forked from microsoft/poultry-cafos
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathinference_and_evaluate.py
227 lines (189 loc) · 6.83 KB
/
inference_and_evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
"""
Copyright (c) Microsoft Corporation. All rights reserved.
Licensed under the MIT License.
Version of the inference script that also computes evaluation metrics. If you don't want
the intermediate results, then this is more effecient.
"""
import argparse
import datetime
import os
import time
import numpy as np
import pandas as pd
import rasterio
import rasterio.mask
import torch
import torch.nn.functional as F
from cafo import models, utils
from cafo.data.TileDatasets import TileInferenceDataset
os.environ.update(utils.RASTERIO_BEST_PRACTICES)
NUM_WORKERS = 4
CHIP_SIZE = 256
PADDING = 64
assert PADDING % 2 == 0
HALF_PADDING = PADDING // 2
CHIP_STRIDE = CHIP_SIZE - PADDING
parser = argparse.ArgumentParser(
description="CAFO model inference and evaluation script"
)
parser.add_argument(
"--input_fn",
type=str,
required=True,
help="Path to a text file containing a list of files to run the model on.",
)
parser.add_argument(
"--model_fn", type=str, required=True, help="Path to the model file to use."
)
parser.add_argument(
"--output_fn",
type=str,
required=True,
help="Path to the file that we want to save the output in.",
)
parser.add_argument("--gpu", type=int, default=0, help="ID of the GPU to run on.")
parser.add_argument(
"--batch_size", type=int, default=64, help="Batch size to use during inference."
)
parser.add_argument(
"--overwrite",
action="store_true",
help="Flag for overwriting `output_fn` if that directory already exists",
)
parser.add_argument(
"--model",
default="unet",
choices=("unet", "manet", "unet++", "deeplabv3+"),
help="Model to use",
)
args = parser.parse_args()
def main():
print(
"Starting CAFO inference and evaluation model inference script at %s"
% (str(datetime.datetime.now()))
)
# Load files
assert os.path.exists(args.input_fn)
assert os.path.exists(args.model_fn)
os.makedirs(os.path.dirname(args.output_fn), exist_ok=True)
if os.path.exists(args.output_fn):
if args.overwrite:
print("WARNING: we are overwriting existing file: %s" % (args.output_fn))
else:
print(
"WARNING: %s already exists and we aren't overwriting, exiting..."
% (args.output_fn)
)
return
input_dataframe = pd.read_csv(args.input_fn)
image_fns = input_dataframe["image_fn"].values
label_fns = input_dataframe["label_fn"].values
print("Running on %d files" % (len(image_fns)))
# Load model
if torch.cuda.is_available():
device = torch.device("cuda:%d" % args.gpu)
else:
print("WARNING! Torch is reporting that CUDA isn't available, exiting...")
return
print("Using device:", device)
if args.model == "unet":
model = models.get_unet()
elif args.model == "unet++":
model = models.get_fcn()
elif args.model == "manet":
model = models.get_manet()
elif args.model == "deeplabv3+":
model = models.get_deeplab()
else:
raise ValueError("Invalid model")
model.load_state_dict(torch.load(args.model_fn)["model_checkpoint"])
model = model.to(device)
# Run model on all files and save output
all_tp = 0
all_fp = 0
all_fn = 0
all_tn = 0
y_trues = []
y_preds = []
with open(args.output_fn, "w") as results_f:
results_f.write("image_fn,label_fn,tp,fp,fn,tn,iou,recall,precision\n")
for image_idx, (image_fn, label_fn) in enumerate(zip(image_fns, label_fns)):
tic = time.time()
print(
"(%d/%d) Processing %s" % (image_idx, len(image_fns), image_fn),
end=" ... ",
)
with rasterio.open(image_fn) as f:
input_width, input_height = f.width, f.height
with rasterio.open(label_fn) as f:
y_true = f.read().squeeze()
dataset = TileInferenceDataset(
image_fn,
chip_size=CHIP_SIZE,
stride=CHIP_STRIDE,
transform=utils.chip_transformer,
verbose=False,
)
dataloader = torch.utils.data.DataLoader(
dataset,
batch_size=args.batch_size,
num_workers=NUM_WORKERS,
pin_memory=True,
)
# Run model and organize output
output = np.zeros((2, input_height, input_width), dtype=np.float32)
kernel = np.ones((CHIP_SIZE, CHIP_SIZE), dtype=np.float32)
kernel[HALF_PADDING:-HALF_PADDING, HALF_PADDING:-HALF_PADDING] = 5
counts = np.zeros((input_height, input_width), dtype=np.float32)
for i, (data, coords) in enumerate(dataloader):
data = data.to(device)
with torch.no_grad():
t_output = model(data)
t_output = F.softmax(t_output, dim=1).cpu().numpy()
for j in range(t_output.shape[0]):
y, x = coords[j]
output[:, y : y + CHIP_SIZE, x : x + CHIP_SIZE] += (
t_output[j] * kernel
)
counts[y : y + CHIP_SIZE, x : x + CHIP_SIZE] += kernel
output = output / counts
y_pred = output.argmax(axis=0).astype(np.uint8)
# get tile results
gt_positives = y_true == 1
gt_negatives = y_true == 0
pred_positives = y_pred == 1
pred_negatives = y_pred == 0
tp = np.sum(gt_positives & pred_positives)
fp = np.sum(gt_negatives & pred_positives)
fn = np.sum(gt_positives & pred_negatives)
tn = np.sum(gt_negatives & pred_negatives)
iou = tp / (tp + fp + fn)
recall = tp / (tp + fn)
precision = tp / (tp + fp)
all_tp += int(tp)
all_fp += int(fp)
all_fn += int(fn)
all_tn += int(tn)
y_trues.append(y_true.ravel()[::100])
y_preds.append(output[1].ravel()[::100])
results_f.write(
f"{image_fn},{label_fn},{tp},{fp},{fn},{tn},{iou},{recall},{precision}\n"
)
results_f.flush()
print("finished in %0.4f seconds" % (time.time() - tic))
all_iou = all_tp / (all_tp + all_fp + all_fn)
all_recall = all_tp / (all_tp + all_fn)
all_precision = all_tp / (all_tp + all_fp)
y_trues = np.concatenate(y_trues)
y_preds = np.concatenate(y_preds)
results_f.write("----\n")
results_f.write(
f",Totals,{all_tp},{all_fp},{all_fn},{all_tn},{all_iou},{all_recall},"
+ f"{all_precision}"
)
# Cleanup
print("IoU: %0.6f" % (all_iou))
print("Recall: %0.6f" % (all_recall))
print("Precision: %0.6f" % (all_precision))
if __name__ == "__main__":
main()