forked from KellerJordan/modded-nanogpt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
8bd08106-6eb1-4cd1-9779-ccf1192bda1b.txt
2165 lines (2092 loc) · 134 KB
/
8bd08106-6eb1-4cd1-9779-ccf1192bda1b.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import os
import sys
with open(sys.argv[0]) as f:
code = f.read() # read the code of this file ASAP, for logging
import uuid
import glob
import time
import contextlib
from dataclasses import dataclass
import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
import torch.distributed as dist
import torch._inductor.config as config
from torch.nn.parallel import DistributedDataParallel as DDP
# Use of FlexAttention contributed by @KoszarskyB
from torch.nn.attention.flex_attention import flex_attention, create_block_mask
flex_attention = torch.compile(flex_attention, dynamic=False)
create_block_mask = torch.compile(create_block_mask, dynamic=False)
# -----------------------------------------------------------------------------
# Muon optimizer
def zeropower_via_svd(G, steps=None):
U, S, V = G.svd()
return U @ V.T
@torch.compile
def zeropower_via_newtonschulz5(G, steps=10, eps=1e-7):
"""
Newton-Schulz iteration to compute the zeroth power / orthogonalization of G. We opt to use a
quintic iteration whose coefficients are selected to maximize the slope at zero. For the purpose
of minimizing steps, it turns out to be empirically effective to keep increasing the slope at
zero even beyond the point where the iteration no longer converges all the way to one everywhere
on the interval. This iteration therefore does not produce UV^T but rather something like US'V^T
where S' is diagonal with S_{ii}' ~ Uniform(0.5, 1.5), which turns out not to hurt model
performance at all relative to UV^T, where USV^T = G is the SVD.
"""
assert len(G.shape) == 2
a, b, c = (3.4445, -4.7750, 2.0315)
X = G.bfloat16()
X /= (X.norm() + eps) # ensure top singular value <= 1
if G.size(0) > G.size(1):
X = X.T
for _ in range(steps):
A = X @ X.T
B = b * A + c * A @ A # adapted from suggestion by @jxbz, @leloykun, and @YouJiacheng
X = a * X + B @ X
if G.size(0) > G.size(1):
X = X.T
return X
zeropower_backends = dict(svd=zeropower_via_svd, newtonschulz5=zeropower_via_newtonschulz5)
class Muon(torch.optim.Optimizer):
"""
Muon - MomentUm Orthogonalized by Newton-schulz
Muon internally runs standard SGD-momentum, and then performs an orthogonalization post-
processing step, in which each 2D parameter's update is replaced with the nearest orthogonal
matrix. To efficiently orthogonalize each update, we use a Newton-Schulz iteration, which has
the advantage that it can be stably run in bfloat16 on the GPU.
Some warnings:
- This optimizer assumes that all parameters passed in are 2D.
- It should not be used for the embedding layer, the final fully connected layer, or any {0,1}-D
parameters; those should all be optimized by a standard method (e.g., AdamW).
- To use it with 4D convolutional filters, it works well to just flatten their last 3 dimensions.
- We believe it is unlikely to work well for training with small batch size.
- We believe it may not work well for finetuning pretrained models, but we haven't tested this.
- We have not yet tried this optimizer for training scenarios larger than NanoGPT (124M).
Arguments:
lr: The learning rate used by the internal SGD.
momentum: The momentum used by the internal SGD.
nesterov: Whether to use Nesterov-style momentum in the internal SGD. (recommended)
backend: The chosen backend for the orthogonalization step. (recommended: 'newtonschulz5')
backend_steps: The number of iteration steps to use in the backend, if it is iterative.
"""
def __init__(self, params, lr=0.02, momentum=0.95, nesterov=True,
backend='newtonschulz5', backend_steps=5):
defaults = dict(lr=lr, momentum=momentum, nesterov=nesterov, backend=backend, backend_steps=backend_steps)
super().__init__(params, defaults)
def step(self):
for group in self.param_groups:
lr = group['lr']
momentum = group['momentum']
zeropower_backend = zeropower_backends[group['backend']]
# generate weight updates in distributed fashion
total_params = sum(p.numel() for p in group['params'])
updates_flat = torch.zeros(total_params, device='cuda', dtype=torch.bfloat16)
curr_idx = 0
for i, p in enumerate(group['params']):
# luckily this will perfectly distribute a transformer with multiple of 4 layers to 8 GPUs
if i % int(os.environ['WORLD_SIZE']) == int(os.environ['RANK']):
g = p.grad
assert g is not None
state = self.state[p]
if 'momentum_buffer' not in state:
state['momentum_buffer'] = torch.zeros_like(g)
buf = state['momentum_buffer']
buf.mul_(momentum).add_(g)
g = g.add(buf, alpha=momentum) if group['nesterov'] else buf
g = zeropower_backend(g, steps=group['backend_steps'])
g *= max(1, g.size(0)/g.size(1))**0.5
updates_flat[curr_idx:curr_idx+p.numel()] = g.flatten()
curr_idx += p.numel()
# sync updates across devices. we are not memory-constrained so can do this simple deserialization
dist.all_reduce(updates_flat, op=dist.ReduceOp.SUM)
# deserialize and apply updates
curr_idx = 0
for p in group['params']:
g = updates_flat[curr_idx:curr_idx+p.numel()].view_as(p.data).type_as(p.data)
p.data.add_(g, alpha=-lr)
curr_idx += p.numel()
# -----------------------------------------------------------------------------
# PyTorch nn.Module definitions for the GPT-2 model
def norm(x):
return F.rms_norm(x, (x.size(-1),))
class CastedLinear(nn.Linear):
def __init__(self, in_features, out_features):
super().__init__(in_features, out_features, bias=False)
def forward(self, x):
return F.linear(x, self.weight.to(x.dtype))
class Rotary(torch.nn.Module):
def __init__(self, dim, base=10000):
super().__init__()
self.register_buffer('inv_freq', (1 / base) ** (torch.arange(0, dim, 2) / dim))
self.seq_len_cached = None
self.cos_cached = None
self.sin_cached = None
def forward(self, x):
seq_len = x.shape[1]
if seq_len != self.seq_len_cached:
t = torch.arange(seq_len, device=x.device)
freqs = torch.outer(t, self.inv_freq)
self.seq_len_cached = seq_len
self.cos_cached = freqs.cos()
self.sin_cached = freqs.sin()
cos, sin = self.cos_cached[None, :, None, :], self.sin_cached[None, :, None, :]
# apply_rotary_emb(x, cos, sin)
x1, x2 = x.chunk(2, dim=3)
y1 = x1 * cos + x2 * sin
y2 = x1 * (-sin) + x2 * cos
return torch.cat((y1, y2), 3).type_as(x)
class CausalSelfAttention(nn.Module):
def __init__(self, dim, n_head):
super().__init__()
assert dim % n_head == 0
self.n_head = n_head
self.c_q = CastedLinear(dim, dim)
self.c_k = CastedLinear(dim, dim)
self.c_v = CastedLinear(dim, dim)
# value residual lambda
self.lamb = nn.Parameter(torch.tensor(0.5)) # @Grad62304977
# rotary embeddings
self.rotary = Rotary(dim // n_head) # dim // n_head = head_dim
# output projection
self.c_proj = CastedLinear(dim, dim)
self.c_proj.weight.data.zero_() # zero init suggested by @Grad62304977
def forward(self, x, vi, block_mask):
B, T = x.size(0), x.size(1) # batch size, sequence length
assert B == 1, "Must use batch size = 1 for FlexAttention"
q = self.c_q(x).view(B, T, self.n_head, -1)
k = self.c_k(x).view(B, T, self.n_head, -1)
v = self.c_v(x).view(B, T, self.n_head, -1)
v = (1 - self.lamb) * v + self.lamb * vi.view_as(v) # @Grad62304977
q, k = norm(q), norm(k) # QK norm suggested by @Grad62304977
q, k = self.rotary(q), self.rotary(k)
y = flex_attention(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), block_mask=block_mask)
y = y.transpose(1, 2).contiguous().view_as(x) # re-assemble all head outputs side by side
y = self.c_proj(y)
return y
class MLP(nn.Module):
def __init__(self, dim):
super().__init__()
self.c_fc = CastedLinear(dim, 4 * dim)
self.c_proj = CastedLinear(4 * dim, dim)
self.c_proj.weight.data.zero_() # zero init suggested by @Grad62304977
def forward(self, x):
x = self.c_fc(x)
x = F.relu(x).square() # https://arxiv.org/abs/2109.08668v2; ~1-2% better than GELU; suggested by @SKYLINEZ007 and @Grad62304977
x = self.c_proj(x)
return x
class Block(nn.Module):
def __init__(self, config):
super().__init__()
self.attn = CausalSelfAttention(config.n_embd, config.n_head)
self.mlp = MLP(config.n_embd)
self.lambdas = nn.Parameter(torch.tensor([1., 0.]))
def forward(self, x, vi, x0, block_mask):
x = self.lambdas[0] * x + self.lambdas[1] * x0
x = x + self.attn(norm(x), vi, block_mask)
x = x + self.mlp(norm(x))
return x
# -----------------------------------------------------------------------------
# The main GPT-2 model
@dataclass
class GPTConfig:
vocab_size : int = 50304
n_layer : int = 12
n_head : int = 6 # head dim 128 suggested by @Grad62304977
n_embd : int = 768
class GPT(nn.Module):
def __init__(self, config):
super().__init__()
# U-net design by @brendanh0gan
self.num_encoder_layers = config.n_layer // 2 # Half of the layers for encoder
self.num_decoder_layers = config.n_layer - self.num_encoder_layers # Remaining for decoder
# Add learnable skip connection weights for decoder layers
self.skip_weights = nn.Parameter(torch.ones(self.num_decoder_layers))
self.transformer = nn.ModuleDict(dict(
wte = nn.Embedding(config.vocab_size, config.n_embd),
# token value embeddings by @KoszarskyB - inspired by @Grad62304977's value residual learning
vte = nn.Embedding(config.vocab_size, config.n_embd*12),
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
))
self.lm_head = CastedLinear(config.n_embd, config.vocab_size)
self.lm_head.weight.data.zero_() # @Grad62304977
def forward(self, idx, target, attn_blocksize):
docs = (idx == 50256).cumsum(0)
def document_causal_mask(b, h, q_idx, kv_idx):
causal_mask = q_idx >= kv_idx
document_mask = docs[q_idx] == docs[kv_idx]
window_mask = q_idx - kv_idx < attn_blocksize
return causal_mask & document_mask & window_mask
S = len(idx)
block_mask = create_block_mask(document_causal_mask, None, None, S, S, device="cuda", _compile=True)
# forward the GPT model itself
x = self.transformer.wte(idx[None]) # token embeddings of shape (b, t, n_embd)
x = norm(x) # @Grad62304977
x0 = x
vi = self.transformer.vte(idx[None]).chunk(12, dim=-1)
# Store outputs for U-Net skip connections
skip_connections = []
# Encoder pass - process only the first half of the blocks
for i in range(self.num_encoder_layers):
x = self.transformer.h[i](x, vi[i], x0, block_mask)
skip_connections.append(x)
# Decoder pass - process the remaining blocks with weighted skip connections
for i in range(self.num_decoder_layers):
x = x + self.skip_weights[i] * skip_connections.pop()
x = self.transformer.h[self.num_encoder_layers + i](x, vi[self.num_encoder_layers+i], x0, block_mask)
x = norm(x)
logits = self.lm_head(x)
logits = 30 * torch.tanh(logits / 30) # @Grad62304977
logits = logits.float()
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), target.view(-1))
return loss
# -----------------------------------------------------------------------------
# Our own simple Distributed Data Loader
def _peek_data_shard(filename):
# only reads the header, returns header data
with open(filename, "rb") as f:
# first read the header, which is 256 int32 integers (4 bytes each)
header = np.frombuffer(f.read(256*4), dtype=np.int32)
if header[0] != 20240520:
print("ERROR: magic number mismatch in the data .bin file!")
print("---> HINT: Are you passing in a correct file with --input_bin?")
print("---> HINT: Dataset encoding changed recently, re-run data prepro or refer again to README")
print("---> HINT: For example re-run: `python dev/data/tinyshakespeare.py`, then re-try")
exit(1)
assert header[1] == 1, "unsupported version"
ntok = header[2] # number of tokens (claimed)
return ntok # for now just return the number of tokens
def _load_data_shard(filename):
with open(filename, "rb") as f:
# first read the header, which is 256 int32 integers (4 bytes each)
header = np.frombuffer(f.read(256*4), dtype=np.int32)
assert header[0] == 20240520, "magic number mismatch in the data .bin file"
assert header[1] == 1, "unsupported version"
ntok = header[2] # number of tokens (claimed)
# the rest of it are tokens, stored as uint16
tokens = np.frombuffer(f.read(), dtype=np.uint16)
assert len(tokens) == ntok, "number of tokens read does not match header?"
return tokens
class DistributedDataLoader:
def __init__(self, filename_pattern, T, process_rank, num_processes):
self.process_rank = process_rank
self.num_processes = num_processes
self.T = T
# glob files that match the pattern
self.files = sorted(glob.glob(filename_pattern))
assert len(self.files) > 0, f"did not find any files that match the pattern {filename_pattern}"
# load and validate all data shards, count number of tokens in total
ntok_total = 0
for fname in self.files:
shard_ntok = _peek_data_shard(fname)
assert shard_ntok >= num_processes * T + 1
ntok_total += int(shard_ntok)
self.ntok_total = ntok_total
self.reset()
def reset(self):
self.current_shard = -1
self.advance()
def advance(self): # advance to next data shard
self.current_shard = (self.current_shard + 1) % len(self.files)
self.current_position = self.process_rank * self.T
self.tokens = _load_data_shard(self.files[self.current_shard])
def next_batch(self):
batch_size = self.T * self.num_processes
buf = self.tokens[self.current_position:self.current_position+self.T+1]
buf = torch.tensor(buf.astype(np.int32), dtype=torch.long)
x = buf[:-1] # inputs
y = buf[1:] # targets
# advance current position and load next shard if necessary
self.current_position += batch_size
if self.current_position + batch_size >= len(self.tokens):
self.advance()
return x.cuda(), y.cuda()
# -----------------------------------------------------------------------------
# int main
@dataclass
class Hyperparameters:
# data hyperparams
input_bin : str = 'data/fineweb10B/fineweb_train_*.bin' # input .bin to train on
input_val_bin : str = 'data/fineweb10B/fineweb_val_*.bin' # input .bin to eval validation loss on
# optimization hyperparams
batch_size : int = 8 # batch size, in sequences, across all devices
sequence_length : int = 64*1024 # sequence length, in tokens
num_iterations : int = 1530 # number of iterations to run
warmup_iters : int = 0
cooldown_iters : int = 600 # number of iterations of linear warmup/cooldown for triangular or trapezoidal schedule
weight_decay : float = 0
# evaluation and logging hyperparams
val_loss_every : int = 125 # every how many steps to evaluate val loss? 0 for only at the end
val_tokens : int = 10485760 # how many tokens of validation data? it's important to keep this fixed for consistent comparisons
save_every : int = 0 # every how many steps to save the checkpoint? 0 for only at the end
args = Hyperparameters()
# set up DDP (distributed data parallel). torchrun sets this env variable
assert torch.cuda.is_available()
dist.init_process_group(backend='nccl')
ddp_rank = int(os.environ['RANK'])
ddp_local_rank = int(os.environ['LOCAL_RANK'])
ddp_world_size = int(os.environ['WORLD_SIZE'])
device = f'cuda:{ddp_local_rank}'
torch.cuda.set_device(device)
print(f"using device: {device}")
master_process = (ddp_rank == 0) # this process will do logging, checkpointing etc.
# begin logging
logfile = None
if master_process:
run_id = str(uuid.uuid4())
logdir = 'logs/%s/' % run_id
os.makedirs(logdir, exist_ok=True)
logfile = 'logs/%s.txt' % run_id
# create the log file
with open(logfile, "w") as f:
# begin the log by printing this file (the Python code)
f.write(code)
f.write('='*100 + '\n')
def print0(s, logonly=False):
if master_process:
with open(logfile, "a") as f:
if not logonly:
print(s)
f.write(s+'\n')
# log information about the hardware/software environment this is running on
# and print the full `nvidia-smi` to file
print0(f"Running pytorch {torch.version.__version__} compiled for CUDA {torch.version.cuda}\nnvidia-smi:")
import subprocess
result = subprocess.run(['nvidia-smi'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
print0(f'{result.stdout}', logonly=True)
print0('='*100, logonly=True)
# convenience variables
T = args.sequence_length
# calculate the number of steps to take in the val loop.
assert args.val_tokens % (T * ddp_world_size) == 0
val_steps = args.val_tokens // (T * ddp_world_size)
# calculate the steps of gradient accumulation required to attain the desired global batch size.
assert args.batch_size % (ddp_world_size) == 0
train_accumulation_steps = args.batch_size // ddp_world_size
# load tokens
train_loader = DistributedDataLoader(args.input_bin, T, ddp_rank, ddp_world_size)
val_loader = DistributedDataLoader(args.input_val_bin, T, ddp_rank, ddp_world_size)
print0(f"Training DataLoader: total number of tokens: {train_loader.ntok_total} across {len(train_loader.files)} files")
print0(f"Validation DataLoader: total number of tokens: {val_loader.ntok_total} across {len(val_loader.files)} files")
print0('='*100, logonly=True)
x, y = train_loader.next_batch()
# there are only 50257 unique GPT-2 tokens; we extend to nearest multiple of 128 for efficiency. suggested to me by @Grad62304977.
# this originates from Karpathy's experiments.
num_vocab = 50304
model = GPT(GPTConfig(vocab_size=num_vocab, n_layer=12, n_head=6, n_embd=768))
model = model.cuda().bfloat16()
for m in model.modules():
if isinstance(m, CastedLinear):
m.float()
if hasattr(config, "coordinate_descent_tuning"):
config.coordinate_descent_tuning = True # suggested by @Chillee
model = torch.compile(model)
# here we wrap model into DDP container
model = DDP(model, device_ids=[ddp_local_rank])
raw_model = model.module # always contains the "raw" unwrapped model
# init the optimizer(s)
optimizer1 = torch.optim.Adam([raw_model.transformer.wte.weight, raw_model.transformer.vte.weight], lr=0.6, betas=(0.8, 0.95), fused=True)
optimizer2 = torch.optim.Adam([raw_model.lm_head.weight], lr=0.008, betas=(0.8, 0.95), fused=True)
params = list(raw_model.transformer.h.parameters())
matrix_params = [p for p in params if p.ndim == 2]
scalar_params = [p for p in params if p.ndim < 2] + [raw_model.skip_weights]
optimizer3 = Muon(matrix_params, lr=0.05, momentum=0.95)
optimizer4 = torch.optim.Adam(scalar_params, lr=0.04, betas=(0.8, 0.95), fused=True) # note that this learning rate is neither sensitive nor tuned
optimizers = [optimizer1, optimizer2, optimizer3, optimizer4]
# learning rate decay scheduler (linear warmup and cooldown)
def get_lr(it):
assert it <= args.num_iterations
# 1) linear warmup for warmup_iters steps
if it < args.warmup_iters:
return (it+1) / args.warmup_iters
# 2) constant lr for a while
elif it < args.num_iterations - args.cooldown_iters:
return 1.0
# 3) linear cooldown
else:
decay_ratio = (args.num_iterations - it) / args.cooldown_iters
return decay_ratio
schedulers = [torch.optim.lr_scheduler.LambdaLR(opt, get_lr) for opt in optimizers]
# Start training loop
training_time_ms = 0
# start the clock
torch.cuda.synchronize()
t0 = time.time()
# begin training
for step in range(args.num_iterations + 1):
last_step = (step == args.num_iterations)
# This effectively ignores timing first 10 steps, which are slower for weird reasons.
# Alternately, and slightly more correctly in terms of benchmarking, we could do 10
# steps with dummy data first, and then re-initialize the model and reset the loader.
if step == 10:
training_time_ms = 0
t0 = time.time()
timed_steps = float('nan') if step <= 11 else (step - 10) + 1 # <= 11 to avoid bug in val
# Set the attention blocksize for the current step, in chunks of 64. By @fernbear.bsky.social
attn_blocksize = torch.tensor(64*((step/args.num_iterations * (1792 - 64) + 64)//64), dtype=torch.int, device='cuda')
# once in a while evaluate the validation dataset
if (last_step or (args.val_loss_every > 0 and step % args.val_loss_every == 0)):
# stop the clock
torch.cuda.synchronize()
training_time_ms += 1000 * (time.time() - t0)
# run validation batches
model.eval()
val_loader.reset()
val_loss = 0.0
for _ in range(val_steps):
with torch.no_grad():
x_val, y_val = val_loader.next_batch()
val_loss += model(x_val, y_val, attn_blocksize=attn_blocksize)
dist.all_reduce(val_loss, op=dist.ReduceOp.AVG)
val_loss /= val_steps
# log val loss to console and to logfile
print0(f'step:{step}/{args.num_iterations} val_loss:{val_loss:.4f} train_time:{training_time_ms:.0f}ms step_avg:{training_time_ms/(timed_steps-1):.2f}ms')
# start the clock again
torch.cuda.synchronize()
t0 = time.time()
if master_process and (last_step or (args.save_every > 0 and step % args.save_every == 0)):
# stop the clock
torch.cuda.synchronize()
training_time_ms += 1000 * (time.time() - t0)
# save the state of the training process
log = dict(step=step, code=code, model=raw_model.state_dict(), optimizers=[opt.state_dict() for opt in optimizers])
torch.save(log, 'logs/%s/state_step%06d.pt' % (run_id, step))
# start the clock again
torch.cuda.synchronize()
t0 = time.time()
# bit confusing: we want to make sure to eval on 0th iteration
# but also after the very last iteration. so we loop for step <= num_iterations
# instead of just < num_iterations (one extra due to <=), only to do
# the validation/sampling one last time, and then we break right here as we're done.
if last_step:
break
# --------------- TRAINING SECTION BEGIN -----------------
model.train()
for i in range(1, train_accumulation_steps+1):
ctx = model.no_sync() if i < train_accumulation_steps else contextlib.nullcontext()
with ctx: # there's no need to sync gradients every accumulation step
# forward pass
loss = model(x, y, attn_blocksize=attn_blocksize)
# advance the dataset for the next batch
x, y = train_loader.next_batch()
# backward pass
loss.backward()
train_loss = loss.detach()
for p in model.parameters():
p.grad /= train_accumulation_steps
# momentum warmup for Muon
frac = min(step/300, 1)
optimizer3.param_groups[0]['momentum'] = (1 - frac) * 0.85 + frac * 0.95
# step the optimizers and schedulers
for opt, sched in zip(optimizers, schedulers):
opt.step()
sched.step()
# null the gradients
model.zero_grad(set_to_none=True)
# --------------- TRAINING SECTION END -------------------
# everything that follows now is just diagnostics, prints, logging, etc.
#dist.all_reduce(train_loss, op=dist.ReduceOp.AVG) # all-reducing the training loss would be more correct in terms of logging, but slower
approx_time = training_time_ms + 1000 * (time.time() - t0)
print0(f"step:{step+1}/{args.num_iterations} train_loss:{train_loss.item():.4f} train_time:{approx_time:.0f}ms step_avg:{approx_time/timed_steps:.2f}ms")
if master_process:
print(f"peak memory consumption: {torch.cuda.max_memory_allocated() // 1024 // 1024} MiB")
# -------------------------------------------------------------------------
# clean up nice
dist.destroy_process_group()
====================================================================================================
Running pytorch 2.6.0.dev20241203+cu124 compiled for CUDA 12.4
nvidia-smi:
Thu Dec 5 03:22:32 2024
+---------------------------------------------------------------------------------------+
| NVIDIA-SMI 535.183.06 Driver Version: 535.183.06 CUDA Version: 12.2 |
|-----------------------------------------+----------------------+----------------------+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+======================+======================|
| 0 NVIDIA H100 80GB HBM3 On | 00000000:19:00.0 Off | 0 |
| N/A 39C P0 75W / 700W | 3MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 1 NVIDIA H100 80GB HBM3 On | 00000000:3B:00.0 Off | 0 |
| N/A 30C P0 91W / 700W | 22MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 2 NVIDIA H100 80GB HBM3 On | 00000000:4C:00.0 Off | 0 |
| N/A 31C P0 117W / 700W | 529MiB / 81559MiB | 1% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 3 NVIDIA H100 80GB HBM3 On | 00000000:5D:00.0 Off | 0 |
| N/A 38C P0 118W / 700W | 39MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 4 NVIDIA H100 80GB HBM3 On | 00000000:9B:00.0 Off | 0 |
| N/A 39C P0 123W / 700W | 43MiB / 81559MiB | 1% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 5 NVIDIA H100 80GB HBM3 On | 00000000:BB:00.0 Off | 0 |
| N/A 30C P0 110W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 6 NVIDIA H100 80GB HBM3 On | 00000000:CB:00.0 Off | 0 |
| N/A 39C P0 127W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 7 NVIDIA H100 80GB HBM3 On | 00000000:DB:00.0 Off | 0 |
| N/A 30C P0 111W / 700W | 23MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
+---------------------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=======================================================================================|
+---------------------------------------------------------------------------------------+
====================================================================================================
Training DataLoader: total number of tokens: 1100000000 across 11 files
Validation DataLoader: total number of tokens: 100000000 across 1 files
====================================================================================================
step:0/1530 val_loss:10.8258 train_time:0ms step_avg:nanms
step:1/1530 train_loss:10.8258 train_time:31706ms step_avg:nanms
step:2/1530 train_loss:10.0695 train_time:31819ms step_avg:nanms
step:3/1530 train_loss:8.3650 train_time:31978ms step_avg:nanms
step:4/1530 train_loss:7.5826 train_time:32140ms step_avg:nanms
step:5/1530 train_loss:7.4873 train_time:32300ms step_avg:nanms
step:6/1530 train_loss:6.9794 train_time:32461ms step_avg:nanms
step:7/1530 train_loss:7.2095 train_time:32621ms step_avg:nanms
step:8/1530 train_loss:6.7352 train_time:32781ms step_avg:nanms
step:9/1530 train_loss:6.6229 train_time:32942ms step_avg:nanms
step:10/1530 train_loss:6.4962 train_time:33103ms step_avg:nanms
step:11/1530 train_loss:6.4808 train_time:115ms step_avg:nanms
step:12/1530 train_loss:6.3722 train_time:276ms step_avg:nanms
step:13/1530 train_loss:6.2568 train_time:435ms step_avg:145.06ms
step:14/1530 train_loss:6.1783 train_time:597ms step_avg:149.20ms
step:15/1530 train_loss:6.1548 train_time:757ms step_avg:151.40ms
step:16/1530 train_loss:6.0964 train_time:918ms step_avg:152.98ms
step:17/1530 train_loss:6.1749 train_time:1078ms step_avg:154.01ms
step:18/1530 train_loss:5.9492 train_time:1238ms step_avg:154.80ms
step:19/1530 train_loss:6.0128 train_time:1399ms step_avg:155.42ms
step:20/1530 train_loss:5.6703 train_time:1559ms step_avg:155.93ms
step:21/1530 train_loss:5.9501 train_time:1720ms step_avg:156.38ms
step:22/1530 train_loss:6.1783 train_time:1881ms step_avg:156.74ms
step:23/1530 train_loss:5.8536 train_time:2040ms step_avg:156.95ms
step:24/1530 train_loss:6.0183 train_time:2200ms step_avg:157.18ms
step:25/1530 train_loss:5.6858 train_time:2361ms step_avg:157.38ms
step:26/1530 train_loss:5.5864 train_time:2521ms step_avg:157.54ms
step:27/1530 train_loss:5.8094 train_time:2682ms step_avg:157.77ms
step:28/1530 train_loss:5.3988 train_time:2842ms step_avg:157.90ms
step:29/1530 train_loss:5.6748 train_time:3002ms step_avg:157.98ms
step:30/1530 train_loss:5.4706 train_time:3162ms step_avg:158.10ms
step:31/1530 train_loss:5.4448 train_time:3322ms step_avg:158.17ms
step:32/1530 train_loss:5.2773 train_time:3483ms step_avg:158.33ms
step:33/1530 train_loss:5.5785 train_time:3644ms step_avg:158.42ms
step:34/1530 train_loss:5.4916 train_time:3802ms step_avg:158.44ms
step:35/1530 train_loss:5.6186 train_time:3963ms step_avg:158.54ms
step:36/1530 train_loss:5.5537 train_time:4124ms step_avg:158.60ms
step:37/1530 train_loss:5.4556 train_time:4283ms step_avg:158.64ms
step:38/1530 train_loss:5.2937 train_time:4444ms step_avg:158.72ms
step:39/1530 train_loss:5.3159 train_time:4604ms step_avg:158.75ms
step:40/1530 train_loss:5.2402 train_time:4763ms step_avg:158.78ms
step:41/1530 train_loss:5.2398 train_time:4923ms step_avg:158.79ms
step:42/1530 train_loss:5.1697 train_time:5083ms step_avg:158.86ms
step:43/1530 train_loss:5.2727 train_time:5243ms step_avg:158.88ms
step:44/1530 train_loss:5.2296 train_time:5403ms step_avg:158.90ms
step:45/1530 train_loss:5.3768 train_time:5563ms step_avg:158.94ms
step:46/1530 train_loss:5.1752 train_time:5723ms step_avg:158.96ms
step:47/1530 train_loss:5.0806 train_time:5883ms step_avg:159.00ms
step:48/1530 train_loss:5.2065 train_time:6042ms step_avg:158.99ms
step:49/1530 train_loss:5.1365 train_time:6203ms step_avg:159.04ms
step:50/1530 train_loss:5.2493 train_time:6363ms step_avg:159.08ms
step:51/1530 train_loss:5.1617 train_time:6523ms step_avg:159.10ms
step:52/1530 train_loss:5.0430 train_time:6685ms step_avg:159.16ms
step:53/1530 train_loss:5.1739 train_time:6845ms step_avg:159.18ms
step:54/1530 train_loss:5.0318 train_time:7005ms step_avg:159.20ms
step:55/1530 train_loss:5.4194 train_time:7164ms step_avg:159.20ms
step:56/1530 train_loss:5.0153 train_time:7324ms step_avg:159.21ms
step:57/1530 train_loss:4.8780 train_time:7484ms step_avg:159.23ms
step:58/1530 train_loss:5.0496 train_time:7644ms step_avg:159.24ms
step:59/1530 train_loss:5.0163 train_time:7803ms step_avg:159.25ms
step:60/1530 train_loss:5.1297 train_time:7963ms step_avg:159.27ms
step:61/1530 train_loss:4.8381 train_time:8124ms step_avg:159.28ms
step:62/1530 train_loss:4.9847 train_time:8283ms step_avg:159.28ms
step:63/1530 train_loss:4.9692 train_time:8443ms step_avg:159.31ms
step:64/1530 train_loss:4.9779 train_time:8604ms step_avg:159.33ms
step:65/1530 train_loss:4.7871 train_time:8764ms step_avg:159.34ms
step:66/1530 train_loss:4.9124 train_time:8924ms step_avg:159.35ms
step:67/1530 train_loss:4.8202 train_time:9084ms step_avg:159.37ms
step:68/1530 train_loss:5.1058 train_time:9244ms step_avg:159.38ms
step:69/1530 train_loss:4.7320 train_time:9403ms step_avg:159.37ms
step:70/1530 train_loss:4.8675 train_time:9564ms step_avg:159.39ms
step:71/1530 train_loss:4.9831 train_time:9724ms step_avg:159.41ms
step:72/1530 train_loss:4.8997 train_time:9884ms step_avg:159.42ms
step:73/1530 train_loss:4.7589 train_time:10043ms step_avg:159.42ms
step:74/1530 train_loss:4.9030 train_time:10203ms step_avg:159.42ms
step:75/1530 train_loss:4.8484 train_time:10364ms step_avg:159.44ms
step:76/1530 train_loss:4.7921 train_time:10523ms step_avg:159.44ms
step:77/1530 train_loss:4.9133 train_time:10684ms step_avg:159.47ms
step:78/1530 train_loss:5.1249 train_time:10845ms step_avg:159.48ms
step:79/1530 train_loss:4.8304 train_time:11003ms step_avg:159.47ms
step:80/1530 train_loss:4.8649 train_time:11164ms step_avg:159.49ms
step:81/1530 train_loss:4.6443 train_time:11324ms step_avg:159.49ms
step:82/1530 train_loss:4.8225 train_time:11484ms step_avg:159.50ms
step:83/1530 train_loss:4.7788 train_time:11644ms step_avg:159.51ms
step:84/1530 train_loss:4.7681 train_time:11804ms step_avg:159.52ms
step:85/1530 train_loss:4.6277 train_time:11965ms step_avg:159.53ms
step:86/1530 train_loss:4.8276 train_time:12126ms step_avg:159.55ms
step:87/1530 train_loss:4.7341 train_time:12286ms step_avg:159.55ms
step:88/1530 train_loss:4.7232 train_time:12446ms step_avg:159.56ms
step:89/1530 train_loss:4.7020 train_time:12606ms step_avg:159.56ms
step:90/1530 train_loss:4.6362 train_time:12765ms step_avg:159.56ms
step:91/1530 train_loss:4.6090 train_time:12925ms step_avg:159.57ms
step:92/1530 train_loss:4.7734 train_time:13085ms step_avg:159.58ms
step:93/1530 train_loss:4.6025 train_time:13245ms step_avg:159.58ms
step:94/1530 train_loss:4.6117 train_time:13405ms step_avg:159.59ms
step:95/1530 train_loss:4.6630 train_time:13566ms step_avg:159.60ms
step:96/1530 train_loss:4.5776 train_time:13726ms step_avg:159.60ms
step:97/1530 train_loss:4.6392 train_time:13888ms step_avg:159.63ms
step:98/1530 train_loss:4.5762 train_time:14048ms step_avg:159.64ms
step:99/1530 train_loss:4.6564 train_time:14208ms step_avg:159.64ms
step:100/1530 train_loss:4.6702 train_time:14370ms step_avg:159.66ms
step:101/1530 train_loss:4.5201 train_time:14530ms step_avg:159.67ms
step:102/1530 train_loss:4.6891 train_time:14691ms step_avg:159.68ms
step:103/1530 train_loss:4.5565 train_time:14852ms step_avg:159.70ms
step:104/1530 train_loss:4.5218 train_time:15013ms step_avg:159.71ms
step:105/1530 train_loss:4.5466 train_time:15174ms step_avg:159.73ms
step:106/1530 train_loss:4.5873 train_time:15333ms step_avg:159.72ms
step:107/1530 train_loss:4.4908 train_time:15494ms step_avg:159.74ms
step:108/1530 train_loss:4.3540 train_time:15655ms step_avg:159.75ms
step:109/1530 train_loss:4.4774 train_time:15816ms step_avg:159.75ms
step:110/1530 train_loss:4.4681 train_time:15977ms step_avg:159.77ms
step:111/1530 train_loss:4.4148 train_time:16137ms step_avg:159.77ms
step:112/1530 train_loss:4.5806 train_time:16298ms step_avg:159.78ms
step:113/1530 train_loss:4.4858 train_time:16459ms step_avg:159.79ms
step:114/1530 train_loss:4.3467 train_time:16618ms step_avg:159.79ms
step:115/1530 train_loss:4.4837 train_time:16783ms step_avg:159.83ms
step:116/1530 train_loss:4.4563 train_time:16945ms step_avg:159.86ms
step:117/1530 train_loss:4.3615 train_time:17109ms step_avg:159.90ms
step:118/1530 train_loss:4.5720 train_time:17275ms step_avg:159.95ms
step:119/1530 train_loss:4.4504 train_time:17439ms step_avg:159.99ms
step:120/1530 train_loss:4.3270 train_time:17603ms step_avg:160.03ms
step:121/1530 train_loss:4.2861 train_time:17767ms step_avg:160.06ms
step:122/1530 train_loss:4.4443 train_time:17930ms step_avg:160.09ms
step:123/1530 train_loss:4.2823 train_time:18095ms step_avg:160.13ms
step:124/1530 train_loss:4.5784 train_time:18258ms step_avg:160.16ms
step:125/1530 train_loss:4.4341 train_time:18422ms step_avg:160.19ms
step:125/1530 val_loss:4.3858 train_time:18469ms step_avg:160.60ms
step:126/1530 train_loss:4.3966 train_time:18586ms step_avg:160.22ms
step:127/1530 train_loss:4.4236 train_time:18752ms step_avg:160.27ms
step:128/1530 train_loss:4.3833 train_time:18916ms step_avg:160.30ms
step:129/1530 train_loss:4.6825 train_time:19079ms step_avg:160.33ms
step:130/1530 train_loss:4.3695 train_time:19243ms step_avg:160.36ms
step:131/1530 train_loss:4.3905 train_time:19407ms step_avg:160.39ms
step:132/1530 train_loss:4.3375 train_time:19570ms step_avg:160.41ms
step:133/1530 train_loss:4.4355 train_time:19734ms step_avg:160.44ms
step:134/1530 train_loss:4.2547 train_time:19897ms step_avg:160.46ms
step:135/1530 train_loss:4.4324 train_time:20061ms step_avg:160.48ms
step:136/1530 train_loss:4.2040 train_time:20225ms step_avg:160.52ms
step:137/1530 train_loss:4.3606 train_time:20390ms step_avg:160.55ms
step:138/1530 train_loss:4.2800 train_time:20554ms step_avg:160.58ms
step:139/1530 train_loss:4.3780 train_time:20719ms step_avg:160.61ms
step:140/1530 train_loss:4.4676 train_time:20883ms step_avg:160.63ms
step:141/1530 train_loss:4.3145 train_time:21045ms step_avg:160.65ms
step:142/1530 train_loss:4.2933 train_time:21209ms step_avg:160.68ms
step:143/1530 train_loss:4.2490 train_time:21373ms step_avg:160.70ms
step:144/1530 train_loss:4.3433 train_time:21537ms step_avg:160.72ms
step:145/1530 train_loss:4.2958 train_time:21702ms step_avg:160.75ms
step:146/1530 train_loss:4.1715 train_time:21866ms step_avg:160.78ms
step:147/1530 train_loss:4.3129 train_time:22029ms step_avg:160.80ms
step:148/1530 train_loss:4.3527 train_time:22193ms step_avg:160.82ms
step:149/1530 train_loss:4.2974 train_time:22357ms step_avg:160.84ms
step:150/1530 train_loss:4.4400 train_time:22520ms step_avg:160.86ms
step:151/1530 train_loss:4.2568 train_time:22685ms step_avg:160.89ms
step:152/1530 train_loss:4.2633 train_time:22851ms step_avg:160.92ms
step:153/1530 train_loss:4.3576 train_time:23015ms step_avg:160.95ms
step:154/1530 train_loss:4.3540 train_time:23179ms step_avg:160.96ms
step:155/1530 train_loss:4.2570 train_time:23342ms step_avg:160.98ms
step:156/1530 train_loss:4.3371 train_time:23507ms step_avg:161.01ms
step:157/1530 train_loss:4.4100 train_time:23671ms step_avg:161.03ms
step:158/1530 train_loss:4.2476 train_time:23836ms step_avg:161.06ms
step:159/1530 train_loss:4.2935 train_time:23999ms step_avg:161.07ms
step:160/1530 train_loss:4.1208 train_time:24165ms step_avg:161.10ms
step:161/1530 train_loss:4.3419 train_time:24329ms step_avg:161.12ms
step:162/1530 train_loss:4.3557 train_time:24493ms step_avg:161.13ms
step:163/1530 train_loss:4.3300 train_time:24655ms step_avg:161.15ms
step:164/1530 train_loss:4.1894 train_time:24819ms step_avg:161.16ms
step:165/1530 train_loss:4.2768 train_time:24983ms step_avg:161.18ms
step:166/1530 train_loss:4.3315 train_time:25146ms step_avg:161.19ms
step:167/1530 train_loss:4.1866 train_time:25310ms step_avg:161.21ms
step:168/1530 train_loss:4.2830 train_time:25474ms step_avg:161.23ms
step:169/1530 train_loss:4.1534 train_time:25637ms step_avg:161.24ms
step:170/1530 train_loss:4.0095 train_time:25801ms step_avg:161.26ms
step:171/1530 train_loss:4.1937 train_time:25964ms step_avg:161.27ms
step:172/1530 train_loss:4.2087 train_time:26127ms step_avg:161.28ms
step:173/1530 train_loss:4.2580 train_time:26290ms step_avg:161.29ms
step:174/1530 train_loss:4.4080 train_time:26453ms step_avg:161.30ms
step:175/1530 train_loss:4.2392 train_time:26615ms step_avg:161.31ms
step:176/1530 train_loss:4.0918 train_time:26778ms step_avg:161.31ms
step:177/1530 train_loss:4.0596 train_time:26940ms step_avg:161.32ms
step:178/1530 train_loss:4.1724 train_time:27103ms step_avg:161.33ms
step:179/1530 train_loss:4.1160 train_time:27265ms step_avg:161.33ms
step:180/1530 train_loss:4.1067 train_time:27428ms step_avg:161.34ms
step:181/1530 train_loss:4.2985 train_time:27590ms step_avg:161.35ms
step:182/1530 train_loss:4.1489 train_time:27754ms step_avg:161.36ms
step:183/1530 train_loss:4.1223 train_time:27917ms step_avg:161.37ms
step:184/1530 train_loss:4.1175 train_time:28080ms step_avg:161.38ms
step:185/1530 train_loss:4.1961 train_time:28242ms step_avg:161.38ms
step:186/1530 train_loss:4.1608 train_time:28405ms step_avg:161.39ms
step:187/1530 train_loss:4.2272 train_time:28568ms step_avg:161.40ms
step:188/1530 train_loss:4.1689 train_time:28863ms step_avg:162.15ms
step:189/1530 train_loss:4.1072 train_time:29195ms step_avg:163.10ms
step:190/1530 train_loss:4.2103 train_time:29359ms step_avg:163.10ms
step:191/1530 train_loss:4.0739 train_time:29522ms step_avg:163.10ms
step:192/1530 train_loss:4.0198 train_time:29685ms step_avg:163.10ms
step:193/1530 train_loss:4.2431 train_time:29849ms step_avg:163.11ms
step:194/1530 train_loss:4.1673 train_time:30011ms step_avg:163.10ms
step:195/1530 train_loss:4.3463 train_time:30173ms step_avg:163.10ms
step:196/1530 train_loss:4.1732 train_time:30336ms step_avg:163.10ms
step:197/1530 train_loss:4.0365 train_time:30499ms step_avg:163.10ms
step:198/1530 train_loss:4.1741 train_time:30662ms step_avg:163.10ms
step:199/1530 train_loss:4.0294 train_time:30825ms step_avg:163.09ms
step:200/1530 train_loss:4.1053 train_time:30988ms step_avg:163.09ms
step:201/1530 train_loss:3.9880 train_time:31151ms step_avg:163.09ms
step:202/1530 train_loss:4.2442 train_time:31313ms step_avg:163.09ms
step:203/1530 train_loss:4.0629 train_time:31475ms step_avg:163.09ms
step:204/1530 train_loss:4.1796 train_time:31639ms step_avg:163.09ms
step:205/1530 train_loss:4.2342 train_time:31801ms step_avg:163.08ms
step:206/1530 train_loss:3.9396 train_time:31963ms step_avg:163.08ms
step:207/1530 train_loss:4.0769 train_time:32126ms step_avg:163.08ms
step:208/1530 train_loss:4.0988 train_time:32290ms step_avg:163.08ms
step:209/1530 train_loss:4.2358 train_time:32451ms step_avg:163.07ms
step:210/1530 train_loss:4.1636 train_time:32615ms step_avg:163.07ms
step:211/1530 train_loss:4.0556 train_time:32777ms step_avg:163.07ms
step:212/1530 train_loss:4.1127 train_time:32940ms step_avg:163.07ms
step:213/1530 train_loss:4.0547 train_time:33103ms step_avg:163.07ms
step:214/1530 train_loss:4.1068 train_time:33266ms step_avg:163.07ms
step:215/1530 train_loss:3.9598 train_time:33428ms step_avg:163.06ms
step:216/1530 train_loss:3.9995 train_time:33591ms step_avg:163.06ms
step:217/1530 train_loss:4.0063 train_time:33754ms step_avg:163.06ms
step:218/1530 train_loss:4.0778 train_time:33916ms step_avg:163.06ms
step:219/1530 train_loss:4.0634 train_time:34079ms step_avg:163.06ms
step:220/1530 train_loss:4.0763 train_time:34243ms step_avg:163.06ms
step:221/1530 train_loss:4.0904 train_time:34405ms step_avg:163.06ms
step:222/1530 train_loss:3.9884 train_time:34568ms step_avg:163.06ms
step:223/1530 train_loss:3.9804 train_time:34731ms step_avg:163.06ms
step:224/1530 train_loss:4.2900 train_time:34894ms step_avg:163.06ms
step:225/1530 train_loss:3.9130 train_time:35058ms step_avg:163.06ms
step:226/1530 train_loss:3.9859 train_time:35221ms step_avg:163.06ms
step:227/1530 train_loss:3.9672 train_time:35384ms step_avg:163.06ms
step:228/1530 train_loss:4.1402 train_time:35548ms step_avg:163.07ms
step:229/1530 train_loss:3.9161 train_time:35715ms step_avg:163.08ms
step:230/1530 train_loss:4.0267 train_time:35880ms step_avg:163.09ms
step:231/1530 train_loss:3.8901 train_time:36046ms step_avg:163.11ms
step:232/1530 train_loss:3.9558 train_time:36212ms step_avg:163.12ms
step:233/1530 train_loss:4.0826 train_time:36377ms step_avg:163.12ms
step:234/1530 train_loss:4.0270 train_time:36544ms step_avg:163.14ms
step:235/1530 train_loss:3.8940 train_time:36711ms step_avg:163.16ms
step:236/1530 train_loss:4.0709 train_time:36877ms step_avg:163.17ms
step:237/1530 train_loss:4.0770 train_time:37043ms step_avg:163.19ms
step:238/1530 train_loss:3.9376 train_time:37209ms step_avg:163.20ms
step:239/1530 train_loss:4.0764 train_time:37375ms step_avg:163.21ms
step:240/1530 train_loss:4.1099 train_time:37542ms step_avg:163.22ms
step:241/1530 train_loss:3.9599 train_time:37707ms step_avg:163.23ms
step:242/1530 train_loss:4.1430 train_time:37873ms step_avg:163.24ms
step:243/1530 train_loss:4.0073 train_time:38038ms step_avg:163.25ms
step:244/1530 train_loss:4.0739 train_time:38204ms step_avg:163.27ms
step:245/1530 train_loss:4.1367 train_time:38370ms step_avg:163.28ms
step:246/1530 train_loss:4.0578 train_time:38536ms step_avg:163.29ms
step:247/1530 train_loss:4.0007 train_time:38701ms step_avg:163.30ms
step:248/1530 train_loss:4.0940 train_time:38867ms step_avg:163.31ms
step:249/1530 train_loss:3.9121 train_time:39033ms step_avg:163.32ms
step:250/1530 train_loss:3.9699 train_time:39199ms step_avg:163.33ms
step:250/1530 val_loss:4.0017 train_time:39247ms step_avg:163.53ms
step:251/1530 train_loss:4.0711 train_time:39366ms step_avg:163.34ms
step:252/1530 train_loss:4.1554 train_time:39535ms step_avg:163.37ms
step:253/1530 train_loss:3.9293 train_time:39701ms step_avg:163.38ms
step:254/1530 train_loss:3.8749 train_time:39867ms step_avg:163.39ms
step:255/1530 train_loss:4.0713 train_time:40033ms step_avg:163.40ms
step:256/1530 train_loss:3.9808 train_time:40199ms step_avg:163.41ms
step:257/1530 train_loss:3.9811 train_time:40364ms step_avg:163.42ms
step:258/1530 train_loss:3.9814 train_time:40531ms step_avg:163.43ms
step:259/1530 train_loss:4.0264 train_time:40696ms step_avg:163.44ms
step:260/1530 train_loss:4.0547 train_time:40862ms step_avg:163.45ms
step:261/1530 train_loss:4.0188 train_time:41030ms step_avg:163.47ms
step:262/1530 train_loss:3.9896 train_time:41196ms step_avg:163.48ms
step:263/1530 train_loss:3.8953 train_time:41361ms step_avg:163.48ms
step:264/1530 train_loss:3.9791 train_time:41529ms step_avg:163.50ms
step:265/1530 train_loss:3.8626 train_time:41696ms step_avg:163.51ms
step:266/1530 train_loss:3.9124 train_time:41861ms step_avg:163.52ms
step:267/1530 train_loss:3.9253 train_time:42027ms step_avg:163.53ms
step:268/1530 train_loss:3.9592 train_time:42192ms step_avg:163.54ms
step:269/1530 train_loss:3.8530 train_time:42357ms step_avg:163.54ms
step:270/1530 train_loss:4.0964 train_time:42523ms step_avg:163.55ms
step:271/1530 train_loss:3.9615 train_time:42689ms step_avg:163.56ms
step:272/1530 train_loss:3.9241 train_time:42855ms step_avg:163.57ms
step:273/1530 train_loss:3.9440 train_time:43021ms step_avg:163.58ms
step:274/1530 train_loss:4.0412 train_time:43188ms step_avg:163.59ms
step:275/1530 train_loss:4.0525 train_time:43353ms step_avg:163.60ms
step:276/1530 train_loss:4.2217 train_time:43520ms step_avg:163.61ms
step:277/1530 train_loss:4.0290 train_time:43686ms step_avg:163.62ms
step:278/1530 train_loss:4.0813 train_time:43851ms step_avg:163.62ms
step:279/1530 train_loss:3.9905 train_time:44017ms step_avg:163.63ms
step:280/1530 train_loss:4.1891 train_time:44184ms step_avg:163.64ms
step:281/1530 train_loss:3.9687 train_time:44350ms step_avg:163.65ms
step:282/1530 train_loss:3.9349 train_time:44516ms step_avg:163.66ms
step:283/1530 train_loss:3.9082 train_time:44682ms step_avg:163.67ms
step:284/1530 train_loss:4.0456 train_time:44849ms step_avg:163.68ms
step:285/1530 train_loss:4.0547 train_time:45014ms step_avg:163.69ms
step:286/1530 train_loss:4.0850 train_time:45179ms step_avg:163.69ms
step:287/1530 train_loss:3.8999 train_time:45344ms step_avg:163.70ms
step:288/1530 train_loss:4.0102 train_time:45510ms step_avg:163.70ms
step:289/1530 train_loss:3.8691 train_time:45675ms step_avg:163.71ms
step:290/1530 train_loss:3.8486 train_time:45839ms step_avg:163.71ms
step:291/1530 train_loss:3.9025 train_time:46007ms step_avg:163.72ms
step:292/1530 train_loss:3.8620 train_time:46171ms step_avg:163.73ms
step:293/1530 train_loss:3.8952 train_time:46336ms step_avg:163.73ms
step:294/1530 train_loss:3.9241 train_time:46502ms step_avg:163.74ms
step:295/1530 train_loss:3.8380 train_time:46667ms step_avg:163.74ms
step:296/1530 train_loss:3.8562 train_time:46833ms step_avg:163.75ms
step:297/1530 train_loss:3.8664 train_time:46998ms step_avg:163.75ms
step:298/1530 train_loss:3.9639 train_time:47163ms step_avg:163.76ms
step:299/1530 train_loss:3.8205 train_time:47328ms step_avg:163.76ms
step:300/1530 train_loss:3.9641 train_time:47493ms step_avg:163.77ms
step:301/1530 train_loss:3.9556 train_time:47658ms step_avg:163.77ms
step:302/1530 train_loss:3.9257 train_time:47823ms step_avg:163.78ms
step:303/1530 train_loss:3.9698 train_time:47989ms step_avg:163.78ms
step:304/1530 train_loss:3.9594 train_time:48153ms step_avg:163.79ms
step:305/1530 train_loss:4.4527 train_time:48319ms step_avg:163.79ms
step:306/1530 train_loss:3.9289 train_time:48484ms step_avg:163.80ms
step:307/1530 train_loss:3.8282 train_time:48650ms step_avg:163.80ms
step:308/1530 train_loss:3.9697 train_time:48814ms step_avg:163.81ms
step:309/1530 train_loss:3.8578 train_time:48979ms step_avg:163.81ms
step:310/1530 train_loss:4.0722 train_time:49145ms step_avg:163.82ms
step:311/1530 train_loss:3.9260 train_time:49310ms step_avg:163.82ms
step:312/1530 train_loss:3.8564 train_time:49475ms step_avg:163.82ms
step:313/1530 train_loss:3.9433 train_time:49640ms step_avg:163.83ms
step:314/1530 train_loss:4.0610 train_time:49807ms step_avg:163.84ms
step:315/1530 train_loss:3.9368 train_time:49972ms step_avg:163.84ms
step:316/1530 train_loss:3.7864 train_time:50137ms step_avg:163.85ms
step:317/1530 train_loss:3.8696 train_time:50303ms step_avg:163.85ms
step:318/1530 train_loss:3.9172 train_time:50469ms step_avg:163.86ms
step:319/1530 train_loss:3.8891 train_time:50634ms step_avg:163.86ms
step:320/1530 train_loss:4.0149 train_time:50799ms step_avg:163.87ms
step:321/1530 train_loss:3.9534 train_time:50964ms step_avg:163.87ms
step:322/1530 train_loss:3.9276 train_time:51130ms step_avg:163.88ms
step:323/1530 train_loss:4.0026 train_time:51295ms step_avg:163.88ms
step:324/1530 train_loss:3.9419 train_time:51460ms step_avg:163.88ms
step:325/1530 train_loss:4.0124 train_time:51625ms step_avg:163.89ms
step:326/1530 train_loss:3.8917 train_time:51791ms step_avg:163.90ms
step:327/1530 train_loss:4.3831 train_time:51956ms step_avg:163.90ms
step:328/1530 train_loss:4.0740 train_time:52121ms step_avg:163.90ms
step:329/1530 train_loss:3.7883 train_time:52285ms step_avg:163.90ms
step:330/1530 train_loss:3.7405 train_time:52451ms step_avg:163.91ms
step:331/1530 train_loss:3.9723 train_time:52616ms step_avg:163.91ms
step:332/1530 train_loss:3.9109 train_time:52781ms step_avg:163.92ms
step:333/1530 train_loss:3.8849 train_time:52947ms step_avg:163.92ms
step:334/1530 train_loss:3.8416 train_time:53112ms step_avg:163.93ms
step:335/1530 train_loss:4.0082 train_time:53277ms step_avg:163.93ms
step:336/1530 train_loss:3.9614 train_time:53442ms step_avg:163.93ms
step:337/1530 train_loss:4.4160 train_time:53608ms step_avg:163.94ms
step:338/1530 train_loss:3.9334 train_time:53773ms step_avg:163.94ms
step:339/1530 train_loss:3.8577 train_time:53938ms step_avg:163.95ms
step:340/1530 train_loss:3.9355 train_time:54104ms step_avg:163.95ms
step:341/1530 train_loss:3.8470 train_time:54271ms step_avg:163.96ms
step:342/1530 train_loss:3.8036 train_time:54439ms step_avg:163.97ms
step:343/1530 train_loss:3.8400 train_time:54609ms step_avg:163.99ms
step:344/1530 train_loss:3.9939 train_time:54776ms step_avg:164.00ms
step:345/1530 train_loss:3.8038 train_time:54945ms step_avg:164.01ms
step:346/1530 train_loss:3.7617 train_time:55114ms step_avg:164.03ms
step:347/1530 train_loss:3.7978 train_time:55282ms step_avg:164.04ms
step:348/1530 train_loss:3.8550 train_time:55450ms step_avg:164.05ms
step:349/1530 train_loss:3.8274 train_time:55617ms step_avg:164.06ms
step:350/1530 train_loss:3.5719 train_time:55786ms step_avg:164.08ms
step:351/1530 train_loss:3.8198 train_time:55953ms step_avg:164.09ms
step:352/1530 train_loss:4.1772 train_time:56121ms step_avg:164.10ms
step:353/1530 train_loss:3.6536 train_time:56290ms step_avg:164.11ms
step:354/1530 train_loss:3.9216 train_time:56456ms step_avg:164.12ms
step:355/1530 train_loss:3.7746 train_time:56626ms step_avg:164.13ms
step:356/1530 train_loss:3.8779 train_time:56795ms step_avg:164.15ms
step:357/1530 train_loss:3.7534 train_time:56963ms step_avg:164.16ms
step:358/1530 train_loss:3.8514 train_time:57131ms step_avg:164.17ms
step:359/1530 train_loss:3.7598 train_time:57301ms step_avg:164.19ms
step:360/1530 train_loss:3.4283 train_time:57471ms step_avg:164.20ms
step:361/1530 train_loss:4.0172 train_time:57640ms step_avg:164.22ms
step:362/1530 train_loss:3.9126 train_time:57810ms step_avg:164.23ms
step:363/1530 train_loss:3.8361 train_time:57976ms step_avg:164.24ms
step:364/1530 train_loss:3.7402 train_time:58145ms step_avg:164.25ms
step:365/1530 train_loss:3.9080 train_time:58313ms step_avg:164.26ms
step:366/1530 train_loss:3.8569 train_time:58480ms step_avg:164.27ms
step:367/1530 train_loss:3.8523 train_time:58648ms step_avg:164.28ms
step:368/1530 train_loss:3.8453 train_time:58815ms step_avg:164.29ms
step:369/1530 train_loss:3.7463 train_time:58983ms step_avg:164.30ms
step:370/1530 train_loss:3.8761 train_time:59150ms step_avg:164.31ms
step:371/1530 train_loss:3.7286 train_time:59318ms step_avg:164.32ms
step:372/1530 train_loss:3.6882 train_time:59488ms step_avg:164.33ms
step:373/1530 train_loss:3.9118 train_time:59654ms step_avg:164.34ms
step:374/1530 train_loss:3.8236 train_time:59822ms step_avg:164.35ms
step:375/1530 train_loss:3.7957 train_time:59991ms step_avg:164.36ms
step:375/1530 val_loss:3.8256 train_time:60038ms step_avg:164.49ms