-
Notifications
You must be signed in to change notification settings - Fork 4
/
util.py
814 lines (686 loc) · 26.5 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
# Original Version: Taehoon Kim (http://carpedm20.github.io)
# + Source: https://github.com/carpedm20/DCGAN-tensorflow/blob/e30539fb5e20d5a0fed40935853da97e9e55eee8/utils.py
# + License: MIT
#
# [2017-11-02] Modifications for Exoplanetary science
# contributors: Tiziano Zingales (1, 2), Ingo Waldmann (1)
# + License: (1) UCL, (2) INAF/OaPa
try:
from ConfigParser import SafeConfigParser # python 2
except:
from configparser import SafeConfigParser # python 3
import os
import requests
import zipfile
from PIL import Image
import numpy as np
import pandas as pd
import scipy
from scipy.stats import chisquare
import gzip
import copy
from scipy.interpolate import interp1d
import sys
from corner import *
import logging
import cPickle as pickle
from scipy.misc import imresize
from glob import glob
from tqdm import tqdm
import matplotlib.pyplot as plt
import matplotlib
matplotlib.use('pdf')
font = {'size' : 24}
matplotlib.rc('font', **font)
RJUP = 6.9911e7
MJUP = 1.898e27
def ASPA_read(G, layer, mol, imgsz):
"""
Interprets G ASPA's output
Inputs:
G: trained neural network
layer: single prediction
mol: molecule option
imgsz: size of the input matrix
return:
molecule value prediction
"""
aspas = {
'CO' : G[layer, :imgsz -10, -2, 0],
'CO2' : G[layer, :imgsz -10, -3, 0],
'H2O' : G[layer, -3:, -3:, 0],
'CH4' : G[layer, :imgsz -10, -1, 0],
'Rp' : G[layer, -2, :imgsz - 10, 0],
'Mp' : G[layer, -3, :imgsz - 10, 0],
'Tp' : G[layer, -1, :imgsz - 10, 0]
}
return aspas[mol]
def build_directories(config):
make_dir('hats_imgs', config)
make_dir('histograms/all_par', config)
make_dir('completed', config)
make_dir('logs', config)
make_dir('predictions', config)
def center_crop(x, crop_h, crop_w=None, resize_w=64):
if crop_w is None:
crop_w = crop_h
h, w = x.shape[:2]
j = int(round((h - crop_h)/2.))
i = int(round((w - crop_w)/2.))
return scipy.misc.imresize(x[j:j+crop_h, i:i+crop_w],
[resize_w, resize_w])
def check_molecule_existence(mol_list, array, array_names, default=-7.9):
real_mol = []
for mol in mol_list:
if mol in array_names:
index = np.where(array_names == mol)[0]
real_mol.append(np.log10(array[index]))
else:
real_mol.append(default)
return real_mol
def clear_all():
"""Clears all the variables from the workspace of the spyder application."""
gl = globals().copy()
for var in gl:
if var[0] == '_': continue
if 'func' in str(globals()[var]): continue
if 'module' in str(globals()[var]): continue
del globals()[var]
def crop_and_resave(inputfile, outputdir):
# theoretically, we could try to find the face
# but let's be lazy
# we assume that the middle 108 pixels will contain the face
im = scipy.misc.imread(inputfile)
height, width, color = im.shape
edge_h = int( round( (height - 108) / 2.0 ) )
edge_w = int( round( (width - 108) / 2.0 ) )
cropped = im[edge_h:(edge_h + 108), edge_w:(edge_w + 108)]
small = imresize(cropped, (64, 64))
filename = inputfile.split('/')[-1]
scipy.misc.imsave("%s/%s" % (outputdir, filename), small)
def download_file(file_id, dest):
drive_url = "https://docs.google.com/uc?export=download"
session = requests.Session()
response = session.get(drive_url, params={'id': file_id}, stream=True)
token = get_confirm_token(response)
if token:
params = {'id': file_id, 'confirm': token}
response = session.get(drive_url, params=params, stream=True)
save_response_content(response, dest)
def download_pred():
for i in range(1000):
if not os.path.exists('Desktop/all_pred/%d' % i):
os.makedirs('Desktop/all_pred/%d' % i)
os.system('scp -P 5903 -r tiziano@localhost:/share/data/tiziano/repos/GANs/DCGAN/train_accuracy/%d/predictions Desktop/all_pred/%d/' % (i, i))
def download_sigma():
def download_pred():
sigmas =np.linspace(0, 100e-6, 11)
for i in range(100):
if not os.path.exists('Desktop/all_pred/%d' % i):
os.makedirs('Desktop/all_pred/%d' % i)
for j in range(len(sigmas)):
if not os.path.exists('Desktop/all_pred/%d/%d' % (i, sigmas[j]*1e6)):
os.makedirs('Desktop/all_pred/%d/%d' % (i, sigmas[j]*1e6))
os.system('scp -P 5903 -r tiziano@localhost:/share/data/tiziano/repos/GANs/DCGAN/test_parameters/signal_to_noise/random_spectra/%d/%d/predictions Desktop/all_pred/%d/%d' % (i, sigmas[j]*1e6, i, sigmas[j]*1e6))
def find_nearest(array, value):
idx = (np.abs(array - value)).argmin()
return array[idx], idx
def files2images(filenames):
return [scale_image(scipy.misc.imread(fn)) for fn in filenames]
def files2images_theano(filenames):
# theano wants images to be of shape (C, D, D)
# tensorflow wants (D, D, C) which is what scipy imread
# uses by default
return [scale_image(scipy.misc.imread(fn).transpose((2, 0, 1))) for fn in filenames]
def get_image(image_path, image_size, is_crop=True):
return transform(imread(image_path), image_size, is_crop)
def get_mnist(limit=None):
if not os.path.exists('../large_files'):
print("You must create a folder called large_files adjacent to the class folder first.")
if not os.path.exists('../large_files/train.csv'):
print("Looks like you haven't downloaded the data or it's not in the right spot.")
print("Please get train.csv from https://www.kaggle.com/c/digit-recognizer")
print("and place it in the large_files folder.")
print("Reading in and transforming data...")
df = pd.read_csv('../large_files/train.csv')
data = df.as_matrix()
np.random.shuffle(data)
X = data[:, 1:] / 255.0 # data is from 0..255
Y = data[:, 0]
if limit is not None:
X, Y = X[:limit], Y[:limit]
return X, Y
def get_parameters(X, size=33):
parameters = []
# Add CO2
parameters.append(np.mean(X[:size - 3, -3, 0]))
# Add CO
parameters.append(np.mean(X[:size - 3, -2, 0]))
# Add CH4
parameters.append(np.mean(X[:size - 3, -1, 0]))
# Add H2O
parameters.append(np.mean(X[-10:, -10:, 0]))
# Add Mp
parameters.append(np.mean(X[-3, :size - 3, 0]))
# Add Rp
parameters.append(np.mean(X[-2, :size - 3, 0]))
# Add Tp
parameters.append(np.mean(X[-1, :size - 3, 0]))
parameters = np.array(parameters)
return parameters
def get_spectra(limit=None):
# if not os.path.exists('../large_files'):
# os.mkdir('../large_files')
print("Reading in and transforming data...")
df = pd.read_csv('spectra_train.csv')
data = df.as_matrix()
np.random.shuffle(data)
X = data[:, 1:]
Y = data[:, 0]
if limit is not None:
X, Y = X[:limit], Y[:limit]
return X, Y
def get_spectral_library(split=0.1):
print("Reading in and transforming data...")
# data_set = glob('/mnt/test_set/*pkgz')
data_set = glob('../../TauREx_deep/Output/test_set/*pkgz')
# data_set = glob('./test_spectra/*pkgz')
np.random.shuffle(data_set)
np.random.shuffle(data_set)
data_train = data_set[:int(len(data_set)*(1-split))]
data_test = data_set[int(len(data_set)*(1-split)):]
np.savetxt('data_train.dat', data_train, fmt="%s")
np.savetxt('data_test.dat', data_test, fmt="%s")
return data_train
def get_spectral_matrix(path, parfile=None, size=23):
wnw_grid = np.genfromtxt('./wnw_grid.txt')
# global normalisation over the entire dataset
norm_bounds = np.array([0.63, 0.77, 0.88, 1.0, 1.1, 1.25,
1.8, 2.13, 3.96, 4.56, 6.33, 7.21, 10.0])
norm_idx = [0, 162, 195, 208, 241, 255, 318, 334, 371,
384, 394, 406, 420, 440, -1]
global_maximum = 0.0301803471629
global_minimum = 0.00650370296635
half_row = 14
if type(path) == str and path[-3:] == 'dat':
# TODO -- correction for stellar radius
parser = SafeConfigParser()
parser.readfp(open(parfile, 'rb')) # python 2
star_radius = getpar(parser, 'Star', 'radius', 'float')
radius_fac = star_radius ** 2
spec = np.genfromtxt(path)
_, wnw_min = find_nearest(wnw_grid, max(spec[:, 0]))
_, wnw_max = find_nearest(wnw_grid, min(spec[:, 0]))
spectrum, spec_err = np.zeros(len(wnw_grid)), np.zeros(len(wnw_grid))
spectrum[wnw_min:wnw_max + 1] = spec[:, 1] * radius_fac
spec_err[wnw_min:wnw_max + 1] = spec[:, 2] * radius_fac
spectrum = np.random.normal(spectrum, spec_err)
max_s = np.mean(spectrum) / global_maximum
mean_param = [max_s] * half_row
mean_param = np.array(mean_param)
param_list = []
planet_temperature = getpar(parser, 'Atmosphere', 'tp_iso_temp', 'float') / 2e3
planet_radius = getpar(parser, 'Planet', 'radius', 'float') / (1.5)
planet_mass = getpar(parser, 'Planet', 'mass', 'float') / (2.0)
atm_active_gases = np.array([gas.upper() for gas in getpar(parser, 'Atmosphere', 'active_gases', 'list-str')])
atm_active_gases_mixratios = np.array(getpar(parser, 'Atmosphere', 'active_gases_mixratios', 'list-float'))
atm_active_gases_mixratios = -np.log10(atm_active_gases_mixratios) / 8.
if 'H2O' in atm_active_gases:
index = np.where(atm_active_gases == 'H2O')[0]
h2o_mixratio = atm_active_gases_mixratios[index]
else:
h2o_mixratio = 1e-8
if 'CH4' in atm_active_gases:
index = np.where(atm_active_gases == 'CH4')[0]
ch4_mixratio = atm_active_gases_mixratios[index]
else:
ch4_mixratio = 1e-8
if 'CO2' in atm_active_gases:
index = np.where(atm_active_gases == 'CO2')[0]
co2_mixratio = atm_active_gases_mixratios[index]
else:
co2_mixratio = 1e-8
if 'CO' in atm_active_gases:
index = np.where(atm_active_gases == 'CO')[0]
co_mixratio = atm_active_gases_mixratios[index]
else:
co_mixratio = 1e-8
elif type(path) == np.ndarray:
spectrum = path
param_list = [0] * 7
param_list = np.array(param_list)
half_row = 14
max_s = np.mean(spectrum) / global_maximum
mean_param = [max_s] * half_row
mean_param = np.array(mean_param)
elif type(path) == dict:
spec = path
param_list = []
for key in spec['param'].keys():
value = spec['param'][key]
if key == 'temperature_profile':
value /= 2e3
elif key == 'planet_radius':
value /= (1.5 * RJUP)
elif key == 'planet_mass':
value /= (2.0 * MJUP)
elif key == 'h2o_mixratio':
value = -np.log10(value) / 8.
elif key == 'ch4_mixratio':
value = -np.log10(value) / 8.
elif key == 'co_mixratio':
value = -np.log10(value) / 8.
elif key == 'co2_mixratio':
value = -np.log10(value) / 8.
param_list.append(value)
param_list = np.array(param_list)
spectrum = spec['data']['spectrum']
half_row = 14
max_s = np.mean(spectrum) / global_maximum
mean_param = [max_s] * half_row
mean_param = np.array(mean_param)
new_size = int(size + 3 + (len(norm_idx) - 1) / 2)
new_row = np.zeros((new_size, new_size, 1))
norm_spectrum = np.array(spectrum)
for i in range(len(norm_idx) - 1):
frag = spectrum[norm_idx[i]:norm_idx[i + 1]]
if i == len(norm_idx) - 2:
frag = frag[:-4]
minf = min(frag)
maxf = max(frag)
if (minf == maxf):
norm_spectrum[norm_idx[i]:norm_idx[i + 1]] = 0.
elif i == len(norm_idx) - 2:
norm_spectrum[norm_idx[i]:norm_idx[i + 1]][:-4] = (frag - minf) / (maxf - minf)
norm_spectrum[norm_idx[i]:norm_idx[i + 1]][-4:] = 0
else:
norm_spectrum[norm_idx[i]:norm_idx[i + 1]] = (frag - minf) / (maxf - minf)
if i < (len(norm_idx) - 1) / 2:
new_row[0:12, size + i, 0] = maxf / global_maximum
if minf > 0:
new_row[12:size, size + i, 0] = global_minimum / minf
else:
new_row[12:size, size + i, 0] = 0.
else:
new_row[size - 7 + i, 0:12, 0] = maxf / global_maximum
if minf > 0:
new_row[size - 7 + i, 12:size, 0] = global_minimum / minf
else:
new_row[size - 7 + i, 12:size, 0] = 0
row = np.concatenate((norm_spectrum, mean_param))
row = row.reshape(size, size)
new_row[:size, :size, 0] = row
try:
# Add CO2
new_row[:size, -3, 0] = param_list[5]
# Add CO
new_row[:size, -2, 0] = param_list[6]
# Add CH4
new_row[:size, -1, 0] = param_list[2]
# Add H2O
new_row[size:, size:, 0] = param_list[4]
# Add Mp
new_row[-3, :size, 0] = param_list[0]
# Add Rp
new_row[-2, :size, 0] = param_list[3]
# Add Tp
new_row[-1, :size, 0] = param_list[1]
except:
if path[-3:] == 'dat':
# Add CO2
new_row[:size, -3, 0] = co2_mixratio
# Add CO
new_row[:size, -2, 0] = co_mixratio
# Add CH4
new_row[:size, -1, 0] = ch4_mixratio
# Add H2O
new_row[size:, size:, 0] = h2o_mixratio
# Add Mp
new_row[-3, :size, 0] = planet_mass
# Add Rp
new_row[-2, :size, 0] = planet_radius
# Add Tp
new_row[-1, :size, 0] = planet_temperature
return new_row
def get_test_image(X, sigma=0.0, size=33, batch_size=64, parfile=None, wfc3=False):
batch = []
if type(X) == dict:
X_to_split = copy.deepcopy(X)
X_to_split = X_to_split['data']['spectrum']
test = lambda x: get_spectral_matrix(x, parfile=None)
elif type(X) == str:
if X[-3:] == 'dat':
X_to_split = np.genfromtxt(X)[:, 1]
test = lambda x: get_spectral_matrix(x, parfile=X[:-3] + 'par')
else:
X_to_split = np.array(X)
test = lambda x: get_spectral_matrix(x)
wnw = np.genfromtxt('./wnw_grid.txt')
new_zeros = np.zeros((size, size, 1))
for i in range(batch_size):
output = test(X)
new_zeros[:size, :size, 0] = output[:size, :size, 0]
batch.append(new_zeros)
batch = np.array(batch)
return batch
def getpar(parser, sec, par, type=None):
# get parameter from user defined parser. If parameter is not found there, load the default parameter
# the default parameter file parser is self.default_parser, defined in init
try:
if type == None:
return parser.get(sec, par)
elif type == 'float':
return parser.getfloat(sec, par)
elif type == 'bool':
return parser.getboolean(sec, par)
elif type == 'int':
return parser.getint(sec, par)
elif type == 'list-str':
l = parser.get(sec,par).split(',')
return [str(m).strip() for m in l]
elif type == 'list-float':
l = parser.get(sec,par).split(',')
return [float(m) for m in l]
elif type == 'list-int':
l = parser.get(sec,par).split(',')
return [int(m) for m in l]
else:
logging.error('Cannot set parameter %s in section %s. Parameter type %s not recognized. Set to None' (par, sec, type))
return None
except:
logging.error('Cannot set parameter %s in section %s. Set to None' % (par, sec))
return None
def histogram_par(mol, G, batchsz, imgsz, ground_truths, all_hists, prediction_file, gan_avg, gan_p_err, gan_m_err, ranges):
def mult(mol):
functs = {
'CO' : [-8., 0, (-8, 0)],
'CO2' : [-8., 1, (-8, 0)],
'H2O' : [-8., 2, (-8, 0)],
'CH4' : [-8., 3, (-8, 0)],
'Rp' : [1.5, 4, (0.8, 1.5)],
'Mp' : [2., 5, (0.8, 2.1)],
'Tp' : [2e3, 6, (1000., 2100.)]
}
return functs[mol]
histospec = []
for layer in range(batchsz):
inter = np.mean(ASPA_read(G, layer, mol, imgsz))
if not np.isnan(inter):
histospec.append(inter)
histospec = np.array(histospec)
histospec = (histospec) * mult(mol)[0]
all_hists.append(histospec)
q_16, q_50, q_84 = quantile_corner(histospec, [0.16, 0.5, 0.84])
gan_mean = q_50
gan_sigma_m = q_50-q_16
gan_sigma_p = q_84-q_50
gan_avg.append(gan_mean)
gan_p_err.append(gan_sigma_p)
gan_m_err.append(gan_sigma_m)
# print(mol, gan_mean, gan_sigma_m, gan_sigma_p, ground_truths[mult(mol)[1]])
# sys.exit()
prediction_file.write('%3s\t%1.7g\t%1.7g\t%1.7g\t%1.7g\n' %
(mol, gan_mean, gan_sigma_m, gan_sigma_p, ground_truths[mult(mol)[1]]))
ranges.append(mult(mol)[2])
return prediction_file, gan_avg, gan_p_err, gan_m_err, ranges, all_hists
def imread(path):
return scipy.misc.imread(path, mode='RGB').astype(np.float)
def imsave(images, size, path):
img = merge(images, size)
# return plt.imsave(path, img, cmap='spectral')
return scipy.misc.imsave(path, (255*img).astype(np.uint8))
def inverse_transform(images):
return (images)
def load(filename):
"""Loads a compressed object from disk
"""
file = gzip.GzipFile(filename, 'rb')
buffer = ""
while 1:
data = file.read()
if data == "":
break
buffer += data
object = pickle.loads(buffer)
file.close()
return object
def make_corner_plot(all_hists, ranges, labels, ground_truths, config, index):
make_dir('histograms/corner', config)
all_corner = corner(all_hists,
range=ranges,
smooth=0.5,
labels=labels,
quantiles=[0.16, 0.5, 0.84],
truths=ground_truths,
show_titles=True,
plot_contours=False,
fill_contours=False)
#
histName = os.path.join(config.outDir,
'histograms/corner/{:04d}.pdf'.format(index))
plt.savefig(histName)
plt.close()
def make_dir(name, config):
# Works on python 2.7, where exist_ok arg to makedirs isn't available.
p = os.path.join(config.outDir, name)
if not os.path.exists(p):
os.makedirs(p)
def merge(images, size):
h, w = images.shape[1], images.shape[2]
img = np.zeros((int(h * size[0]), int(w * size[1]), 3))
for idx, image in enumerate(images):
i = idx % size[1]
j = idx // size[1]
img[j*h:j*h+h, i*w:i*w+w, :] = image
return img
def quantile_corner(x, q, weights=None):
"""
* Taken from corner.py
__author__ = "Dan Foreman-Mackey ([email protected])"
__copyright__ = "Copyright 2013-2015 Daniel Foreman-Mackey"
Like numpy.percentile, but:
* Values of q are quantiles [0., 1.] rather than percentiles [0., 100.]
* scalar q not supported (q must be iterable)
* optional weights on x
"""
if weights is None:
return np.percentile(x, [100. * qi for qi in q])
else:
idx = np.argsort(x)
xsorted = x[idx]
cdf = np.add.accumulate(weights[idx])
cdf /= cdf[-1]
return np.interp(q, cdf, xsorted).tolist()
def real_wfc3(path, star=0.756):
planet = np.genfromtxt(path)
wnw_grid = planet[:, 0]
spectrum = planet[:, 1] * star ** 2
interp = interp1d(wnw_grid, spectrum, fill_value="extrapolate")
nn_grid = np.genfromtxt('./wnw_grid.txt')
_, lmax = find_nearest(nn_grid, wnw_grid[0])
_, lmin = find_nearest(nn_grid, wnw_grid[-1])
find_nearest(nn_grid, 1.8)
nn_lam = nn_grid[334:384][::-1]
wfc3_spectrum = interp(nn_lam)
nn_spectrum = np.zeros(len(nn_grid))
nn_spectrum[334:384] = wfc3_spectrum[::-1]
return nn_spectrum
def recon_spectrum(spec, size=23):
norm_bounds = np.array([0.63, 0.77, 0.88, 1.0, 1.1, 1.25, 1.8, 2.13, 3.96, 4.56, 6.33, 7.21, 10.0])
norm_idx = [0, 162, 195, 208, 241, 255, 318, 334, 371, 384, 394, 406, 420, 440, -1]
global_maximum = 0.0301803471629
global_minimum = 0.00650370296635
in_spec = spec[:size, :size, 0]
in_spec = in_spec.flatten()
for i in range(len(norm_idx) - 1):
frag = in_spec[norm_idx[i]:norm_idx[i + 1]]
if i == len(norm_idx) - 2:
frag = frag[:-4]
if i < 7:
maxf = np.mean(spec[0:12, size + i, 0]) * global_maximum
minf = global_minimum / np.mean(spec[12:size, size + i, 0])
else:
maxf = np.mean(spec[size - 7 + i, 0:12, 0]) * global_maximum
minf = global_minimum / np.mean(spec[size - 7 + i, 12:size, 0])
const_control = (norm_idx[i] + norm_idx[i + 1]) / 2
if (in_spec[norm_idx[i]] == in_spec[int(const_control)]):
in_spec[norm_idx[i]:norm_idx[i + 1]] = 0.
elif i == len(norm_idx) - 2:
in_spec[norm_idx[i]:norm_idx[i + 1]][:-4] = frag * (maxf - minf) + minf
in_spec[norm_idx[i]:norm_idx[i + 1]][-4:] = 0
else:
in_spec[norm_idx[i]:norm_idx[i + 1]] = frag * (maxf - minf) + minf
return in_spec
def resize(img_name):
img = Image.open(img_name)
new_img = img.resize((256,256))
new_img.save(img_name)
def save_images(images, size, image_path):
return imsave(inverse_transform(images), size, image_path)
def spectra_int_norm(Xtrue, imgsz, wnw_grid, batchSz, G_imgs, config, i):
"""
IN-BUILT
"""
make_dir('spectra/inbuilt/all', config)
make_dir('spectra/inbuilt/best', config)
real_spec = Xtrue[:imgsz, :imgsz, :]
real_spec = recon_spectrum(real_spec)
chi_square = []
spectra = []
f, ax = plt.subplots(sharey=True, figsize=(12, 6))
for k in range(batchSz):
spectrum = G_imgs[k, :imgsz, :imgsz, :]
spectrum = recon_spectrum(spectrum)
spectra.append(spectrum)
chi_square.append(chisquare(spectrum[:len(wnw_grid) - 4], f_exp=real_spec[:len(wnw_grid) - 4])[0])
ax.plot(wnw_grid[:-4], spectrum[:len(wnw_grid) - 4])
ax.plot(wnw_grid[:-4], real_spec[:len(wnw_grid) - 4], '-k', label='real spectrum')
# red_patch = mpatches.Patch(color='red', label='real spectrum')
# col_patch = mpatches.Patch(color='rainbow', label='generated spectra')
ax.legend()
ax.set_ylabel(r'$R_p^2/R_s^2$')
ax.set_xlabel('Wavelength $(\mu m)$')
histName = os.path.join(config.outDir,
'spectra/inbuilt/all/{:04d}.pdf'.format(i))
plt.xscale('log')
plt.xticks([1, 10], ['1', '10'])
# ax.set_ylim(global_minimum, global_maximum)
plt.savefig(histName, bbox_inches='tight')
plt.close()
best_ind = chi_square.index(min(chi_square))
f, ax = plt.subplots(sharey=True, figsize=(12, 6))
ax.plot(wnw_grid[:-4], spectra[best_ind][:len(wnw_grid) - 4], 'r-', label='generated spectrum')
ax.plot(wnw_grid[:-4], real_spec[:len(wnw_grid) - 4], '-k', label='real spectrum')
# red_patch = mpatches.Patch(color='red', label='real spectrum')
# col_patch = mpatches.Patch(color='rainbow', label='generated spectra')
ax.legend()
ax.set_ylabel(r'$R_p^2/R_s^2$')
ax.set_xlabel('Wavelength $(\mu m)$')
histName = os.path.join(config.outDir,
'spectra/inbuilt/best/{:04d}.pdf'.format(i))
plt.xscale('log')
plt.xticks([1, 10], ['1', '10'])
# ax.set_ylim(global_minimum, global_maximum)
plt.savefig(histName, bbox_inches='tight')
plt.close()
def spectra_norm(Xtrue, imgsz, wnw_grid, batchSz, G_imgs, config, i):
"""
NORMALISED SPECTRA
"""
make_dir('spectra/normalised/all', config)
make_dir('spectra/normalised/best', config)
real_spec = Xtrue[:imgsz, :imgsz, :]
real_spec = real_spec[:23, :23, 0].flatten()
chi_square = []
spectra = []
f, ax = plt.subplots(sharey=True, figsize=(12, 6))
for k in range(batchSz):
spectrum = G_imgs[k, :imgsz, :imgsz, :]
spectrum = spectrum[:23, :23, 0].flatten()
spectra.append(spectrum)
chi_square.append(chisquare(spectrum[:440], f_exp=real_spec[:440])[0])
ax.plot(wnw_grid[:-4], spectrum[:len(wnw_grid) - 4])
ax.plot(wnw_grid[:-4], real_spec[:len(wnw_grid) - 4], '-k', label='real spectrum')
# red_patch = mpatches.Patch(color='red', label='real spectrum')
# col_patch = mpatches.Patch(color='rainbow', label='generated spectra')
ax.legend()
ax.set_ylabel(r'$R_p^2/R_s^2$')
ax.set_xlabel('Wavelength $(\mu m)$')
histName = os.path.join(config.outDir,
'spectra/normalised/all/{:04d}.pdf'.format(i))
plt.xscale('log')
plt.xticks([1, 10], ['1', '10'])
# ax.set_ylim(global_minimum, global_maximum)
plt.savefig(histName, bbox_inches='tight')
plt.close()
best_ind = chi_square.index(min(chi_square))
f, ax = plt.subplots(sharey=True, figsize=(12, 6))
ax.plot(wnw_grid[:-4], spectra[best_ind][:len(wnw_grid) - 4], 'r-', label='generated spectrum')
ax.plot(wnw_grid[:-4], real_spec[:len(wnw_grid) - 4], '-k', label='real spectrum')
# red_patch = mpatches.Patch(color='red', label='real spectrum')
# col_patch = mpatches.Patch(color='rainbow', label='generated spectra')
ax.legend()
ax.set_ylabel(r'$R_p^2/R_s^2$')
ax.set_xlabel('Wavelength $(\mu m)$')
histName = os.path.join(config.outDir,
'spectra/normalised/best/{:04d}.pdf'.format(i))
plt.xscale('log')
plt.xticks([1, 10], ['1', '10'])
# ax.set_ylim(global_minimum, global_maximum)
plt.savefig(histName, bbox_inches='tight')
plt.close()
def spectra_real_norm(Xtrue, imgsz, wnw_grid, batchSz, G_imgs, config, i):
"""
WITH REAL NORMALISATION
"""
make_dir('spectra/with_real_norm/all', config)
make_dir('spectra/with_real_norm/best',config)
real_spec_ori = Xtrue[:imgsz, :imgsz, :]
real_spec = recon_spectrum(real_spec_ori)
chi_square = []
spectra = []
f, ax = plt.subplots(sharey=True, figsize=(12, 6))
for k in range(batchSz):
spectrum = G_imgs[k, :imgsz, :imgsz, :]
spectrum[23:, :, 0] = real_spec_ori[23:, :, 0]
spectrum[:, 23:, 0] = real_spec_ori[:, 23:, 0]
spectrum = recon_spectrum(spectrum)
spectra.append(spectrum)
chi_square.append(chisquare(spectrum[:-8], f_exp=real_spec[:-8])[0])
ax.plot(wnw_grid[:-8], spectrum[:len(wnw_grid) - 8])
ax.plot(wnw_grid[:-8], real_spec[:len(wnw_grid) - 8], '-k', label='real spectrum')
# red_patch = mpatches.Patch(color='red', label='real spectrum')
# col_patch = mpatches.Patch(color='rainbow', label='generated spectra')
ax.legend()
ax.set_ylabel(r'$R_p^2/R_s^2$')
ax.set_xlabel('Wavelength $(\mu m)$')
histName = os.path.join(config.outDir,
'spectra/with_real_norm/all/{:04d}.pdf'.format(i))
plt.xscale('log')
plt.xticks([1, 10], ['1', '10'])
plt.savefig(histName, bbox_inches='tight')
plt.close()
best_ind = chi_square.index(min(chi_square))
f, ax = plt.subplots(sharey=True, figsize=(12, 6))
ax.plot(wnw_grid[:-8], spectra[best_ind][:len(wnw_grid) - 8], 'r-', label='generated spectrum')
ax.plot(wnw_grid[:-8], real_spec[:len(wnw_grid) - 8], '-k', label='real spectrum')
# red_patch = mpatches.Patch(color='red', label='real spectrum')
# col_patch = mpatches.Patch(color='rainbow', label='generated spectra')
ax.legend()
ax.set_ylabel(r'$R_p^2/R_s^2$')
ax.set_xlabel('Wavelength $(\mu m)$')
histName = os.path.join(config.outDir,
'spectra/with_real_norm/best/{:04d}.pdf'.format(i))
plt.xscale('log')
plt.xticks([1, 10], ['1', '10'])
# ax.set_ylim(min(real_spec[:440]), max(real_spec))
# ax.set_xlim(0.35, )
plt.savefig(histName, bbox_inches='tight')
plt.close()
def transform(image, npx=64, is_crop=True):
# npx : # of pixels width/height of image
if is_crop:
cropped_image = center_crop(image, npx)
else:
cropped_image = image
return np.array(cropped_image)