt-get install apt-transport-https ca-certificates gnupg software-properties-common wget
+ wget -O - https://apt.kitware.com/keys/kitware-archive-latest.asc 2>/dev/null | gpg --dearmor - | sudo tee /etc/apt/trusted.gpg.d/kitware.gpg >/dev/null
+ sudo apt-add-repository 'deb https://apt.kitware.com/ubuntu/ focal main'
+ wget -q https://packages.microsoft.com/config/ubuntu/20.04/packages-microsoft-prod.deb
+ sudo dpkg -i packages-microsoft-prod.deb
+ sudo add-apt-repository universe
+ sudo apt-get update
sudo apt-get dist-upgrade -y
- #sudo apt-get install -y --no-install-recommends nvidia-cuda-dev nvidia-cuda-toolkit
- sudo wget -O /etc/apt/preferences.d/cuda-repository-pin-600 https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/cuda-ubuntu2004.pin
- sudo apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/7fa2af80.pub
- sudo add-apt-repository "deb http://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/ /"
- sudo add-apt-repository "deb http://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu2004/x86_64/ /"
- sudo apt-get install -y --no-install-recommends cuda-compiler-11-2 cuda-libraries-dev-11-2 cuda-driver-dev-11-2 cuda-cudart-dev-11-2
- sudo apt-get install -y --no-install-recommends libcudnn8-dev
- sudo rm -rf /usr/local/cuda
- sudo ln -s /usr/local/cuda-11.2 /usr/local/cuda
+ sudo apt-get install -y cmake
+ sudo apt-get install -y powershell
+ if [ "$bypass_driver_installation" = true ] ; then
+ sudo ln -s /usr/local/cuda-11.2/lib64/stubs/libcuda.so /usr/local/cuda-11.2/lib64/stubs/libcuda.so.1
+ sudo ln -s /usr/local/cuda-11.2/lib64/stubs/libcuda.so /usr/local/cuda-11.2/lib64/libcuda.so.1
+ sudo ln -s /usr/local/cuda-11.2/lib64/stubs/libcuda.so /usr/local/cuda-11.2/lib64/libcuda.so
+ fi
export PATH=/usr/local/cuda/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH
export CUDACXX=/usr/local/cuda/bin/nvcc
export CUDA_PATH=/usr/local/cuda
export CUDA_TOOLKIT_ROOT_DIR=/usr/local/cuda
- features="full"
+ cuda_is_available=true
else
- echo "Unable to auto-install CUDA on this Linux OS"
- features="opencv-base"
+ echo "Unable to provide tools on macOS, please wait for a future script update or do not put -InstallCUDA command line flag to continue"
fi
fi
-else
- if [[ -v CUDA_PATH ]]; then
- features="full"
- else
- features="opencv-base"
- fi
fi
cd ..
-rm -rf $temp_folder
-
-if [[ ! -v VCPKG_ROOT ]]; then
- git clone https://github.com/microsoft/vcpkg
- cd vcpkg
- ./bootstrap-vcpkg.sh -disableMetrics
- export VCPKG_ROOT=$(pwd)
-fi
-
-$VCPKG_ROOT/vcpkg install darknet[${features}]
+rm -rf "$temp_folder"
-if [[ "$OSTYPE" == "darwin"* ]]; then
- echo "Darknet installed in $VCPKG_ROOT/installed/x64-osx/tools/darknet"
+if [[ -v CUDA_PATH ]]; then
+ ./build.ps1 -UseVCPKG -EnableOPENCV -EnableCUDA -EnableCUDNN -DisableInteractive -DoNotUpdateDARKNET
+ #./build.ps1 -UseVCPKG -EnableOPENCV -EnableCUDA -EnableCUDNN -EnableOPENCV_CUDA -DisableInteractive -DoNotUpdateDARKNET
else
- echo "Darknet installed in $VCPKG_ROOT/installed/x64-linux/tools/darknet"
+ ./build.ps1 -UseVCPKG -EnableOPENCV -DisableInteractive -DoNotUpdateDARKNET
fi
diff --git a/src/csharp/CMakeLists.txt b/src/csharp/CMakeLists.txt
new file mode 100644
index 00000000000..971725b227d
--- /dev/null
+++ b/src/csharp/CMakeLists.txt
@@ -0,0 +1,19 @@
+
+project(YoloWrapper LANGUAGES CSharp)
+include(CSharpUtilities)
+
+add_library(${PROJECT_NAME}
+ ${PROJECT_NAME}.cs
+)
+
+target_link_libraries(${PROJECT_NAME} PRIVATE dark)
+
+set_property(TARGET ${PROJECT_NAME} PROPERTY VS_DOTNET_REFERENCES
+ "System"
+ "System.Runtime.InteropServices"
+)
+
+install(TARGETS ${PROJECT_NAME}
+ RUNTIME DESTINATION "${INSTALL_BIN_DIR}"
+ COMPONENT dev
+)
diff --git a/src/csharp/YoloWrapper.cs b/src/csharp/YoloWrapper.cs
new file mode 100644
index 00000000000..52c12adb80f
--- /dev/null
+++ b/src/csharp/YoloWrapper.cs
@@ -0,0 +1,89 @@
+using System;
+using System.Runtime.InteropServices;
+
+namespace Darknet
+{
+ public class YoloWrapper : IDisposable
+ {
+ private const string YoloLibraryName = "yolo_cpp_dll.dll";
+ private const int MaxObjects = 1000;
+
+ [DllImport(YoloLibraryName, EntryPoint = "init")]
+ private static extern int InitializeYolo(string configurationFilename, string weightsFilename, int gpu);
+
+ [DllImport(YoloLibraryName, EntryPoint = "detect_image")]
+ private static extern int DetectImage(string filename, ref BboxContainer container);
+
+ [DllImport(YoloLibraryName, EntryPoint = "detect_mat")]
+ private static extern int DetectImage(IntPtr pArray, int nSize, ref BboxContainer container);
+
+ [DllImport(YoloLibraryName, EntryPoint = "dispose")]
+ private static extern int DisposeYolo();
+
+ [StructLayout(LayoutKind.Sequential)]
+ public struct bbox_t
+ {
+ public UInt32 x, y, w, h; // (x,y) - top-left corner, (w, h) - width & height of bounded box
+ public float prob; // confidence - probability that the object was found correctly
+ public UInt32 obj_id; // class of object - from range [0, classes-1]
+ public UInt32 track_id; // tracking id for video (0 - untracked, 1 - inf - tracked object)
+ public UInt32 frames_counter;
+ public float x_3d, y_3d, z_3d; // 3-D coordinates, if there is used 3D-stereo camera
+ };
+
+ [StructLayout(LayoutKind.Sequential)]
+ public struct BboxContainer
+ {
+ [MarshalAs(UnmanagedType.ByValArray, SizeConst = MaxObjects)]
+ public bbox_t[] candidates;
+ }
+
+ public YoloWrapper(string configurationFilename, string weightsFilename, int gpu)
+ {
+ InitializeYolo(configurationFilename, weightsFilename, gpu);
+ }
+
+ public void Dispose()
+ {
+ DisposeYolo();
+ }
+
+ public bbox_t[] Detect(string filename)
+ {
+ var container = new BboxContainer();
+ var count = DetectImage(filename, ref container);
+
+ return container.candidates;
+ }
+
+ public bbox_t[] Detect(byte[] imageData)
+ {
+ var container = new BboxContainer();
+
+ var size = Marshal.SizeOf(imageData[0]) * imageData.Length;
+ var pnt = Marshal.AllocHGlobal(size);
+
+ try
+ {
+ // Copy the array to unmanaged memory.
+ Marshal.Copy(imageData, 0, pnt, imageData.Length);
+ var count = DetectImage(pnt, imageData.Length, ref container);
+ if (count == -1)
+ {
+ throw new NotSupportedException($"{YoloLibraryName} has no OpenCV support");
+ }
+ }
+ catch (Exception exception)
+ {
+ return null;
+ }
+ finally
+ {
+ // Free the unmanaged memory.
+ Marshal.FreeHGlobal(pnt);
+ }
+
+ return container.candidates;
+ }
+ }
+}
diff --git a/src/region_layer.c b/src/region_layer.c
index 7aa1a196f80..b7aba32e1a9 100644
--- a/src/region_layer.c
+++ b/src/region_layer.c
@@ -20,6 +20,10 @@ region_layer make_region_layer(int batch, int w, int h, int n, int classes, int
l.batch = batch;
l.h = h;
l.w = w;
+ l.c = n*(classes + coords + 1);
+ l.out_w = l.w;
+ l.out_h = l.h;
+ l.out_c = l.c;
l.classes = classes;
l.coords = coords;
l.cost = (float*)xcalloc(1, sizeof(float));