-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathar_detection.py
1244 lines (1070 loc) · 45.3 KB
/
ar_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""This module will threshold the IVT Dataset and identify AR candidates. Each candidate is tested to determine if it meets the various criteria for AR classification. Candidate areas are converted to polygons and exported as a shapefile."""
# ignore future warnings, or they will print tens of thousands of times in the terminal
import warnings
warnings.simplefilter(action="ignore", category=FutureWarning)
import math
import xarray as xr
import numpy as np
import pyproj
import geopandas as gpd
import pandas as pd
from tqdm import tqdm
from scipy.ndimage import label, generate_binary_structure
from skimage.measure import regionprops
from scipy.stats import circmean
from scipy.sparse.csgraph import connected_components
from haversine import haversine
from shapely.geometry import shape, Point, LineString
from rasterio.features import shapes
from datetime import datetime
from config import (
start_year,
end_year,
bbox,
ar_params,
ard_fp,
shp_fp,
csv_fp,
ak_shp,
landfall_shp,
landfall_csv,
landfall_events_shp,
landfall_events_csv,
coastal_impact_shp,
coastal_impact_csv,
log_fp,
)
def compute_intensity_mask(ivt_mag, ivt_quantile, ivt_floor):
"""Compute IVT mask where IVT magnitude exceeds quantile and floor values.
Parameters
----------
ivt_mag : xarray.DataArray
IVT magnitude
ivt_quantile : xarray.DataArray
IVT quantile values used for thresholding
ivt_floor : int
Minimum IVT value for threshold consideration
Returns
-------
xarray.DataArray
IVT magnitude values where the magnitude exceeds the quantile and the IVT floor. Else, zero.
"""
func = lambda x, y, z: xr.where((x > y) & (x > z), x, 0)
return xr.apply_ufunc(func, ivt_mag, ivt_quantile, ivt_floor, dask="parallelized")
def label_contiguous_mask_regions(ivt_mask):
"""Label contiguous geometric regions of IVT values that exceed the target quantile and floor for each time step. Each region is labeled with a unique integer identifier. Output will have the same dimensions as the input IVT intensity mask.
Parameters
----------
ivt_mask : xarray.DataArray
IVT magnitude where the values exceed the IVT quantile and IVT floor.
Returns
-------
xarray.DataArray
Labeled (with unique integers) contiguous regions of IVT threshold exceedance.
"""
# set search structure to include diagonal neighbors
s = generate_binary_structure(2, 2)
# initialize output by copying ivt_mask, renaming it, setting values to nodata value
# this constructs a template DataArray with the same size/dimensions as the input to store region labeling results
da = ivt_mask.copy(deep=False).rename("regions").where(ivt_mask.values == -9999)
# CP note: perhaps a good candidate for vectorizing or parallelization
for a in range(len(ivt_mask.time)):
# label contiguous regions of each timestep
labeled_array, num_features = label(ivt_mask[a].values, structure=s)
# map labeled regions to the timestep in the template array
da[a] = labeled_array
return da
def generate_region_properties(labeled_blobs, ds):
"""
Generate region properties for all variables for each region in a time slice.
Parameters
----------
labeled_blobs : xarray.DataArray
Labeled (with unique integers) contiguous regions of IVT threshold exceedance.
ds : xarray.Dataset
The original dataset containing variables: 'ivt_mag', 'ivt_dir', 'p72.162'.
Returns
-------
dict
region properties with criteria data results for each time slice.
Notes
-----
Processes each time slice of the labeled regions and calculates various properties.
The 'ds' input contains the following variables at each time step and they are used as the intensity image input for the computed region properties:
- 'ivt_mag': IVT magnitude values
- 'ivt_dir': IVT direction values
- 'p72.162': IVT poleward component values
"""
ar_di = {}
for labeled_slice, ivt_magnitude, ivt_poleward, ivt_dir in zip(
labeled_blobs, ds["ivt_mag"], ds["ivt_dir"], ds["p72.162"]
):
timestamp = labeled_slice.time.values.astype(str)
ar_di[timestamp] = {}
# this sub-dict will store the measurements and criteria results
ar_di[timestamp]["ar_targets"] = {}
for i in np.unique(labeled_slice.astype(int).values)[1:]:
ar_di[timestamp]["ar_targets"][i] = {}
# generate lazy zonal statistics, shape metrics for each region within a time slice for all variables
ar_di[timestamp]["blobs with IVT magnitude"] = regionprops(
labeled_slice.astype(int).values, intensity_image=ivt_magnitude.data
)
ar_di[timestamp]["blobs with IVT poleward"] = regionprops(
labeled_slice.astype(int).values, intensity_image=ivt_poleward.data
)
ar_di[timestamp]["blobs with IVT direction"] = regionprops(
labeled_slice.astype(int).values, intensity_image=ivt_dir.data
)
return ar_di
def get_length_width_ratio(blob):
"""
Calculate the length-to-width ratio for a labeled region.
Parameters
----------
blob : skimage.measure._regionprops.RegionProperties
Region properties object representing a labeled region.
Returns
-------
tuple
(label of the region, corresponding length/width ratio)
Notes
-----
The function calculates the length-to-width ratio of a labeled region using its major and minor axis lengths. The input 'blob' is a RegionProperties object from the skimage.measure.regionprops function. It represents a labeled region and contains various properties, including 'axis_major_length' and 'axis_minor_length'.
The length-to-width ratio is calculated as the ratio of 'axis_major_length' to 'axis_minor_length'.
"""
try:
length_width_ratio = blob.axis_major_length / blob.axis_minor_length
except:
# for divide by zero errors
length_width_ratio = 0
length_width_ratio = round(length_width_ratio, 1)
return blob.label, length_width_ratio
def get_major_axis_haversine_distance(blob, ds):
"""
Calculate the haversine distance of the major axis of a labeled region.
Parameters
----------
blob : skimage.measure._regionprops.RegionProperties
Region properties object representing a labeled region.
ds : xarray.Dataset
must have latitude and longitude coordinates.
Returns
-------
tuple
(label of the region, haversine length (km) of its major axis)
Notes
-----
The function calculates the haversine distance of the major axis of a labeled region using the region's centroid and orientation properties. It also requires the input dataset ('ds') containing latitude and longitude
coordinates for spatial reference.
The major axis is defined by two points: the region's centroid and an endpoint that extends half the length of the major axis from the centroid along the region's orientation. The function calculates the latitude and longitude of these two points using the orientation and axis lengths provided by the 'blob' object.
The coordinates of the centroid and major axis endpoint are then used to compute the haversine distance, which is the great-circle distance between these two points on the Earth's surface. The haversine distance is calculated using the 'haversine' function from the 'haversine' library, and the resulting distance is multiplied by 2 to get the total length of the major axis.
"""
y0, x0 = blob.centroid
orientation = blob.orientation
# find endpoints of the major axes with respect to the centroid
# note that we force integers because we ultimately desire array indices
y0 = int(y0)
x0 = int(x0)
x1 = int(x0 - math.sin(orientation) * 0.5 * blob.axis_major_length)
y1 = int(y0 - math.cos(orientation) * 0.5 * blob.axis_major_length)
# the ellipse model used to find the orientation and major axis lengths may extend into cartesian space that is beyond
# the geographic extent of the data, so we will check and correct
if x1 < 0:
x1 = 0
elif x1 >= ds.longitude.shape[0]:
x1 = ds.longitude.shape[0] - 1
if y1 < 0:
y1 = 0
elif y1 >= ds.latitude.shape[0]:
y1 = ds.latitude.shape[0] - 1
# use the array indices to select the latitude and longitude of the centroid and a major axis endpoint
centroid_lat = ds.latitude[y0].values
centroid_lon = ds.longitude[x0].values
geo_centroid = (centroid_lat, centroid_lon)
major_lat = ds.latitude[y1].values
major_lon = ds.longitude[x1].values
geo_major_axis_endpoint = (major_lat, major_lon)
# total major axis length will be twice the distance between these points
# haversine distance used because we expect points to be substantially far apart
half_major_axis_length = haversine(geo_centroid, geo_major_axis_endpoint)
# km is default unit for haversine function
major_axis_length_km = round(half_major_axis_length * 2)
return blob.label, major_axis_length_km
def get_azimuth_of_furthest_points(blob, ds):
"""
Compute the forward azimuth of the major axis of a labeled region.
Parameters
----------
blob : skimage.measure._regionprops.RegionProperties
Region properties object representing a labeled region.
ds : xarray.Dataset
must have latitude and longitude coordinates.
Returns
-------
tuple
(label of the region, forward azimuth of the major axis)
Notes
-----
The function calculates the forward azimuth of the major axis of a labeled region using the region's centroid and orientation properties. It also requires the input dataset ('ds') containing latitude and longitude
coordinates for spatial reference.
The major axis is defined by three points: the region's centroid and two endpoints that extend half the length of the major axis from the centroid along the region's orientation. The function calculates the latitude and longitude of the end points using the orientation and axis lengths provided by the 'blob' object.
The coordinates of the major axis endpoints are then used to compute the geographic forward azimuth of the region.
"""
y0, x0 = blob.centroid
orientation = blob.orientation
# find endpoints of the major axis with respect to the centroid
# note that we force integers because we ultimately desire array indices
y0 = int(y0)
x0 = int(x0)
x1 = int(x0 - math.sin(orientation) * 0.5 * blob.axis_major_length)
y1 = int(y0 - math.cos(orientation) * 0.5 * blob.axis_major_length)
x2 = int(x0 + math.sin(orientation) * 0.5 * blob.axis_major_length)
y2 = int(y0 + math.cos(orientation) * 0.5 * blob.axis_major_length)
# the ellipse model used to find the orientation and major axis lengths may extend into cartesian space that is beyond
# the geographic extent of the data, so we will check and correct
if x1 < 0:
x1 = 0
elif x1 >= ds.longitude.shape[0]:
x1 = ds.longitude.shape[0] - 1
if x2 < 0:
x2 = 0
elif x2 >= ds.longitude.shape[0]:
x2 = ds.longitude.shape[0] - 1
if y1 < 0:
y1 = 0
elif y1 >= ds.latitude.shape[0]:
y1 = ds.latitude.shape[0] - 1
if y2 < 0:
y2 = 0
elif y2 >= ds.latitude.shape[0]:
y2 = ds.latitude.shape[0] - 1
# use the array indices to select the latitude and longitude of the major axis endpoints
major_lat1 = ds.latitude[y1].values
major_lon1 = ds.longitude[x1].values
major_lat2 = ds.latitude[y2].values
major_lon2 = ds.longitude[x2].values
# calculate the forward azimuth using WGS84 geoid and the inv function
# for the northern hemisphere, the function needs the more southerly coords first
geodesic = pyproj.Geod(ellps="WGS84")
fwd_azimuth, _back_azimuth, _distance = geodesic.inv(
major_lon2, major_lat2, major_lon1, major_lat1
)
return blob.label, round(fwd_azimuth)
def get_poleward_strength(blob):
"""
Computes the poleward strength of a labeled region as the rounded mean intensity (poleward flow) value of the region.
Parameters
----------
blob : skimage.measure._regionprops.RegionProperties
Region properties object representing a labeled region.
Returns
-------
tuple
(label of the region, mean poleward strength)
"""
return blob.label, round(blob.intensity_mean)
def get_directional_coherence(blob):
"""
Compute the directional coherence of a labeled region.
Parameters
----------
blob : skimage.measure._regionprops.RegionProperties
Region properties object representing a labeled region.
Returns
-------
tuple
(the label of the region, directional coherence percentage, mean IVT direction)
Notes
-----
Directional coherence represents the percentage of pixels in the region that have wind directions within a certain deviation threshold from the mean IVT direction. Mean IVT direction computed the 'circmean' function from the 'scipy.stats' module to account for the polar coordinates of the direction variable. Result is rounded to the nearest integer percentage.
"""
mean_reference_deg = circmean(blob.image_intensity, high=360, low=0)
deg_deviation = abs((blob.image_intensity - mean_reference_deg + 180) % 360 - 180)
pixel_count = (deg_deviation <= ar_params["direction_deviation_threshold"]).sum()
total_pixels = blob.image_intensity.size
pct_coherent = round((pixel_count / total_pixels) * 100)
return blob.label, pct_coherent, mean_reference_deg
def get_total_ivt_strength(blob):
"""
Computes the total strength of a labeled region as the regional sum of IVT.
Parameters
----------
blob : skimage.measure._regionprops.RegionProperties
Region properties object representing a labeled region.
Returns
-------
tuple
(label of the region, total IVT strength)
"""
return blob.label, round(blob.image_intensity.sum())
def get_relative_ivt_strength(blob):
"""
Computes the relative strength of a labeled region as the regional sum of IVT divided by region area.
Parameters
----------
blob : skimage.measure._regionprops.RegionProperties
Region properties object representing a labeled region.
Returns
-------
tuple
(label of the region, relative IVT strength)
"""
return blob.label, round(blob.image_intensity.sum() / blob.area)
def get_total_ivt_strength(blob):
"""
Computes the total strength of a labeled region as the regional sum of IVT.
Parameters
----------
blob : skimage.measure._regionprops.RegionProperties
Region properties object representing a labeled region.
Returns
-------
tuple
(label of the region, total IVT strength)
"""
return blob.label, round(blob.image_intensity.sum())
def get_relative_ivt_strength(blob):
"""
Computes the relative strength of a labeled region as the regional sum of IVT divided by region area.
Parameters
----------
blob : skimage.measure._regionprops.RegionProperties
Region properties object representing a labeled region.
Returns
-------
tuple
(label of the region, relative IVT strength)
"""
return blob.label, round(blob.image_intensity.sum() / blob.area)
def get_data_for_ar_criteria(ar_di, ds):
"""
Calculate various AR candidate criteria for each time slice and labeled region from the measured region properties.
Parameters
----------
ar_di : dict
Dictionary containing region properties and measurements for AR candidates.
ds : xarray.Dataset
must have latitude and longitude coordinates.
Returns
-------
dict
Updated dictionary with additional AR candidate criteria.
Notes
-----
Calls specific helper functions to compute the data needed for testing AR candidate criteria.
"""
for k in tqdm(ar_di, desc="Getting length/width ratio for each AR target:"):
for blob in ar_di[k]["blobs with IVT magnitude"]:
int_label, ratio = get_length_width_ratio(blob)
ar_di[k]["ar_targets"][int_label]["length/width ratio"] = ratio
for k in tqdm(ar_di, desc="Getting axis length (km) for each AR target:"):
for blob in ar_di[k]["blobs with IVT magnitude"]:
int_label, major_axis_length_km = get_major_axis_haversine_distance(
blob, ds
)
ar_di[k]["ar_targets"][int_label][
"major axis length (km)"
] = major_axis_length_km
for k in tqdm(
ar_di, desc="Getting overall orientation (azimuth) for each AR target:"
):
for blob in ar_di[k]["blobs with IVT magnitude"]:
int_label, max_distance_mean_azimuth = get_azimuth_of_furthest_points(
blob, ds
)
ar_di[k]["ar_targets"][int_label][
"overall orientation"
] = max_distance_mean_azimuth
for k in tqdm(ar_di, desc="Getting mean poleward strength for each AR target:"):
for blob in ar_di[k]["blobs with IVT poleward"]:
int_label, mean_poleward_strength = get_poleward_strength(blob)
ar_di[k]["ar_targets"][int_label][
"mean poleward strength"
] = mean_poleward_strength
for k in tqdm(ar_di, desc="Getting directional coherence for each AR target:"):
for blob in ar_di[k]["blobs with IVT direction"]:
int_label, pct_coherent, mean_of_ivt_dir = get_directional_coherence(blob)
ar_di[k]["ar_targets"][int_label]["directional_coherence"] = pct_coherent
ar_di[k]["ar_targets"][int_label]["mean_of_ivt_dir"] = round(
mean_of_ivt_dir
)
for k in tqdm(ar_di, desc="Getting total IVT strength for each AR target:"):
for blob in ar_di[k]["blobs with IVT magnitude"]:
int_label, total_ivt_strength = get_total_ivt_strength(blob)
ar_di[k]["ar_targets"][int_label]["total ivt strength"] = total_ivt_strength
for k in tqdm(ar_di, desc="Getting relative IVT strength for each AR target:"):
for blob in ar_di[k]["blobs with IVT magnitude"]:
int_label, relative_ivt_strength = get_relative_ivt_strength(blob)
ar_di[k]["ar_targets"][int_label][
"relative ivt strength"
] = relative_ivt_strength
return ar_di
def apply_criteria(ar_di):
"""
Apply criteria to determine AR candidates based on calculated measurements.
Parameters
----------
ar_di : dict
Dictionary containing region properties and measurements for AR candidates.
Returns
-------
dict
Updated dictionary with AR candidates' classification based on criteria.
Notes
-----
Criteria include coherence in IVT direction, object mean meridional IVT, consistency between object mean IVT direction and overall orientation, length, and length/width ratio. Function iterates through each time slice and processes the labeled regions within each time slice. For each labeled region, the function checks the calculated measurements against specific thresholds to determine if the region meets the criteria. The AR candidate classification results (True or False) are stored under appropriate keys.
"""
criteria = [
"Coherence in IVT Direction",
"Mean Meridional IVT",
"Consistency Between Mean IVT Direction and Overall Orientation",
"Length",
"Length/Width Ratio",
]
for k in tqdm(ar_di):
for blob_label in ar_di[k]["ar_targets"]:
for criterion in criteria:
ar_di[k]["ar_targets"][blob_label][criterion] = False
# Length / width ratio criterion
if ar_di[k]["ar_targets"][blob_label]["length/width ratio"] > 2:
ar_di[k]["ar_targets"][blob_label]["Length/Width Ratio"] = True
# Axis length criterion
if (
ar_di[k]["ar_targets"][blob_label]["major axis length (km)"]
> ar_params["min_axis_length"]
):
ar_di[k]["ar_targets"][blob_label]["Length"] = True
# Directional coherence criterion
if ar_di[k]["ar_targets"][blob_label]["directional_coherence"] > 50:
ar_di[k]["ar_targets"][blob_label]["Coherence in IVT Direction"] = True
# Strong poleward component criterion
if (
ar_di[k]["ar_targets"][blob_label]["mean poleward strength"]
> ar_params["mean_meridional"]
):
ar_di[k]["ar_targets"][blob_label]["Mean Meridional IVT"] = True
# Consistency Between Mean IVT Direction and Overall Orientation criterion
if (
abs(
180
- (
180
- ar_di[k]["ar_targets"][blob_label]["mean_of_ivt_dir"]
+ ar_di[k]["ar_targets"][blob_label]["overall orientation"]
)
% 360
)
< ar_params["orientation_deviation_threshold"]
):
ar_di[k]["ar_targets"][blob_label][
"Consistency Between Mean IVT Direction and Overall Orientation"
] = True
# how many criteria were met?
ar_di[k]["ar_targets"][blob_label]["Criteria Passed"] = list(
map(ar_di[k]["ar_targets"][blob_label].get, criteria)
).count(True)
return ar_di
def filter_ars(ar_di, n_criteria_required=5):
"""
Filter AR candidates that meet the specified number of criteria.
Parameters
----------
ar_di : dict
Dictionary containing region properties and measurements for AR candidates.
n_criteria_required : int, optional
Number criteria (default=5) a region must meet to be considered an AR.
Returns
-------
dict
contains timestamps as keys and region IDs as a list of values for the ARs that meet the specified number of criteria
Notes
-----
The function iterates through each time slice in 'ar_di' and checks each labeled region within that time slice. If a region has met the required number of criteria (determined by 'n_criteria_required'), it is added to the 'filtered_ars' dictionary along with the timestamp and region ID.
"""
filtered_ars = {}
for k in tqdm(ar_di):
passing_blobs_list = []
for blob_label in ar_di[k]["ar_targets"]:
if (
ar_di[k]["ar_targets"][blob_label]["Criteria Passed"]
>= n_criteria_required
):
passing_blobs_list.append(blob_label)
if len(passing_blobs_list) > 0:
filtered_ars[k] = passing_blobs_list
return filtered_ars
def create_geodataframe_with_all_ars(filtered_ars, ar_di, labeled_blobs, ivt_ds):
"""
Create a GeoDataFrame containing all ARs meeting the criteria.
Parameters
----------
filtered_ars : dict
Dictionary with timestamps and region IDs for ARs meeting the criteria.
ar_di : dict
Dictionary containing AR criteria information for each timestamp.
labeled_blobs : xarray.DataArray
Labeled discrete and contiguous regions of IVT threshold exceedance.
ivt_ds : xarray.Dataset
The IVT dataset (used to provide affine transform, so must contain a CRS).
Returns
-------
geopandas.GeoDataFrame
GeoDataFrame containing polygons representing all ARs meeting the criteria.
Notes
-----
Attributes of each AR, such as IVT strength, mean IVT, max IVT, min IVT, and time, are added as columns to the GeoDataFrame.
"""
crs = str(ivt_ds.rio.crs)
aff = ivt_ds.sel(time=str(ivt_ds.time[0].values)).rio.transform()
gdfs = []
for k in tqdm(filtered_ars):
l = labeled_blobs.sel(time=k)
r = shapes(l, mask=l.isin(filtered_ars[k]), connectivity=8, transform=aff)
ar_polys = list(r)
blob_geom = [shape(i[0]) for i in ar_polys]
blob_geom = gpd.GeoSeries(blob_geom, crs=crs)
blob_labels = [i[1] for i in ar_polys]
blob_labels = pd.Series(blob_labels)
blob_props = [ar_di[k]["ar_targets"][i] for i in blob_labels]
result = gpd.GeoDataFrame(
{
"time": k,
"blob_label": blob_labels,
"blob_props": blob_props,
"geometry": blob_geom,
}
)
m = result.blob_props.apply(pd.Series)
new_cols = m.columns.values.tolist()
result[new_cols] = m
result.drop("blob_props", axis=1, inplace=True)
gdfs.append(result)
all_ars = pd.concat(gdfs)
all_ars.reset_index(inplace=True, drop=True)
return all_ars
def create_shapefile(all_ars, shp_fp, csv_fp):
"""
Save a shapefile to disk from the GeoDataFrame containing all ARs meeting the criteria. Column names are abbreviated to 10 characters or less, and a .csv file is output with full column name descriptions.
Parameters
----------
all_ars : geopandas.GeoDataFrame
GeoDataFrame containing polygons representing all ARs meeting the criteria.
shp_fp : Posix path
File path of output shapefile
csv_fp : Posix path
File path of output csv
Returns
-------
None
"""
old_cols = all_ars.columns.to_list()
new_cols = [
"time",
"label",
"geometry",
"ratio",
"length",
"orient",
"poleward",
"dir_coher",
"mean_dir",
"tot_str",
"rel_str",
"crit1",
"crit2",
"crit3",
"crit4",
"crit5",
"crit_cnt",
]
col_dict = dict(zip(old_cols, new_cols))
all_ars.rename(columns=col_dict, inplace=True)
# export shp
all_ars.to_file(shp_fp)
# set up col descriptions for csv export
desc = [
"timestep of AR",
"original candidate region label of timestep AR",
"geometry string for AR polygon",
"length to width ratio of timestep AR",
"length (km) of timestep AR",
"orientation of timestep AR",
"poleward strength of timestep AR",
"directional coherence (%) of timestep AR",
"mean IVT direction of timestep AR",
"sum of IVT within timestep AR",
"sum of relative IVT (sum IVT/area) within timestep AR",
"Coherence in IVT direction (1 = True / 0 = False)",
"Mean Meridional IVT (1 = True / 0 = False)",
"Consistency Between Mean IVT Direction and Overall Orientation (1 = True / 0 = False)",
"Length (1 = True / 0 = False)",
"Length/Width Ratio (1 = True / 0 = False)",
"Number of criteria passed",
]
csv_dict = dict(zip(new_cols, desc))
pd.DataFrame.from_dict(data=csv_dict, orient="index").reset_index().to_csv(
csv_fp, header=["shp_col", "desc"], index=False
)
def landfall_ars_export(
shp_fp,
csv_fp,
ak_shp,
landfall_shp,
landfall_csv,
landfall_events_shp,
landfall_events_csv,
coastal_impact_shp,
coastal_impact_csv,
):
"""Filter the raw AR detection shapefile output to include only ARs making landfall in Alaska, and export the result to a new shapefile. Process the landfall ARs to condense adjacent dates into event multipolygons, and export the result to a second new shapefile. For both outputs, include a CSV with column names and descriptions.
Parameters
----------
shp_fp : PosixPath
File path to the raw AR detection shapefile input.
csv_fp : PosixPath
File path to the raw AR detection csv input.
ak_shp : PosixPath
File path to the Alaska coastline shapefile input.
landfall_shp : PosixPath
File path for the landfalling AR shapefile output.
landfall_csv : PosixPath
File path for the landfalling AR csv output.
landfall_events_shp : PosixPath
File path for the condensed landfalling AR events shapefile output.
landfall_events_csv : PosixPath
File path for the landfalling AR events csv output.
coastal_impact_shp : PosixPath
File path for the landfalling AR events coastal impact shapefile output.
coastal_impact_csv : PosixPath
File path for the landfalling AR events coastal impact csv output.
Returns
-------
None
"""
# import AK coastline and AR shps to gdfs
ars = gpd.read_file(shp_fp)
ak = gpd.read_file(ak_shp)
# reproject AK coastline to match AR CRS, and dissolve into one multipolygon
ak_ = ak.to_crs(ars.crs)
ak_d = ak_.dissolve()
# add new datetime column to ars gdf by parsing ISO timestamp
# reformat time column string for output (datetime fields not supported in ESRI shp files)
ars["dt"] = [
datetime.fromisoformat(ars.time.iloc[[d]].values[0][:-16])
for d in range(len(ars))
]
ars["time"] = ars["dt"].astype(str)
#### FIND LANDFALLING ARS:
# perform spatial join, keeping only AR polygons that intersect with the AK polygon
ak_ars = ars.sjoin(ak_d, how="inner", predicate="intersects")
# export landfall geodataframe to shp
ak_ars.drop(columns=["dt", "index_right", "FEATURE"]).to_file(
landfall_shp, index=True
)
# copy original AR detection csv to the landfall fp (these two outputs have the same exact fields)
t = pd.read_csv(csv_fp)
newrow = ["index", "table index value in raw AR detection shapefile"]
t.loc[len(t)] = newrow
t.to_csv(landfall_csv, index=False)
# wrap the circular mean function using max 360 arg
def circ_mean(x):
return circmean(x, high=360)
#### AGGREGATE LANDFALLING AR EVENTS:
# label any ARs occuring on adjacent dates with a unique "diff" ID and inspect as a subset dfs
# use connected components of a matrix to label the spatially overlapping groups of polygons in each subset df
# (this allows for separation of multiple non-overlapping AR events occuring in the same time period)
# dissolve geometry by group and aggregate values into new columns; calculate new properties before concat and export
ak_ars["diff"] = ak_ars["dt"].diff().dt.days.gt(1).cumsum()
dfs = []
for d in ak_ars["diff"].unique():
sub = ak_ars[ak_ars["diff"] == d].copy()
# spatial overlap analysis of adjacent date subset
overlap_matrix = sub.geometry.apply(
lambda x: sub.geometry.intersects(x)
).values.astype(int)
n, labels = connected_components(overlap_matrix)
sub["group"] = labels
sub["start"] = sub["dt"]
sub["end"] = sub["dt"]
sub["sumtot_str"] = sub["tot_str"]
sub["sumrel_str"] = sub["rel_str"]
sub["ratio_m"] = sub["ratio"]
sub["len_km_m"] = sub["length"]
sub["orient_m"] = sub["orient"]
sub["poleward_m"] = sub["poleward"]
sub["dircoher_m"] = sub["dir_coher"]
sub["mean_dir_m"] = sub["mean_dir"]
# dissolve geometry and aggregate
res = sub.dissolve(
by="group",
aggfunc={
"start": "min",
"end": "max",
"sumtot_str": "sum",
"sumrel_str": "sum",
"ratio_m": "mean",
"len_km_m": "mean",
"orient_m": circ_mean,
"poleward_m": "mean",
"dircoher_m": "mean",
"mean_dir_m": circ_mean,
},
)
# calculate duration from datetime columns
for i in res.index:
# after subtracting, add 6hrs as minimum event length.... this assures a single timestep event is not zero duration!
res.loc[i, "dur_hrs"] = (
(res["end"][i] - res["start"][i]).total_seconds() / 3600
) + 6
# calculate total and relative intensity
res["tintensity"] = res["sumtot_str"] / res["dur_hrs"]
res["rintensity"] = res["sumrel_str"] / res["dur_hrs"]
# round results
res = res.round(
{
"ratio_m": 1,
"len_km_m": 0,
"orient_m": 0,
"poleward_m": 0,
"dircoher_m": 0,
"mean_dir_m": 0,
"dur_hrs": 0,
"tintensity": 0,
"rintensity": 0,
}
)
dfs.append(res)
events = pd.concat(dfs)
events = events.reset_index(drop=True).reset_index(names="event_id")
events.crs = ars.crs
# reset datetime columns as strings for output (datetime fields not supported in ESRI shp files)
events["start"] = events["start"].astype(str)
events["end"] = events["end"].astype(str)
# export condensed event AR geodataframe to shp
events.to_file(landfall_events_shp, index=False)
# set up AR events columns decription table
cols = events.columns.to_list()
desc = [
"unique AR event ID",
"geometry string for AR event polygons",
"first timestep of AR event",
"last timestep of AR event",
"sum of IVT across all timestep ARs in event",
"sum of relative IVT (sum IVT/area) across all timestep ARs in event",
"mean length to width ratio across all timestep ARs in event",
"mean length (km) across all timestep ARs in event",
"mean orientation across all timestep ARs in event",
"mean poleward strength across all timestep ARs in event",
"mean directional coherence (%) across all timestep ARs in event",
"mean IVT direction across all timestep ARs in event",
"duration of AR event",
"sum of AR event total intensity divided by AR event duration",
"sum of AR event relative intensity divided by AR event duration",
]
csv_dict = dict(zip(cols, desc))
# export event AR column description table to csv
pd.DataFrame.from_dict(data=csv_dict, orient="index").reset_index().to_csv(
landfall_events_csv, header=["shp_col", "desc"], index=False
)
del (cols, desc, csv_dict)
#### FIND COASTAL IMPACT POINTS FROM AR IVT AXIS LINE / AK COASTLINE INTERSECTION:
# create simple line to represent southern AK coast boundary, extended to Seattle capture Canadian coastline
lonlats = {
173: 52.5,
178.5: 51.5,
-176: 52,
-173: 52,
-164: 54,
-153: 57,
-151: 59,
-147: 60,
-141: 60,
-137: 58,
-133: 55,
-131: 52,
-125: 48,
}
df = (
pd.DataFrame.from_dict(lonlats, orient="index")
.reset_index()
.rename(columns={"index": "X", 0: "Y"})
)
# zip the coords into a point object and convert to gdf
geometry = [Point(xy) for xy in zip(df.X, df.Y)]
geo_df = gpd.GeoDataFrame(df, geometry=geometry)
geo_df["id"] = "ak_coast"
# use the points in order to create a linestring
geo_df2 = geo_df.groupby("id")["geometry"].apply(lambda x: LineString(x.tolist()))
# convert to geodataframe and add CRS, then convert CRS to 3338; the planar projection is required here to handle coastline overlapping the meridian!
ak_coast = gpd.GeoDataFrame(geo_df2, geometry="geometry", crs=events.crs)
ak_coast = ak_coast.to_crs("epsg:3338")
# copy events to new gdf, resetting geomtery to centroid
# round-trip thru 3338 to use planar centroid (more accurate)
e = events.copy()
e["geom_cent"] = e.to_crs("epsg:3338").geometry.centroid.to_crs(e.crs)
e = e.set_geometry("geom_cent")
e.drop("geometry", axis=1, inplace=True)
# create new standalone x/y columns for zipping
e["xo"], e["yo"] = e.geom_cent.x, e.geom_cent.y
# set distance for axis line extension from centroid (m)
dist = 3000000
# get mean direction of IVT
o = e.mean_dir_m
# or option to use mean orientation of shape
# o = e.orient_m
# create geoid for great circle distance
# compute endpoints using forward azimuth and distance, and write to new gdf columns
g = pyproj.Geod(ellps="WGS84")
f = [g.fwd(xo, yo, o, dist) for xo, yo, o in zip(e.xo, e.yo, o)]
e["x1"] = [lon[0] for lon in f]
e["y1"] = [lat[1] for lat in f]
# compute WGS84 endpoints using backward azimuth and distance, and write to new gdf columns
b = [g.fwd(xo, yo, o, dist) for xo, yo, o in zip(e.xo, e.yo, ((o - 180) % 360))]
e["x2"] = [lon[0] for lon in b]
e["y2"] = [lat[1] for lat in b]
# create line feature running between endpoints and thru centroid
e["geom_line"] = [
LineString([[x1, y1], [xo, yo], [x2, y2]])
for x1, y1, xo, yo, x2, y2 in zip(e.x1, e.y1, e.xo, e.yo, e.x2, e.y2)
]
# create a new gdf and set line feature as geometry, then convert to 3338 for intersection function
line_gdf = gpd.GeoDataFrame(e, geometry="geom_line", crs="epsg:4326")
line_gdf = line_gdf.to_crs("epsg:3338")
pt_dfs = []
for index, row in line_gdf.iterrows():
# get row event id
i = row["event_id"]
# get GeoSeries of intersections of row AK coast
r = line_gdf.iloc[index]["geom_line"].intersection(ak_coast)
# keep only points and convert to a gdf, default 'geometry' column is created by gdf.intersection()
rpts_gdf = gpd.GeoDataFrame(r[r.geom_type == "Point"])
rpts_gdf.set_geometry(col="geometry", crs=line_gdf.crs, inplace=True)
# add event id and merge with original axis line gdf attributes, and add result to list of dataframes