forked from KellerJordan/modded-nanogpt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
d12cb409-0f5d-4624-951c-60119a482bca.txt
2165 lines (2092 loc) · 134 KB
/
d12cb409-0f5d-4624-951c-60119a482bca.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import os
import sys
with open(sys.argv[0]) as f:
code = f.read() # read the code of this file ASAP, for logging
import uuid
import glob
import time
import contextlib
from dataclasses import dataclass
import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
import torch.distributed as dist
import torch._inductor.config as config
from torch.nn.parallel import DistributedDataParallel as DDP
# Use of FlexAttention contributed by @KoszarskyB
from torch.nn.attention.flex_attention import flex_attention, create_block_mask
flex_attention = torch.compile(flex_attention, dynamic=False)
create_block_mask = torch.compile(create_block_mask, dynamic=False)
# -----------------------------------------------------------------------------
# Muon optimizer
def zeropower_via_svd(G, steps=None):
U, S, V = G.svd()
return U @ V.T
@torch.compile
def zeropower_via_newtonschulz5(G, steps=10, eps=1e-7):
"""
Newton-Schulz iteration to compute the zeroth power / orthogonalization of G. We opt to use a
quintic iteration whose coefficients are selected to maximize the slope at zero. For the purpose
of minimizing steps, it turns out to be empirically effective to keep increasing the slope at
zero even beyond the point where the iteration no longer converges all the way to one everywhere
on the interval. This iteration therefore does not produce UV^T but rather something like US'V^T
where S' is diagonal with S_{ii}' ~ Uniform(0.5, 1.5), which turns out not to hurt model
performance at all relative to UV^T, where USV^T = G is the SVD.
"""
assert len(G.shape) == 2
a, b, c = (3.4445, -4.7750, 2.0315)
X = G.bfloat16()
X /= (X.norm() + eps) # ensure top singular value <= 1
if G.size(0) > G.size(1):
X = X.T
for _ in range(steps):
A = X @ X.T
B = b * A + c * A @ A # adapted from suggestion by @jxbz, @leloykun, and @YouJiacheng
X = a * X + B @ X
if G.size(0) > G.size(1):
X = X.T
return X
zeropower_backends = dict(svd=zeropower_via_svd, newtonschulz5=zeropower_via_newtonschulz5)
class Muon(torch.optim.Optimizer):
"""
Muon - MomentUm Orthogonalized by Newton-schulz
Muon internally runs standard SGD-momentum, and then performs an orthogonalization post-
processing step, in which each 2D parameter's update is replaced with the nearest orthogonal
matrix. To efficiently orthogonalize each update, we use a Newton-Schulz iteration, which has
the advantage that it can be stably run in bfloat16 on the GPU.
Some warnings:
- This optimizer assumes that all parameters passed in are 2D.
- It should not be used for the embedding layer, the final fully connected layer, or any {0,1}-D
parameters; those should all be optimized by a standard method (e.g., AdamW).
- To use it with 4D convolutional filters, it works well to just flatten their last 3 dimensions.
- We believe it is unlikely to work well for training with small batch size.
- We believe it may not work well for finetuning pretrained models, but we haven't tested this.
- We have not yet tried this optimizer for training scenarios larger than NanoGPT (124M).
Arguments:
lr: The learning rate used by the internal SGD.
momentum: The momentum used by the internal SGD.
nesterov: Whether to use Nesterov-style momentum in the internal SGD. (recommended)
backend: The chosen backend for the orthogonalization step. (recommended: 'newtonschulz5')
backend_steps: The number of iteration steps to use in the backend, if it is iterative.
"""
def __init__(self, params, lr=0.02, momentum=0.95, nesterov=True,
backend='newtonschulz5', backend_steps=5):
defaults = dict(lr=lr, momentum=momentum, nesterov=nesterov, backend=backend, backend_steps=backend_steps)
super().__init__(params, defaults)
def step(self):
for group in self.param_groups:
lr = group['lr']
momentum = group['momentum']
zeropower_backend = zeropower_backends[group['backend']]
# generate weight updates in distributed fashion
total_params = sum(p.numel() for p in group['params'])
updates_flat = torch.zeros(total_params, device='cuda', dtype=torch.bfloat16)
curr_idx = 0
for i, p in enumerate(group['params']):
# luckily this will perfectly distribute a transformer with multiple of 4 layers to 8 GPUs
if i % int(os.environ['WORLD_SIZE']) == int(os.environ['RANK']):
g = p.grad
assert g is not None
state = self.state[p]
if 'momentum_buffer' not in state:
state['momentum_buffer'] = torch.zeros_like(g)
buf = state['momentum_buffer']
buf.mul_(momentum).add_(g)
g = g.add(buf, alpha=momentum) if group['nesterov'] else buf
g = zeropower_backend(g, steps=group['backend_steps'])
g *= max(1, g.size(0)/g.size(1))**0.5
updates_flat[curr_idx:curr_idx+p.numel()] = g.flatten()
curr_idx += p.numel()
# sync updates across devices. we are not memory-constrained so can do this simple deserialization
dist.all_reduce(updates_flat, op=dist.ReduceOp.SUM)
# deserialize and apply updates
curr_idx = 0
for p in group['params']:
g = updates_flat[curr_idx:curr_idx+p.numel()].view_as(p.data).type_as(p.data)
p.data.add_(g, alpha=-lr)
curr_idx += p.numel()
# -----------------------------------------------------------------------------
# PyTorch nn.Module definitions for the GPT-2 model
def norm(x):
return F.rms_norm(x, (x.size(-1),))
class CastedLinear(nn.Linear):
def __init__(self, in_features, out_features):
super().__init__(in_features, out_features, bias=False)
def forward(self, x):
return F.linear(x, self.weight.to(x.dtype))
class Rotary(torch.nn.Module):
def __init__(self, dim, base=10000):
super().__init__()
self.register_buffer('inv_freq', (1 / base) ** (torch.arange(0, dim, 2) / dim))
self.seq_len_cached = None
self.cos_cached = None
self.sin_cached = None
def forward(self, x):
seq_len = x.shape[1]
if seq_len != self.seq_len_cached:
t = torch.arange(seq_len, device=x.device)
freqs = torch.outer(t, self.inv_freq)
self.seq_len_cached = seq_len
self.cos_cached = freqs.cos()
self.sin_cached = freqs.sin()
cos, sin = self.cos_cached[None, :, None, :], self.sin_cached[None, :, None, :]
# apply_rotary_emb(x, cos, sin)
x1, x2 = x.chunk(2, dim=3)
y1 = x1 * cos + x2 * sin
y2 = x1 * (-sin) + x2 * cos
return torch.cat((y1, y2), 3).type_as(x)
class CausalSelfAttention(nn.Module):
def __init__(self, dim, n_head):
super().__init__()
assert dim % n_head == 0
self.n_head = n_head
self.c_q = CastedLinear(dim, dim)
self.c_k = CastedLinear(dim, dim)
self.c_v = CastedLinear(dim, dim)
# value residual lambda
self.lamb = nn.Parameter(torch.tensor(0.5)) # @Grad62304977
# rotary embeddings
self.rotary = Rotary(dim // n_head) # dim // n_head = head_dim
# output projection
self.c_proj = CastedLinear(dim, dim)
self.c_proj.weight.data.zero_() # zero init suggested by @Grad62304977
def forward(self, x, vi, block_mask):
B, T = x.size(0), x.size(1) # batch size, sequence length
assert B == 1, "Must use batch size = 1 for FlexAttention"
q = self.c_q(x).view(B, T, self.n_head, -1)
k = self.c_k(x).view(B, T, self.n_head, -1)
v = self.c_v(x).view(B, T, self.n_head, -1)
v = (1 - self.lamb) * v + self.lamb * vi.view_as(v) # @Grad62304977
q, k = norm(q), norm(k) # QK norm suggested by @Grad62304977
q, k = self.rotary(q), self.rotary(k)
y = flex_attention(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), block_mask=block_mask)
y = y.transpose(1, 2).contiguous().view_as(x) # re-assemble all head outputs side by side
y = self.c_proj(y)
return y
class MLP(nn.Module):
def __init__(self, dim):
super().__init__()
self.c_fc = CastedLinear(dim, 4 * dim)
self.c_proj = CastedLinear(4 * dim, dim)
self.c_proj.weight.data.zero_() # zero init suggested by @Grad62304977
def forward(self, x):
x = self.c_fc(x)
x = F.relu(x).square() # https://arxiv.org/abs/2109.08668v2; ~1-2% better than GELU; suggested by @SKYLINEZ007 and @Grad62304977
x = self.c_proj(x)
return x
class Block(nn.Module):
def __init__(self, config):
super().__init__()
self.attn = CausalSelfAttention(config.n_embd, config.n_head)
self.mlp = MLP(config.n_embd)
self.lambdas = nn.Parameter(torch.tensor([1., 0.]))
def forward(self, x, vi, x0, block_mask):
x = self.lambdas[0] * x + self.lambdas[1] * x0
x = x + self.attn(norm(x), vi, block_mask)
x = x + self.mlp(norm(x))
return x
# -----------------------------------------------------------------------------
# The main GPT-2 model
@dataclass
class GPTConfig:
vocab_size : int = 50304
n_layer : int = 12
n_head : int = 6 # head dim 128 suggested by @Grad62304977
n_embd : int = 768
class GPT(nn.Module):
def __init__(self, config):
super().__init__()
# U-net design by @brendanh0gan
self.num_encoder_layers = config.n_layer // 2 # Half of the layers for encoder
self.num_decoder_layers = config.n_layer - self.num_encoder_layers # Remaining for decoder
# Add learnable skip connection weights for decoder layers
self.skip_weights = nn.Parameter(torch.ones(self.num_decoder_layers))
self.transformer = nn.ModuleDict(dict(
wte = nn.Embedding(config.vocab_size, config.n_embd),
# token value embeddings by @KoszarskyB - inspired by @Grad62304977's value residual learning
vte = nn.Embedding(config.vocab_size, config.n_embd*12),
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
))
self.lm_head = CastedLinear(config.n_embd, config.vocab_size)
self.lm_head.weight.data.zero_() # @Grad62304977
def forward(self, idx, target, attn_blocksize):
docs = (idx == 50256).cumsum(0)
def document_causal_mask(b, h, q_idx, kv_idx):
causal_mask = q_idx >= kv_idx
document_mask = docs[q_idx] == docs[kv_idx]
window_mask = q_idx - kv_idx < attn_blocksize
return causal_mask & document_mask & window_mask
S = len(idx)
block_mask = create_block_mask(document_causal_mask, None, None, S, S, device="cuda", _compile=True)
# forward the GPT model itself
x = self.transformer.wte(idx[None]) # token embeddings of shape (b, t, n_embd)
x = norm(x) # @Grad62304977
x0 = x
vi = self.transformer.vte(idx[None]).chunk(12, dim=-1)
# Store outputs for U-Net skip connections
skip_connections = []
# Encoder pass - process only the first half of the blocks
for i in range(self.num_encoder_layers):
x = self.transformer.h[i](x, vi[i], x0, block_mask)
skip_connections.append(x)
# Decoder pass - process the remaining blocks with weighted skip connections
for i in range(self.num_decoder_layers):
x = x + self.skip_weights[i] * skip_connections.pop()
x = self.transformer.h[self.num_encoder_layers + i](x, vi[self.num_encoder_layers+i], x0, block_mask)
x = norm(x)
logits = self.lm_head(x)
logits = 30 * torch.tanh(logits / 30) # @Grad62304977
logits = logits.float()
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), target.view(-1))
return loss
# -----------------------------------------------------------------------------
# Our own simple Distributed Data Loader
def _peek_data_shard(filename):
# only reads the header, returns header data
with open(filename, "rb") as f:
# first read the header, which is 256 int32 integers (4 bytes each)
header = np.frombuffer(f.read(256*4), dtype=np.int32)
if header[0] != 20240520:
print("ERROR: magic number mismatch in the data .bin file!")
print("---> HINT: Are you passing in a correct file with --input_bin?")
print("---> HINT: Dataset encoding changed recently, re-run data prepro or refer again to README")
print("---> HINT: For example re-run: `python dev/data/tinyshakespeare.py`, then re-try")
exit(1)
assert header[1] == 1, "unsupported version"
ntok = header[2] # number of tokens (claimed)
return ntok # for now just return the number of tokens
def _load_data_shard(filename):
with open(filename, "rb") as f:
# first read the header, which is 256 int32 integers (4 bytes each)
header = np.frombuffer(f.read(256*4), dtype=np.int32)
assert header[0] == 20240520, "magic number mismatch in the data .bin file"
assert header[1] == 1, "unsupported version"
ntok = header[2] # number of tokens (claimed)
# the rest of it are tokens, stored as uint16
tokens = np.frombuffer(f.read(), dtype=np.uint16)
assert len(tokens) == ntok, "number of tokens read does not match header?"
return tokens
class DistributedDataLoader:
def __init__(self, filename_pattern, T, process_rank, num_processes):
self.process_rank = process_rank
self.num_processes = num_processes
self.T = T
# glob files that match the pattern
self.files = sorted(glob.glob(filename_pattern))
assert len(self.files) > 0, f"did not find any files that match the pattern {filename_pattern}"
# load and validate all data shards, count number of tokens in total
ntok_total = 0
for fname in self.files:
shard_ntok = _peek_data_shard(fname)
assert shard_ntok >= num_processes * T + 1
ntok_total += int(shard_ntok)
self.ntok_total = ntok_total
self.reset()
def reset(self):
self.current_shard = -1
self.advance()
def advance(self): # advance to next data shard
self.current_shard = (self.current_shard + 1) % len(self.files)
self.current_position = self.process_rank * self.T
self.tokens = _load_data_shard(self.files[self.current_shard])
def next_batch(self):
batch_size = self.T * self.num_processes
buf = self.tokens[self.current_position:self.current_position+self.T+1]
buf = torch.tensor(buf.astype(np.int32), dtype=torch.long)
x = buf[:-1] # inputs
y = buf[1:] # targets
# advance current position and load next shard if necessary
self.current_position += batch_size
if self.current_position + batch_size >= len(self.tokens):
self.advance()
return x.cuda(), y.cuda()
# -----------------------------------------------------------------------------
# int main
@dataclass
class Hyperparameters:
# data hyperparams
input_bin : str = 'data/fineweb10B/fineweb_train_*.bin' # input .bin to train on
input_val_bin : str = 'data/fineweb10B/fineweb_val_*.bin' # input .bin to eval validation loss on
# optimization hyperparams
batch_size : int = 8 # batch size, in sequences, across all devices
sequence_length : int = 64*1024 # sequence length, in tokens
num_iterations : int = 1530 # number of iterations to run
warmup_iters : int = 0
cooldown_iters : int = 600 # number of iterations of linear warmup/cooldown for triangular or trapezoidal schedule
weight_decay : float = 0
# evaluation and logging hyperparams
val_loss_every : int = 125 # every how many steps to evaluate val loss? 0 for only at the end
val_tokens : int = 10485760 # how many tokens of validation data? it's important to keep this fixed for consistent comparisons
save_every : int = 0 # every how many steps to save the checkpoint? 0 for only at the end
args = Hyperparameters()
# set up DDP (distributed data parallel). torchrun sets this env variable
assert torch.cuda.is_available()
dist.init_process_group(backend='nccl')
ddp_rank = int(os.environ['RANK'])
ddp_local_rank = int(os.environ['LOCAL_RANK'])
ddp_world_size = int(os.environ['WORLD_SIZE'])
device = f'cuda:{ddp_local_rank}'
torch.cuda.set_device(device)
print(f"using device: {device}")
master_process = (ddp_rank == 0) # this process will do logging, checkpointing etc.
# begin logging
logfile = None
if master_process:
run_id = str(uuid.uuid4())
logdir = 'logs/%s/' % run_id
os.makedirs(logdir, exist_ok=True)
logfile = 'logs/%s.txt' % run_id
# create the log file
with open(logfile, "w") as f:
# begin the log by printing this file (the Python code)
f.write(code)
f.write('='*100 + '\n')
def print0(s, logonly=False):
if master_process:
with open(logfile, "a") as f:
if not logonly:
print(s)
f.write(s+'\n')
# log information about the hardware/software environment this is running on
# and print the full `nvidia-smi` to file
print0(f"Running pytorch {torch.version.__version__} compiled for CUDA {torch.version.cuda}\nnvidia-smi:")
import subprocess
result = subprocess.run(['nvidia-smi'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
print0(f'{result.stdout}', logonly=True)
print0('='*100, logonly=True)
# convenience variables
T = args.sequence_length
# calculate the number of steps to take in the val loop.
assert args.val_tokens % (T * ddp_world_size) == 0
val_steps = args.val_tokens // (T * ddp_world_size)
# calculate the steps of gradient accumulation required to attain the desired global batch size.
assert args.batch_size % (ddp_world_size) == 0
train_accumulation_steps = args.batch_size // ddp_world_size
# load tokens
train_loader = DistributedDataLoader(args.input_bin, T, ddp_rank, ddp_world_size)
val_loader = DistributedDataLoader(args.input_val_bin, T, ddp_rank, ddp_world_size)
print0(f"Training DataLoader: total number of tokens: {train_loader.ntok_total} across {len(train_loader.files)} files")
print0(f"Validation DataLoader: total number of tokens: {val_loader.ntok_total} across {len(val_loader.files)} files")
print0('='*100, logonly=True)
x, y = train_loader.next_batch()
# there are only 50257 unique GPT-2 tokens; we extend to nearest multiple of 128 for efficiency. suggested to me by @Grad62304977.
# this originates from Karpathy's experiments.
num_vocab = 50304
model = GPT(GPTConfig(vocab_size=num_vocab, n_layer=12, n_head=6, n_embd=768))
model = model.cuda().bfloat16()
for m in model.modules():
if isinstance(m, CastedLinear):
m.float()
if hasattr(config, "coordinate_descent_tuning"):
config.coordinate_descent_tuning = True # suggested by @Chillee
model = torch.compile(model)
# here we wrap model into DDP container
model = DDP(model, device_ids=[ddp_local_rank])
raw_model = model.module # always contains the "raw" unwrapped model
# init the optimizer(s)
optimizer1 = torch.optim.Adam([raw_model.transformer.wte.weight, raw_model.transformer.vte.weight], lr=0.6, betas=(0.8, 0.95), fused=True)
optimizer2 = torch.optim.Adam([raw_model.lm_head.weight], lr=0.008, betas=(0.8, 0.95), fused=True)
params = list(raw_model.transformer.h.parameters())
matrix_params = [p for p in params if p.ndim == 2]
scalar_params = [p for p in params if p.ndim < 2] + [raw_model.skip_weights]
optimizer3 = Muon(matrix_params, lr=0.05, momentum=0.95)
optimizer4 = torch.optim.Adam(scalar_params, lr=0.04, betas=(0.8, 0.95), fused=True) # note that this learning rate is neither sensitive nor tuned
optimizers = [optimizer1, optimizer2, optimizer3, optimizer4]
# learning rate decay scheduler (linear warmup and cooldown)
def get_lr(it):
assert it <= args.num_iterations
# 1) linear warmup for warmup_iters steps
if it < args.warmup_iters:
return (it+1) / args.warmup_iters
# 2) constant lr for a while
elif it < args.num_iterations - args.cooldown_iters:
return 1.0
# 3) linear cooldown
else:
decay_ratio = (args.num_iterations - it) / args.cooldown_iters
return decay_ratio
schedulers = [torch.optim.lr_scheduler.LambdaLR(opt, get_lr) for opt in optimizers]
# Start training loop
training_time_ms = 0
# start the clock
torch.cuda.synchronize()
t0 = time.time()
# begin training
for step in range(args.num_iterations + 1):
last_step = (step == args.num_iterations)
# This effectively ignores timing first 10 steps, which are slower for weird reasons.
# Alternately, and slightly more correctly in terms of benchmarking, we could do 10
# steps with dummy data first, and then re-initialize the model and reset the loader.
if step == 10:
training_time_ms = 0
t0 = time.time()
timed_steps = float('nan') if step <= 11 else (step - 10) + 1 # <= 11 to avoid bug in val
# Set the attention blocksize for the current step, in chunks of 64. By @fernbear.bsky.social
attn_blocksize = torch.tensor(64*((step/args.num_iterations * (1792 - 64) + 64)//64), dtype=torch.int, device='cuda')
# once in a while evaluate the validation dataset
if (last_step or (args.val_loss_every > 0 and step % args.val_loss_every == 0)):
# stop the clock
torch.cuda.synchronize()
training_time_ms += 1000 * (time.time() - t0)
# run validation batches
model.eval()
val_loader.reset()
val_loss = 0.0
for _ in range(val_steps):
with torch.no_grad():
x_val, y_val = val_loader.next_batch()
val_loss += model(x_val, y_val, attn_blocksize=attn_blocksize)
dist.all_reduce(val_loss, op=dist.ReduceOp.AVG)
val_loss /= val_steps
# log val loss to console and to logfile
print0(f'step:{step}/{args.num_iterations} val_loss:{val_loss:.4f} train_time:{training_time_ms:.0f}ms step_avg:{training_time_ms/(timed_steps-1):.2f}ms')
# start the clock again
torch.cuda.synchronize()
t0 = time.time()
if master_process and (last_step or (args.save_every > 0 and step % args.save_every == 0)):
# stop the clock
torch.cuda.synchronize()
training_time_ms += 1000 * (time.time() - t0)
# save the state of the training process
log = dict(step=step, code=code, model=raw_model.state_dict(), optimizers=[opt.state_dict() for opt in optimizers])
torch.save(log, 'logs/%s/state_step%06d.pt' % (run_id, step))
# start the clock again
torch.cuda.synchronize()
t0 = time.time()
# bit confusing: we want to make sure to eval on 0th iteration
# but also after the very last iteration. so we loop for step <= num_iterations
# instead of just < num_iterations (one extra due to <=), only to do
# the validation/sampling one last time, and then we break right here as we're done.
if last_step:
break
# --------------- TRAINING SECTION BEGIN -----------------
model.train()
for i in range(1, train_accumulation_steps+1):
ctx = model.no_sync() if i < train_accumulation_steps else contextlib.nullcontext()
with ctx: # there's no need to sync gradients every accumulation step
# forward pass
loss = model(x, y, attn_blocksize=attn_blocksize)
# advance the dataset for the next batch
x, y = train_loader.next_batch()
# backward pass
loss.backward()
train_loss = loss.detach()
for p in model.parameters():
p.grad /= train_accumulation_steps
# momentum warmup for Muon
frac = min(step/300, 1)
optimizer3.param_groups[0]['momentum'] = (1 - frac) * 0.85 + frac * 0.95
# step the optimizers and schedulers
for opt, sched in zip(optimizers, schedulers):
opt.step()
sched.step()
# null the gradients
model.zero_grad(set_to_none=True)
# --------------- TRAINING SECTION END -------------------
# everything that follows now is just diagnostics, prints, logging, etc.
#dist.all_reduce(train_loss, op=dist.ReduceOp.AVG) # all-reducing the training loss would be more correct in terms of logging, but slower
approx_time = training_time_ms + 1000 * (time.time() - t0)
print0(f"step:{step+1}/{args.num_iterations} train_loss:{train_loss.item():.4f} train_time:{approx_time:.0f}ms step_avg:{approx_time/timed_steps:.2f}ms")
if master_process:
print(f"peak memory consumption: {torch.cuda.max_memory_allocated() // 1024 // 1024} MiB")
# -------------------------------------------------------------------------
# clean up nice
dist.destroy_process_group()
====================================================================================================
Running pytorch 2.6.0.dev20241203+cu124 compiled for CUDA 12.4
nvidia-smi:
Thu Dec 5 04:31:46 2024
+---------------------------------------------------------------------------------------+
| NVIDIA-SMI 535.183.06 Driver Version: 535.183.06 CUDA Version: 12.2 |
|-----------------------------------------+----------------------+----------------------+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+======================+======================|
| 0 NVIDIA H100 80GB HBM3 On | 00000000:19:00.0 Off | 0 |
| N/A 37C P0 75W / 700W | 3MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 1 NVIDIA H100 80GB HBM3 On | 00000000:3B:00.0 Off | 0 |
| N/A 30C P0 115W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 2 NVIDIA H100 80GB HBM3 On | 00000000:4C:00.0 Off | 0 |
| N/A 30C P0 117W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 3 NVIDIA H100 80GB HBM3 On | 00000000:5D:00.0 Off | 0 |
| N/A 37C P0 116W / 700W | 31MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 4 NVIDIA H100 80GB HBM3 On | 00000000:9B:00.0 Off | 0 |
| N/A 38C P0 122W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 5 NVIDIA H100 80GB HBM3 On | 00000000:BB:00.0 Off | 0 |
| N/A 29C P0 110W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 6 NVIDIA H100 80GB HBM3 On | 00000000:CB:00.0 Off | 0 |
| N/A 38C P0 127W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 7 NVIDIA H100 80GB HBM3 On | 00000000:DB:00.0 Off | 0 |
| N/A 29C P0 119W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
+---------------------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=======================================================================================|
+---------------------------------------------------------------------------------------+
====================================================================================================
Training DataLoader: total number of tokens: 1100000000 across 11 files
Validation DataLoader: total number of tokens: 100000000 across 1 files
====================================================================================================
step:0/1530 val_loss:10.8258 train_time:0ms step_avg:nanms
step:1/1530 train_loss:10.8258 train_time:31580ms step_avg:nanms
step:2/1530 train_loss:10.0770 train_time:31691ms step_avg:nanms
step:3/1530 train_loss:8.3805 train_time:31849ms step_avg:nanms
step:4/1530 train_loss:7.5635 train_time:32010ms step_avg:nanms
step:5/1530 train_loss:7.4629 train_time:32171ms step_avg:nanms
step:6/1530 train_loss:6.9835 train_time:32332ms step_avg:nanms
step:7/1530 train_loss:7.1982 train_time:32494ms step_avg:nanms
step:8/1530 train_loss:6.7361 train_time:32654ms step_avg:nanms
step:9/1530 train_loss:6.6157 train_time:32815ms step_avg:nanms
step:10/1530 train_loss:6.5130 train_time:32974ms step_avg:nanms
step:11/1530 train_loss:6.4837 train_time:115ms step_avg:nanms
step:12/1530 train_loss:6.3948 train_time:275ms step_avg:nanms
step:13/1530 train_loss:6.2366 train_time:435ms step_avg:145.15ms
step:14/1530 train_loss:6.2122 train_time:596ms step_avg:148.97ms
step:15/1530 train_loss:6.1548 train_time:756ms step_avg:151.20ms
step:16/1530 train_loss:6.1037 train_time:916ms step_avg:152.68ms
step:17/1530 train_loss:6.1614 train_time:1077ms step_avg:153.80ms
step:18/1530 train_loss:5.9802 train_time:1237ms step_avg:154.58ms
step:19/1530 train_loss:5.9646 train_time:1397ms step_avg:155.20ms
step:20/1530 train_loss:5.6793 train_time:1556ms step_avg:155.65ms
step:21/1530 train_loss:5.9421 train_time:1717ms step_avg:156.12ms
step:22/1530 train_loss:6.1756 train_time:1878ms step_avg:156.46ms
step:23/1530 train_loss:5.8308 train_time:2037ms step_avg:156.68ms
step:24/1530 train_loss:5.9866 train_time:2198ms step_avg:156.99ms
step:25/1530 train_loss:5.6590 train_time:2358ms step_avg:157.17ms
step:26/1530 train_loss:5.5710 train_time:2518ms step_avg:157.36ms
step:27/1530 train_loss:5.7502 train_time:2678ms step_avg:157.53ms
step:28/1530 train_loss:5.4231 train_time:2838ms step_avg:157.69ms
step:29/1530 train_loss:5.6581 train_time:2999ms step_avg:157.84ms
step:30/1530 train_loss:5.4614 train_time:3158ms step_avg:157.92ms
step:31/1530 train_loss:5.4264 train_time:3319ms step_avg:158.06ms
step:32/1530 train_loss:5.2912 train_time:3479ms step_avg:158.15ms
step:33/1530 train_loss:5.5654 train_time:3639ms step_avg:158.22ms
step:34/1530 train_loss:5.4843 train_time:3798ms step_avg:158.26ms
step:35/1530 train_loss:5.5958 train_time:3959ms step_avg:158.35ms
step:36/1530 train_loss:5.5333 train_time:4118ms step_avg:158.40ms
step:37/1530 train_loss:5.4512 train_time:4279ms step_avg:158.49ms
step:38/1530 train_loss:5.3020 train_time:4438ms step_avg:158.52ms
step:39/1530 train_loss:5.3077 train_time:4600ms step_avg:158.62ms
step:40/1530 train_loss:5.2414 train_time:4760ms step_avg:158.68ms
step:41/1530 train_loss:5.2415 train_time:4919ms step_avg:158.69ms
step:42/1530 train_loss:5.2014 train_time:5080ms step_avg:158.75ms
step:43/1530 train_loss:5.2458 train_time:5241ms step_avg:158.80ms
step:44/1530 train_loss:5.2218 train_time:5401ms step_avg:158.84ms
step:45/1530 train_loss:5.3740 train_time:5561ms step_avg:158.88ms
step:46/1530 train_loss:5.1479 train_time:5721ms step_avg:158.91ms
step:47/1530 train_loss:5.0630 train_time:5881ms step_avg:158.95ms
step:48/1530 train_loss:5.2228 train_time:6041ms step_avg:158.97ms
step:49/1530 train_loss:5.1351 train_time:6202ms step_avg:159.03ms
step:50/1530 train_loss:5.2451 train_time:6362ms step_avg:159.06ms
step:51/1530 train_loss:5.1289 train_time:6522ms step_avg:159.07ms
step:52/1530 train_loss:5.0136 train_time:6682ms step_avg:159.10ms
step:53/1530 train_loss:5.1526 train_time:6843ms step_avg:159.14ms
step:54/1530 train_loss:4.9971 train_time:7004ms step_avg:159.18ms
step:55/1530 train_loss:5.4046 train_time:7163ms step_avg:159.19ms
step:56/1530 train_loss:5.0293 train_time:7325ms step_avg:159.25ms
step:57/1530 train_loss:4.8964 train_time:7486ms step_avg:159.27ms
step:58/1530 train_loss:5.0436 train_time:7647ms step_avg:159.31ms
step:59/1530 train_loss:5.0125 train_time:7808ms step_avg:159.35ms
step:60/1530 train_loss:5.1322 train_time:7970ms step_avg:159.39ms
step:61/1530 train_loss:4.8590 train_time:8130ms step_avg:159.42ms
step:62/1530 train_loss:4.9717 train_time:8291ms step_avg:159.45ms
step:63/1530 train_loss:4.9565 train_time:8452ms step_avg:159.46ms
step:64/1530 train_loss:4.8673 train_time:8612ms step_avg:159.49ms
step:65/1530 train_loss:4.7862 train_time:8772ms step_avg:159.49ms
step:66/1530 train_loss:4.9107 train_time:8933ms step_avg:159.51ms
step:67/1530 train_loss:4.8101 train_time:9093ms step_avg:159.53ms
step:68/1530 train_loss:5.0863 train_time:9253ms step_avg:159.54ms
step:69/1530 train_loss:4.7330 train_time:9414ms step_avg:159.56ms
step:70/1530 train_loss:4.8428 train_time:9574ms step_avg:159.57ms
step:71/1530 train_loss:4.9822 train_time:9734ms step_avg:159.58ms
step:72/1530 train_loss:4.8797 train_time:9895ms step_avg:159.59ms
step:73/1530 train_loss:4.7782 train_time:10054ms step_avg:159.59ms
step:74/1530 train_loss:4.8976 train_time:10215ms step_avg:159.62ms
step:75/1530 train_loss:4.8596 train_time:10376ms step_avg:159.63ms
step:76/1530 train_loss:4.8092 train_time:10536ms step_avg:159.64ms
step:77/1530 train_loss:4.9186 train_time:10697ms step_avg:159.66ms
step:78/1530 train_loss:5.1047 train_time:10858ms step_avg:159.67ms
step:79/1530 train_loss:4.8197 train_time:11018ms step_avg:159.68ms
step:80/1530 train_loss:4.8507 train_time:11179ms step_avg:159.69ms
step:81/1530 train_loss:4.6365 train_time:11340ms step_avg:159.72ms
step:82/1530 train_loss:4.8084 train_time:11500ms step_avg:159.72ms
step:83/1530 train_loss:4.7616 train_time:11661ms step_avg:159.74ms
step:84/1530 train_loss:4.7533 train_time:11822ms step_avg:159.75ms
step:85/1530 train_loss:4.6135 train_time:11982ms step_avg:159.76ms
step:86/1530 train_loss:4.8321 train_time:12142ms step_avg:159.77ms
step:87/1530 train_loss:4.7311 train_time:12304ms step_avg:159.80ms
step:88/1530 train_loss:4.7312 train_time:12464ms step_avg:159.79ms
step:89/1530 train_loss:4.7035 train_time:12623ms step_avg:159.79ms
step:90/1530 train_loss:4.6423 train_time:12784ms step_avg:159.80ms
step:91/1530 train_loss:4.6362 train_time:12946ms step_avg:159.83ms
step:92/1530 train_loss:4.7952 train_time:13106ms step_avg:159.82ms
step:93/1530 train_loss:4.6157 train_time:13267ms step_avg:159.84ms
step:94/1530 train_loss:4.6260 train_time:13427ms step_avg:159.84ms
step:95/1530 train_loss:4.6747 train_time:13588ms step_avg:159.86ms
step:96/1530 train_loss:4.5764 train_time:13748ms step_avg:159.86ms
step:97/1530 train_loss:4.6318 train_time:13910ms step_avg:159.89ms
step:98/1530 train_loss:4.5763 train_time:14070ms step_avg:159.89ms
step:99/1530 train_loss:4.6606 train_time:14231ms step_avg:159.90ms
step:100/1530 train_loss:4.6711 train_time:14393ms step_avg:159.92ms
step:101/1530 train_loss:4.5389 train_time:14553ms step_avg:159.92ms
step:102/1530 train_loss:4.7103 train_time:14715ms step_avg:159.94ms
step:103/1530 train_loss:4.5765 train_time:14875ms step_avg:159.95ms
step:104/1530 train_loss:4.5435 train_time:15037ms step_avg:159.97ms
step:105/1530 train_loss:4.5711 train_time:15198ms step_avg:159.98ms
step:106/1530 train_loss:4.6147 train_time:15357ms step_avg:159.97ms
step:107/1530 train_loss:4.5146 train_time:15517ms step_avg:159.97ms
step:108/1530 train_loss:4.3621 train_time:15678ms step_avg:159.98ms
step:109/1530 train_loss:4.5055 train_time:15838ms step_avg:159.98ms
step:110/1530 train_loss:4.4883 train_time:15998ms step_avg:159.98ms
step:111/1530 train_loss:4.4130 train_time:16158ms step_avg:159.98ms
step:112/1530 train_loss:4.5801 train_time:16318ms step_avg:159.98ms
step:113/1530 train_loss:4.4923 train_time:16479ms step_avg:159.99ms
step:114/1530 train_loss:4.3674 train_time:16640ms step_avg:160.00ms
step:115/1530 train_loss:4.5038 train_time:16802ms step_avg:160.02ms
step:116/1530 train_loss:4.4665 train_time:16966ms step_avg:160.05ms
step:117/1530 train_loss:4.3889 train_time:17130ms step_avg:160.10ms
step:118/1530 train_loss:4.6167 train_time:17295ms step_avg:160.14ms
step:119/1530 train_loss:4.4746 train_time:17458ms step_avg:160.16ms
step:120/1530 train_loss:4.3450 train_time:17622ms step_avg:160.20ms
step:121/1530 train_loss:4.3103 train_time:17787ms step_avg:160.24ms
step:122/1530 train_loss:4.4533 train_time:17951ms step_avg:160.28ms
step:123/1530 train_loss:4.2883 train_time:18115ms step_avg:160.31ms
step:124/1530 train_loss:4.5868 train_time:18278ms step_avg:160.33ms
step:125/1530 train_loss:4.4584 train_time:18441ms step_avg:160.36ms
step:125/1530 val_loss:4.4040 train_time:18488ms step_avg:160.77ms
step:126/1530 train_loss:4.4195 train_time:18608ms step_avg:160.41ms
step:127/1530 train_loss:4.4329 train_time:18776ms step_avg:160.48ms
step:128/1530 train_loss:4.3891 train_time:18940ms step_avg:160.51ms
step:129/1530 train_loss:4.7035 train_time:19103ms step_avg:160.53ms
step:130/1530 train_loss:4.3654 train_time:19268ms step_avg:160.57ms
step:131/1530 train_loss:4.3907 train_time:19432ms step_avg:160.60ms
step:132/1530 train_loss:4.3486 train_time:19596ms step_avg:160.63ms
step:133/1530 train_loss:4.4622 train_time:19761ms step_avg:160.65ms
step:134/1530 train_loss:4.2820 train_time:19925ms step_avg:160.69ms
step:135/1530 train_loss:4.4492 train_time:20089ms step_avg:160.71ms
step:136/1530 train_loss:4.2087 train_time:20254ms step_avg:160.75ms
step:137/1530 train_loss:4.3743 train_time:20419ms step_avg:160.78ms
step:138/1530 train_loss:4.2905 train_time:20582ms step_avg:160.80ms
step:139/1530 train_loss:4.3917 train_time:20747ms step_avg:160.83ms
step:140/1530 train_loss:4.4791 train_time:20912ms step_avg:160.86ms
step:141/1530 train_loss:4.3203 train_time:21075ms step_avg:160.88ms
step:142/1530 train_loss:4.3143 train_time:21238ms step_avg:160.90ms
step:143/1530 train_loss:4.2740 train_time:21402ms step_avg:160.91ms
step:144/1530 train_loss:4.3603 train_time:21567ms step_avg:160.94ms
step:145/1530 train_loss:4.3178 train_time:21731ms step_avg:160.97ms
step:146/1530 train_loss:4.1733 train_time:21895ms step_avg:160.99ms
step:147/1530 train_loss:4.3247 train_time:22058ms step_avg:161.01ms
step:148/1530 train_loss:4.3658 train_time:22222ms step_avg:161.03ms
step:149/1530 train_loss:4.3079 train_time:22386ms step_avg:161.05ms
step:150/1530 train_loss:4.4446 train_time:22551ms step_avg:161.08ms
step:151/1530 train_loss:4.2732 train_time:22715ms step_avg:161.10ms
step:152/1530 train_loss:4.2712 train_time:22878ms step_avg:161.12ms
step:153/1530 train_loss:4.3651 train_time:23043ms step_avg:161.14ms
step:154/1530 train_loss:4.3757 train_time:23208ms step_avg:161.17ms
step:155/1530 train_loss:4.2757 train_time:23373ms step_avg:161.20ms
step:156/1530 train_loss:4.3491 train_time:23537ms step_avg:161.21ms
step:157/1530 train_loss:4.4114 train_time:23701ms step_avg:161.23ms
step:158/1530 train_loss:4.2515 train_time:23865ms step_avg:161.25ms
step:159/1530 train_loss:4.3035 train_time:24030ms step_avg:161.27ms
step:160/1530 train_loss:4.1264 train_time:24194ms step_avg:161.29ms
step:161/1530 train_loss:4.3428 train_time:24357ms step_avg:161.31ms
step:162/1530 train_loss:4.3641 train_time:24521ms step_avg:161.32ms
step:163/1530 train_loss:4.3335 train_time:24685ms step_avg:161.34ms
step:164/1530 train_loss:4.1816 train_time:24850ms step_avg:161.36ms
step:165/1530 train_loss:4.2817 train_time:25014ms step_avg:161.38ms
step:166/1530 train_loss:4.3388 train_time:25177ms step_avg:161.39ms
step:167/1530 train_loss:4.2055 train_time:25341ms step_avg:161.41ms
step:168/1530 train_loss:4.2904 train_time:25505ms step_avg:161.42ms
step:169/1530 train_loss:4.1596 train_time:25670ms step_avg:161.45ms
step:170/1530 train_loss:4.0338 train_time:25833ms step_avg:161.46ms
step:171/1530 train_loss:4.2077 train_time:25997ms step_avg:161.47ms
step:172/1530 train_loss:4.2210 train_time:26160ms step_avg:161.48ms
step:173/1530 train_loss:4.2767 train_time:26324ms step_avg:161.49ms
step:174/1530 train_loss:4.4250 train_time:26487ms step_avg:161.50ms
step:175/1530 train_loss:4.2453 train_time:26650ms step_avg:161.52ms
step:176/1530 train_loss:4.1041 train_time:26813ms step_avg:161.52ms
step:177/1530 train_loss:4.0675 train_time:26976ms step_avg:161.53ms
step:178/1530 train_loss:4.1798 train_time:27139ms step_avg:161.54ms
step:179/1530 train_loss:4.1253 train_time:27302ms step_avg:161.55ms
step:180/1530 train_loss:4.1172 train_time:27465ms step_avg:161.56ms
step:181/1530 train_loss:4.2981 train_time:27628ms step_avg:161.57ms
step:182/1530 train_loss:4.1644 train_time:27792ms step_avg:161.58ms
step:183/1530 train_loss:4.1268 train_time:27954ms step_avg:161.59ms
step:184/1530 train_loss:4.1249 train_time:28117ms step_avg:161.59ms
step:185/1530 train_loss:4.1998 train_time:28281ms step_avg:161.61ms
step:186/1530 train_loss:4.1666 train_time:28443ms step_avg:161.61ms
step:187/1530 train_loss:4.2350 train_time:28607ms step_avg:161.62ms
step:188/1530 train_loss:4.1671 train_time:28902ms step_avg:162.37ms
step:189/1530 train_loss:4.1040 train_time:29229ms step_avg:163.29ms
step:190/1530 train_loss:4.2164 train_time:29391ms step_avg:163.28ms
step:191/1530 train_loss:4.0886 train_time:29555ms step_avg:163.28ms
step:192/1530 train_loss:4.0375 train_time:29717ms step_avg:163.28ms
step:193/1530 train_loss:4.2439 train_time:29880ms step_avg:163.28ms
step:194/1530 train_loss:4.1722 train_time:30043ms step_avg:163.27ms
step:195/1530 train_loss:4.3573 train_time:30206ms step_avg:163.27ms
step:196/1530 train_loss:4.1827 train_time:30371ms step_avg:163.29ms
step:197/1530 train_loss:4.0448 train_time:30534ms step_avg:163.28ms
step:198/1530 train_loss:4.1807 train_time:30697ms step_avg:163.28ms
step:199/1530 train_loss:4.0418 train_time:30860ms step_avg:163.28ms
step:200/1530 train_loss:4.1202 train_time:31023ms step_avg:163.28ms
step:201/1530 train_loss:4.0045 train_time:31187ms step_avg:163.28ms
step:202/1530 train_loss:4.2392 train_time:31350ms step_avg:163.28ms
step:203/1530 train_loss:4.0685 train_time:31514ms step_avg:163.28ms
step:204/1530 train_loss:4.1985 train_time:31676ms step_avg:163.28ms
step:205/1530 train_loss:4.2555 train_time:31838ms step_avg:163.27ms
step:206/1530 train_loss:3.9615 train_time:32002ms step_avg:163.27ms
step:207/1530 train_loss:4.0868 train_time:32165ms step_avg:163.27ms
step:208/1530 train_loss:4.1000 train_time:32328ms step_avg:163.27ms
step:209/1530 train_loss:4.2447 train_time:32491ms step_avg:163.27ms
step:210/1530 train_loss:4.1859 train_time:32654ms step_avg:163.27ms
step:211/1530 train_loss:4.0629 train_time:32816ms step_avg:163.27ms
step:212/1530 train_loss:4.1160 train_time:32979ms step_avg:163.26ms
step:213/1530 train_loss:4.0433 train_time:33142ms step_avg:163.26ms
step:214/1530 train_loss:4.1205 train_time:33305ms step_avg:163.26ms
step:215/1530 train_loss:3.9558 train_time:33469ms step_avg:163.26ms
step:216/1530 train_loss:4.0002 train_time:33631ms step_avg:163.26ms
step:217/1530 train_loss:4.0105 train_time:33794ms step_avg:163.26ms
step:218/1530 train_loss:4.0842 train_time:33956ms step_avg:163.25ms
step:219/1530 train_loss:4.0875 train_time:34118ms step_avg:163.25ms
step:220/1530 train_loss:4.0846 train_time:34282ms step_avg:163.25ms
step:221/1530 train_loss:4.0928 train_time:34444ms step_avg:163.24ms
step:222/1530 train_loss:4.0028 train_time:34607ms step_avg:163.24ms
step:223/1530 train_loss:3.9962 train_time:34771ms step_avg:163.24ms
step:224/1530 train_loss:4.2976 train_time:34933ms step_avg:163.24ms
step:225/1530 train_loss:3.9220 train_time:35096ms step_avg:163.24ms
step:226/1530 train_loss:3.9892 train_time:35259ms step_avg:163.24ms
step:227/1530 train_loss:3.9823 train_time:35422ms step_avg:163.24ms
step:228/1530 train_loss:4.1458 train_time:35589ms step_avg:163.25ms
step:229/1530 train_loss:3.9264 train_time:35755ms step_avg:163.27ms
step:230/1530 train_loss:4.0374 train_time:35920ms step_avg:163.27ms
step:231/1530 train_loss:3.9090 train_time:36088ms step_avg:163.30ms
step:232/1530 train_loss:3.9752 train_time:36254ms step_avg:163.31ms
step:233/1530 train_loss:4.0937 train_time:36420ms step_avg:163.32ms
step:234/1530 train_loss:4.0262 train_time:36588ms step_avg:163.34ms
step:235/1530 train_loss:3.8876 train_time:36755ms step_avg:163.35ms
step:236/1530 train_loss:4.0808 train_time:36920ms step_avg:163.36ms
step:237/1530 train_loss:4.0685 train_time:37087ms step_avg:163.38ms
step:238/1530 train_loss:3.9385 train_time:37253ms step_avg:163.39ms
step:239/1530 train_loss:4.0787 train_time:37419ms step_avg:163.40ms
step:240/1530 train_loss:4.1119 train_time:37585ms step_avg:163.41ms
step:241/1530 train_loss:3.9605 train_time:37752ms step_avg:163.43ms
step:242/1530 train_loss:4.1565 train_time:37918ms step_avg:163.44ms
step:243/1530 train_loss:4.0176 train_time:38084ms step_avg:163.45ms
step:244/1530 train_loss:4.0800 train_time:38250ms step_avg:163.46ms
step:245/1530 train_loss:4.1442 train_time:38417ms step_avg:163.48ms
step:246/1530 train_loss:4.0585 train_time:38583ms step_avg:163.49ms
step:247/1530 train_loss:4.0056 train_time:38749ms step_avg:163.50ms
step:248/1530 train_loss:4.1070 train_time:38915ms step_avg:163.51ms
step:249/1530 train_loss:3.9210 train_time:39080ms step_avg:163.52ms
step:250/1530 train_loss:3.9674 train_time:39247ms step_avg:163.53ms
step:250/1530 val_loss:4.0056 train_time:39294ms step_avg:163.73ms
step:251/1530 train_loss:4.0737 train_time:39416ms step_avg:163.55ms
step:252/1530 train_loss:4.1607 train_time:39585ms step_avg:163.57ms
step:253/1530 train_loss:3.9312 train_time:39752ms step_avg:163.59ms
step:254/1530 train_loss:3.8767 train_time:39917ms step_avg:163.60ms
step:255/1530 train_loss:4.0731 train_time:40083ms step_avg:163.61ms
step:256/1530 train_loss:3.9992 train_time:40251ms step_avg:163.62ms
step:257/1530 train_loss:3.9921 train_time:40416ms step_avg:163.63ms
step:258/1530 train_loss:3.9783 train_time:40582ms step_avg:163.64ms
step:259/1530 train_loss:4.0286 train_time:40748ms step_avg:163.65ms
step:260/1530 train_loss:4.0636 train_time:40916ms step_avg:163.66ms
step:261/1530 train_loss:4.0226 train_time:41082ms step_avg:163.67ms
step:262/1530 train_loss:3.9919 train_time:41249ms step_avg:163.69ms
step:263/1530 train_loss:3.8940 train_time:41415ms step_avg:163.70ms
step:264/1530 train_loss:3.9887 train_time:41581ms step_avg:163.71ms
step:265/1530 train_loss:3.8673 train_time:41749ms step_avg:163.72ms
step:266/1530 train_loss:3.9233 train_time:41916ms step_avg:163.73ms
step:267/1530 train_loss:3.9295 train_time:42081ms step_avg:163.74ms
step:268/1530 train_loss:3.9613 train_time:42249ms step_avg:163.75ms
step:269/1530 train_loss:3.8482 train_time:42415ms step_avg:163.76ms
step:270/1530 train_loss:4.0975 train_time:42579ms step_avg:163.77ms
step:271/1530 train_loss:3.9707 train_time:42747ms step_avg:163.78ms
step:272/1530 train_loss:3.9242 train_time:42914ms step_avg:163.79ms
step:273/1530 train_loss:3.9471 train_time:43079ms step_avg:163.80ms
step:274/1530 train_loss:4.0401 train_time:43246ms step_avg:163.81ms
step:275/1530 train_loss:4.0629 train_time:43413ms step_avg:163.82ms
step:276/1530 train_loss:4.2328 train_time:43581ms step_avg:163.84ms
step:277/1530 train_loss:4.0378 train_time:43747ms step_avg:163.85ms
step:278/1530 train_loss:4.0945 train_time:43913ms step_avg:163.86ms
step:279/1530 train_loss:4.0034 train_time:44079ms step_avg:163.86ms
step:280/1530 train_loss:4.1995 train_time:44247ms step_avg:163.88ms
step:281/1530 train_loss:3.9669 train_time:44414ms step_avg:163.89ms
step:282/1530 train_loss:3.9430 train_time:44581ms step_avg:163.90ms
step:283/1530 train_loss:3.9108 train_time:44746ms step_avg:163.90ms
step:284/1530 train_loss:4.0472 train_time:44913ms step_avg:163.91ms
step:285/1530 train_loss:4.0612 train_time:45078ms step_avg:163.92ms
step:286/1530 train_loss:4.0932 train_time:45243ms step_avg:163.93ms
step:287/1530 train_loss:3.9092 train_time:45409ms step_avg:163.93ms
step:288/1530 train_loss:4.0112 train_time:45574ms step_avg:163.94ms
step:289/1530 train_loss:3.8741 train_time:45740ms step_avg:163.94ms
step:290/1530 train_loss:3.8545 train_time:45905ms step_avg:163.95ms
step:291/1530 train_loss:3.9062 train_time:46071ms step_avg:163.95ms
step:292/1530 train_loss:3.8613 train_time:46236ms step_avg:163.96ms
step:293/1530 train_loss:3.9027 train_time:46401ms step_avg:163.96ms
step:294/1530 train_loss:3.9314 train_time:46565ms step_avg:163.96ms
step:295/1530 train_loss:3.8349 train_time:46731ms step_avg:163.97ms
step:296/1530 train_loss:3.8587 train_time:46896ms step_avg:163.97ms
step:297/1530 train_loss:3.8681 train_time:47061ms step_avg:163.98ms
step:298/1530 train_loss:3.9672 train_time:47227ms step_avg:163.98ms
step:299/1530 train_loss:3.8222 train_time:47392ms step_avg:163.99ms
step:300/1530 train_loss:3.9576 train_time:47559ms step_avg:164.00ms
step:301/1530 train_loss:3.9605 train_time:47725ms step_avg:164.00ms
step:302/1530 train_loss:3.9343 train_time:47891ms step_avg:164.01ms
step:303/1530 train_loss:3.9775 train_time:48057ms step_avg:164.02ms
step:304/1530 train_loss:3.9686 train_time:48222ms step_avg:164.02ms
step:305/1530 train_loss:4.4598 train_time:48387ms step_avg:164.02ms
step:306/1530 train_loss:3.9375 train_time:48554ms step_avg:164.03ms
step:307/1530 train_loss:3.8355 train_time:48719ms step_avg:164.04ms
step:308/1530 train_loss:3.9811 train_time:48884ms step_avg:164.04ms
step:309/1530 train_loss:3.8586 train_time:49051ms step_avg:164.05ms
step:310/1530 train_loss:4.0810 train_time:49215ms step_avg:164.05ms
step:311/1530 train_loss:3.9291 train_time:49381ms step_avg:164.06ms
step:312/1530 train_loss:3.8660 train_time:49548ms step_avg:164.06ms
step:313/1530 train_loss:3.9359 train_time:49713ms step_avg:164.07ms
step:314/1530 train_loss:4.0596 train_time:49878ms step_avg:164.07ms
step:315/1530 train_loss:3.9347 train_time:50044ms step_avg:164.08ms
step:316/1530 train_loss:3.7966 train_time:50208ms step_avg:164.08ms
step:317/1530 train_loss:3.8780 train_time:50374ms step_avg:164.08ms
step:318/1530 train_loss:3.9215 train_time:50539ms step_avg:164.09ms
step:319/1530 train_loss:3.8923 train_time:50704ms step_avg:164.09ms
step:320/1530 train_loss:4.0086 train_time:50870ms step_avg:164.10ms
step:321/1530 train_loss:3.9533 train_time:51035ms step_avg:164.10ms
step:322/1530 train_loss:3.9311 train_time:51199ms step_avg:164.10ms
step:323/1530 train_loss:4.0022 train_time:51364ms step_avg:164.10ms
step:324/1530 train_loss:3.9421 train_time:51530ms step_avg:164.11ms
step:325/1530 train_loss:4.0214 train_time:51695ms step_avg:164.11ms
step:326/1530 train_loss:3.8933 train_time:51860ms step_avg:164.12ms
step:327/1530 train_loss:4.3826 train_time:52025ms step_avg:164.12ms
step:328/1530 train_loss:4.0721 train_time:52191ms step_avg:164.12ms
step:329/1530 train_loss:3.7902 train_time:52357ms step_avg:164.13ms
step:330/1530 train_loss:3.7518 train_time:52524ms step_avg:164.14ms
step:331/1530 train_loss:3.9747 train_time:52690ms step_avg:164.14ms
step:332/1530 train_loss:3.9102 train_time:52855ms step_avg:164.15ms
step:333/1530 train_loss:3.8805 train_time:53019ms step_avg:164.14ms
step:334/1530 train_loss:3.8409 train_time:53184ms step_avg:164.15ms
step:335/1530 train_loss:4.0125 train_time:53349ms step_avg:164.15ms
step:336/1530 train_loss:3.9555 train_time:53515ms step_avg:164.16ms
step:337/1530 train_loss:4.4192 train_time:53680ms step_avg:164.16ms
step:338/1530 train_loss:3.9441 train_time:53844ms step_avg:164.16ms
step:339/1530 train_loss:3.8691 train_time:54010ms step_avg:164.16ms
step:340/1530 train_loss:3.9360 train_time:54176ms step_avg:164.17ms
step:341/1530 train_loss:3.8539 train_time:54343ms step_avg:164.18ms
step:342/1530 train_loss:3.8146 train_time:54512ms step_avg:164.19ms
step:343/1530 train_loss:3.8438 train_time:54679ms step_avg:164.20ms
step:344/1530 train_loss:3.9957 train_time:54848ms step_avg:164.21ms
step:345/1530 train_loss:3.8134 train_time:55017ms step_avg:164.23ms
step:346/1530 train_loss:3.7625 train_time:55185ms step_avg:164.24ms
step:347/1530 train_loss:3.7970 train_time:55355ms step_avg:164.26ms
step:348/1530 train_loss:3.8607 train_time:55522ms step_avg:164.27ms
step:349/1530 train_loss:3.8281 train_time:55691ms step_avg:164.28ms
step:350/1530 train_loss:3.5703 train_time:55860ms step_avg:164.29ms
step:351/1530 train_loss:3.8248 train_time:56029ms step_avg:164.31ms
step:352/1530 train_loss:4.1825 train_time:56197ms step_avg:164.32ms
step:353/1530 train_loss:3.6550 train_time:56364ms step_avg:164.33ms
step:354/1530 train_loss:3.9221 train_time:56532ms step_avg:164.34ms
step:355/1530 train_loss:3.7785 train_time:56700ms step_avg:164.35ms
step:356/1530 train_loss:3.8880 train_time:56868ms step_avg:164.36ms
step:357/1530 train_loss:3.7485 train_time:57037ms step_avg:164.37ms
step:358/1530 train_loss:3.8548 train_time:57205ms step_avg:164.38ms
step:359/1530 train_loss:3.7789 train_time:57374ms step_avg:164.40ms
step:360/1530 train_loss:3.4211 train_time:57543ms step_avg:164.41ms
step:361/1530 train_loss:4.0161 train_time:57713ms step_avg:164.42ms
step:362/1530 train_loss:3.9162 train_time:57881ms step_avg:164.43ms
step:363/1530 train_loss:3.8368 train_time:58050ms step_avg:164.45ms
step:364/1530 train_loss:3.7429 train_time:58218ms step_avg:164.46ms
step:365/1530 train_loss:3.9136 train_time:58386ms step_avg:164.47ms
step:366/1530 train_loss:3.8580 train_time:58555ms step_avg:164.48ms
step:367/1530 train_loss:3.8574 train_time:58722ms step_avg:164.49ms
step:368/1530 train_loss:3.8400 train_time:58890ms step_avg:164.50ms
step:369/1530 train_loss:3.7443 train_time:59057ms step_avg:164.50ms
step:370/1530 train_loss:3.8803 train_time:59225ms step_avg:164.51ms
step:371/1530 train_loss:3.7348 train_time:59394ms step_avg:164.53ms
step:372/1530 train_loss:3.6901 train_time:59562ms step_avg:164.54ms
step:373/1530 train_loss:3.9096 train_time:59730ms step_avg:164.55ms
step:374/1530 train_loss:3.8261 train_time:59897ms step_avg:164.55ms
step:375/1530 train_loss:3.7981 train_time:60065ms step_avg:164.56ms
step:375/1530 val_loss:3.8237 train_time:60113ms step_avg:164.69ms