forked from KellerJordan/modded-nanogpt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path51faed93-0804-418c-9057-0d94c3f94a9c.txt
2165 lines (2092 loc) · 134 KB
/
51faed93-0804-418c-9057-0d94c3f94a9c.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import os
import sys
with open(sys.argv[0]) as f:
code = f.read() # read the code of this file ASAP, for logging
import uuid
import glob
import time
import contextlib
from dataclasses import dataclass
import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
import torch.distributed as dist
import torch._inductor.config as config
from torch.nn.parallel import DistributedDataParallel as DDP
# Use of FlexAttention contributed by @KoszarskyB
from torch.nn.attention.flex_attention import flex_attention, create_block_mask
flex_attention = torch.compile(flex_attention, dynamic=False)
create_block_mask = torch.compile(create_block_mask, dynamic=False)
# -----------------------------------------------------------------------------
# Muon optimizer
def zeropower_via_svd(G, steps=None):
U, S, V = G.svd()
return U @ V.T
@torch.compile
def zeropower_via_newtonschulz5(G, steps=10, eps=1e-7):
"""
Newton-Schulz iteration to compute the zeroth power / orthogonalization of G. We opt to use a
quintic iteration whose coefficients are selected to maximize the slope at zero. For the purpose
of minimizing steps, it turns out to be empirically effective to keep increasing the slope at
zero even beyond the point where the iteration no longer converges all the way to one everywhere
on the interval. This iteration therefore does not produce UV^T but rather something like US'V^T
where S' is diagonal with S_{ii}' ~ Uniform(0.5, 1.5), which turns out not to hurt model
performance at all relative to UV^T, where USV^T = G is the SVD.
"""
assert len(G.shape) == 2
a, b, c = (3.4445, -4.7750, 2.0315)
X = G.bfloat16()
X /= (X.norm() + eps) # ensure top singular value <= 1
if G.size(0) > G.size(1):
X = X.T
for _ in range(steps):
A = X @ X.T
B = b * A + c * A @ A # adapted from suggestion by @jxbz, @leloykun, and @YouJiacheng
X = a * X + B @ X
if G.size(0) > G.size(1):
X = X.T
return X
zeropower_backends = dict(svd=zeropower_via_svd, newtonschulz5=zeropower_via_newtonschulz5)
class Muon(torch.optim.Optimizer):
"""
Muon - MomentUm Orthogonalized by Newton-schulz
Muon internally runs standard SGD-momentum, and then performs an orthogonalization post-
processing step, in which each 2D parameter's update is replaced with the nearest orthogonal
matrix. To efficiently orthogonalize each update, we use a Newton-Schulz iteration, which has
the advantage that it can be stably run in bfloat16 on the GPU.
Some warnings:
- This optimizer assumes that all parameters passed in are 2D.
- It should not be used for the embedding layer, the final fully connected layer, or any {0,1}-D
parameters; those should all be optimized by a standard method (e.g., AdamW).
- To use it with 4D convolutional filters, it works well to just flatten their last 3 dimensions.
- We believe it is unlikely to work well for training with small batch size.
- We believe it may not work well for finetuning pretrained models, but we haven't tested this.
- We have not yet tried this optimizer for training scenarios larger than NanoGPT (124M).
Arguments:
lr: The learning rate used by the internal SGD.
momentum: The momentum used by the internal SGD.
nesterov: Whether to use Nesterov-style momentum in the internal SGD. (recommended)
backend: The chosen backend for the orthogonalization step. (recommended: 'newtonschulz5')
backend_steps: The number of iteration steps to use in the backend, if it is iterative.
"""
def __init__(self, params, lr=0.02, momentum=0.95, nesterov=True,
backend='newtonschulz5', backend_steps=5):
defaults = dict(lr=lr, momentum=momentum, nesterov=nesterov, backend=backend, backend_steps=backend_steps)
super().__init__(params, defaults)
def step(self):
for group in self.param_groups:
lr = group['lr']
momentum = group['momentum']
zeropower_backend = zeropower_backends[group['backend']]
# generate weight updates in distributed fashion
total_params = sum(p.numel() for p in group['params'])
updates_flat = torch.zeros(total_params, device='cuda', dtype=torch.bfloat16)
curr_idx = 0
for i, p in enumerate(group['params']):
# luckily this will perfectly distribute a transformer with multiple of 4 layers to 8 GPUs
if i % int(os.environ['WORLD_SIZE']) == int(os.environ['RANK']):
g = p.grad
assert g is not None
state = self.state[p]
if 'momentum_buffer' not in state:
state['momentum_buffer'] = torch.zeros_like(g)
buf = state['momentum_buffer']
buf.mul_(momentum).add_(g)
g = g.add(buf, alpha=momentum) if group['nesterov'] else buf
g = zeropower_backend(g, steps=group['backend_steps'])
g *= max(1, g.size(0)/g.size(1))**0.5
updates_flat[curr_idx:curr_idx+p.numel()] = g.flatten()
curr_idx += p.numel()
# sync updates across devices. we are not memory-constrained so can do this simple deserialization
dist.all_reduce(updates_flat, op=dist.ReduceOp.SUM)
# deserialize and apply updates
curr_idx = 0
for p in group['params']:
g = updates_flat[curr_idx:curr_idx+p.numel()].view_as(p.data).type_as(p.data)
p.data.add_(g, alpha=-lr)
curr_idx += p.numel()
# -----------------------------------------------------------------------------
# PyTorch nn.Module definitions for the GPT-2 model
def norm(x):
return F.rms_norm(x, (x.size(-1),))
class CastedLinear(nn.Linear):
def __init__(self, in_features, out_features):
super().__init__(in_features, out_features, bias=False)
def forward(self, x):
return F.linear(x, self.weight.to(x.dtype))
class Rotary(torch.nn.Module):
def __init__(self, dim, base=10000):
super().__init__()
self.register_buffer('inv_freq', (1 / base) ** (torch.arange(0, dim, 2) / dim))
self.seq_len_cached = None
self.cos_cached = None
self.sin_cached = None
def forward(self, x):
seq_len = x.shape[1]
if seq_len != self.seq_len_cached:
t = torch.arange(seq_len, device=x.device)
freqs = torch.outer(t, self.inv_freq)
self.seq_len_cached = seq_len
self.cos_cached = freqs.cos()
self.sin_cached = freqs.sin()
cos, sin = self.cos_cached[None, :, None, :], self.sin_cached[None, :, None, :]
# apply_rotary_emb(x, cos, sin)
x1, x2 = x.chunk(2, dim=3)
y1 = x1 * cos + x2 * sin
y2 = x1 * (-sin) + x2 * cos
return torch.cat((y1, y2), 3).type_as(x)
class CausalSelfAttention(nn.Module):
def __init__(self, dim, n_head):
super().__init__()
assert dim % n_head == 0
self.n_head = n_head
self.c_q = CastedLinear(dim, dim)
self.c_k = CastedLinear(dim, dim)
self.c_v = CastedLinear(dim, dim)
# value residual lambda
self.lamb = nn.Parameter(torch.tensor(0.5)) # @Grad62304977
# rotary embeddings
self.rotary = Rotary(dim // n_head) # dim // n_head = head_dim
# output projection
self.c_proj = CastedLinear(dim, dim)
self.c_proj.weight.data.zero_() # zero init suggested by @Grad62304977
def forward(self, x, vi, block_mask):
B, T = x.size(0), x.size(1) # batch size, sequence length
assert B == 1, "Must use batch size = 1 for FlexAttention"
q = self.c_q(x).view(B, T, self.n_head, -1)
k = self.c_k(x).view(B, T, self.n_head, -1)
v = self.c_v(x).view(B, T, self.n_head, -1)
v = (1 - self.lamb) * v + self.lamb * vi.view_as(v) # @Grad62304977
q, k = norm(q), norm(k) # QK norm suggested by @Grad62304977
q, k = self.rotary(q), self.rotary(k)
y = flex_attention(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), block_mask=block_mask)
y = y.transpose(1, 2).contiguous().view_as(x) # re-assemble all head outputs side by side
y = self.c_proj(y)
return y
class MLP(nn.Module):
def __init__(self, dim):
super().__init__()
self.c_fc = CastedLinear(dim, 4 * dim)
self.c_proj = CastedLinear(4 * dim, dim)
self.c_proj.weight.data.zero_() # zero init suggested by @Grad62304977
def forward(self, x):
x = self.c_fc(x)
x = F.relu(x).square() # https://arxiv.org/abs/2109.08668v2; ~1-2% better than GELU; suggested by @SKYLINEZ007 and @Grad62304977
x = self.c_proj(x)
return x
class Block(nn.Module):
def __init__(self, config):
super().__init__()
self.attn = CausalSelfAttention(config.n_embd, config.n_head)
self.mlp = MLP(config.n_embd)
self.lambdas = nn.Parameter(torch.tensor([1., 0.]))
def forward(self, x, vi, x0, block_mask):
x = self.lambdas[0] * x + self.lambdas[1] * x0
x = x + self.attn(norm(x), vi, block_mask)
x = x + self.mlp(norm(x))
return x
# -----------------------------------------------------------------------------
# The main GPT-2 model
@dataclass
class GPTConfig:
vocab_size : int = 50304
n_layer : int = 12
n_head : int = 6 # head dim 128 suggested by @Grad62304977
n_embd : int = 768
class GPT(nn.Module):
def __init__(self, config):
super().__init__()
# U-net design by @brendanh0gan
self.num_encoder_layers = config.n_layer // 2 # Half of the layers for encoder
self.num_decoder_layers = config.n_layer - self.num_encoder_layers # Remaining for decoder
# Add learnable skip connection weights for decoder layers
self.skip_weights = nn.Parameter(torch.ones(self.num_decoder_layers))
self.transformer = nn.ModuleDict(dict(
wte = nn.Embedding(config.vocab_size, config.n_embd),
# token value embeddings by @KoszarskyB - inspired by @Grad62304977's value residual learning
vte = nn.Embedding(config.vocab_size, config.n_embd*12),
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
))
self.lm_head = CastedLinear(config.n_embd, config.vocab_size)
self.lm_head.weight.data.zero_() # @Grad62304977
def forward(self, idx, target, attn_blocksize):
docs = (idx == 50256).cumsum(0)
def document_causal_mask(b, h, q_idx, kv_idx):
causal_mask = q_idx >= kv_idx
document_mask = docs[q_idx] == docs[kv_idx]
window_mask = q_idx - kv_idx < attn_blocksize
return causal_mask & document_mask & window_mask
S = len(idx)
block_mask = create_block_mask(document_causal_mask, None, None, S, S, device="cuda", _compile=True)
# forward the GPT model itself
x = self.transformer.wte(idx[None]) # token embeddings of shape (b, t, n_embd)
x = norm(x) # @Grad62304977
x0 = x
vi = self.transformer.vte(idx[None]).chunk(12, dim=-1)
# Store outputs for U-Net skip connections
skip_connections = []
# Encoder pass - process only the first half of the blocks
for i in range(self.num_encoder_layers):
x = self.transformer.h[i](x, vi[i], x0, block_mask)
skip_connections.append(x)
# Decoder pass - process the remaining blocks with weighted skip connections
for i in range(self.num_decoder_layers):
x = x + self.skip_weights[i] * skip_connections.pop()
x = self.transformer.h[self.num_encoder_layers + i](x, vi[self.num_encoder_layers+i], x0, block_mask)
x = norm(x)
logits = self.lm_head(x)
logits = 30 * torch.tanh(logits / 30) # @Grad62304977
logits = logits.float()
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), target.view(-1))
return loss
# -----------------------------------------------------------------------------
# Our own simple Distributed Data Loader
def _peek_data_shard(filename):
# only reads the header, returns header data
with open(filename, "rb") as f:
# first read the header, which is 256 int32 integers (4 bytes each)
header = np.frombuffer(f.read(256*4), dtype=np.int32)
if header[0] != 20240520:
print("ERROR: magic number mismatch in the data .bin file!")
print("---> HINT: Are you passing in a correct file with --input_bin?")
print("---> HINT: Dataset encoding changed recently, re-run data prepro or refer again to README")
print("---> HINT: For example re-run: `python dev/data/tinyshakespeare.py`, then re-try")
exit(1)
assert header[1] == 1, "unsupported version"
ntok = header[2] # number of tokens (claimed)
return ntok # for now just return the number of tokens
def _load_data_shard(filename):
with open(filename, "rb") as f:
# first read the header, which is 256 int32 integers (4 bytes each)
header = np.frombuffer(f.read(256*4), dtype=np.int32)
assert header[0] == 20240520, "magic number mismatch in the data .bin file"
assert header[1] == 1, "unsupported version"
ntok = header[2] # number of tokens (claimed)
# the rest of it are tokens, stored as uint16
tokens = np.frombuffer(f.read(), dtype=np.uint16)
assert len(tokens) == ntok, "number of tokens read does not match header?"
return tokens
class DistributedDataLoader:
def __init__(self, filename_pattern, T, process_rank, num_processes):
self.process_rank = process_rank
self.num_processes = num_processes
self.T = T
# glob files that match the pattern
self.files = sorted(glob.glob(filename_pattern))
assert len(self.files) > 0, f"did not find any files that match the pattern {filename_pattern}"
# load and validate all data shards, count number of tokens in total
ntok_total = 0
for fname in self.files:
shard_ntok = _peek_data_shard(fname)
assert shard_ntok >= num_processes * T + 1
ntok_total += int(shard_ntok)
self.ntok_total = ntok_total
self.reset()
def reset(self):
self.current_shard = -1
self.advance()
def advance(self): # advance to next data shard
self.current_shard = (self.current_shard + 1) % len(self.files)
self.current_position = self.process_rank * self.T
self.tokens = _load_data_shard(self.files[self.current_shard])
def next_batch(self):
batch_size = self.T * self.num_processes
buf = self.tokens[self.current_position:self.current_position+self.T+1]
buf = torch.tensor(buf.astype(np.int32), dtype=torch.long)
x = buf[:-1] # inputs
y = buf[1:] # targets
# advance current position and load next shard if necessary
self.current_position += batch_size
if self.current_position + batch_size >= len(self.tokens):
self.advance()
return x.cuda(), y.cuda()
# -----------------------------------------------------------------------------
# int main
@dataclass
class Hyperparameters:
# data hyperparams
input_bin : str = 'data/fineweb10B/fineweb_train_*.bin' # input .bin to train on
input_val_bin : str = 'data/fineweb10B/fineweb_val_*.bin' # input .bin to eval validation loss on
# optimization hyperparams
batch_size : int = 8 # batch size, in sequences, across all devices
sequence_length : int = 64*1024 # sequence length, in tokens
num_iterations : int = 1530 # number of iterations to run
warmup_iters : int = 0
cooldown_iters : int = 600 # number of iterations of linear warmup/cooldown for triangular or trapezoidal schedule
weight_decay : float = 0
# evaluation and logging hyperparams
val_loss_every : int = 125 # every how many steps to evaluate val loss? 0 for only at the end
val_tokens : int = 10485760 # how many tokens of validation data? it's important to keep this fixed for consistent comparisons
save_every : int = 0 # every how many steps to save the checkpoint? 0 for only at the end
args = Hyperparameters()
# set up DDP (distributed data parallel). torchrun sets this env variable
assert torch.cuda.is_available()
dist.init_process_group(backend='nccl')
ddp_rank = int(os.environ['RANK'])
ddp_local_rank = int(os.environ['LOCAL_RANK'])
ddp_world_size = int(os.environ['WORLD_SIZE'])
device = f'cuda:{ddp_local_rank}'
torch.cuda.set_device(device)
print(f"using device: {device}")
master_process = (ddp_rank == 0) # this process will do logging, checkpointing etc.
# begin logging
logfile = None
if master_process:
run_id = str(uuid.uuid4())
logdir = 'logs/%s/' % run_id
os.makedirs(logdir, exist_ok=True)
logfile = 'logs/%s.txt' % run_id
# create the log file
with open(logfile, "w") as f:
# begin the log by printing this file (the Python code)
f.write(code)
f.write('='*100 + '\n')
def print0(s, logonly=False):
if master_process:
with open(logfile, "a") as f:
if not logonly:
print(s)
f.write(s+'\n')
# log information about the hardware/software environment this is running on
# and print the full `nvidia-smi` to file
print0(f"Running pytorch {torch.version.__version__} compiled for CUDA {torch.version.cuda}\nnvidia-smi:")
import subprocess
result = subprocess.run(['nvidia-smi'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
print0(f'{result.stdout}', logonly=True)
print0('='*100, logonly=True)
# convenience variables
T = args.sequence_length
# calculate the number of steps to take in the val loop.
assert args.val_tokens % (T * ddp_world_size) == 0
val_steps = args.val_tokens // (T * ddp_world_size)
# calculate the steps of gradient accumulation required to attain the desired global batch size.
assert args.batch_size % (ddp_world_size) == 0
train_accumulation_steps = args.batch_size // ddp_world_size
# load tokens
train_loader = DistributedDataLoader(args.input_bin, T, ddp_rank, ddp_world_size)
val_loader = DistributedDataLoader(args.input_val_bin, T, ddp_rank, ddp_world_size)
print0(f"Training DataLoader: total number of tokens: {train_loader.ntok_total} across {len(train_loader.files)} files")
print0(f"Validation DataLoader: total number of tokens: {val_loader.ntok_total} across {len(val_loader.files)} files")
print0('='*100, logonly=True)
x, y = train_loader.next_batch()
# there are only 50257 unique GPT-2 tokens; we extend to nearest multiple of 128 for efficiency. suggested to me by @Grad62304977.
# this originates from Karpathy's experiments.
num_vocab = 50304
model = GPT(GPTConfig(vocab_size=num_vocab, n_layer=12, n_head=6, n_embd=768))
model = model.cuda().bfloat16()
for m in model.modules():
if isinstance(m, CastedLinear):
m.float()
if hasattr(config, "coordinate_descent_tuning"):
config.coordinate_descent_tuning = True # suggested by @Chillee
model = torch.compile(model)
# here we wrap model into DDP container
model = DDP(model, device_ids=[ddp_local_rank])
raw_model = model.module # always contains the "raw" unwrapped model
# init the optimizer(s)
optimizer1 = torch.optim.Adam([raw_model.transformer.wte.weight, raw_model.transformer.vte.weight], lr=0.6, betas=(0.8, 0.95), fused=True)
optimizer2 = torch.optim.Adam([raw_model.lm_head.weight], lr=0.008, betas=(0.8, 0.95), fused=True)
params = list(raw_model.transformer.h.parameters())
matrix_params = [p for p in params if p.ndim == 2]
scalar_params = [p for p in params if p.ndim < 2] + [raw_model.skip_weights]
optimizer3 = Muon(matrix_params, lr=0.05, momentum=0.95)
optimizer4 = torch.optim.Adam(scalar_params, lr=0.04, betas=(0.8, 0.95), fused=True) # note that this learning rate is neither sensitive nor tuned
optimizers = [optimizer1, optimizer2, optimizer3, optimizer4]
# learning rate decay scheduler (linear warmup and cooldown)
def get_lr(it):
assert it <= args.num_iterations
# 1) linear warmup for warmup_iters steps
if it < args.warmup_iters:
return (it+1) / args.warmup_iters
# 2) constant lr for a while
elif it < args.num_iterations - args.cooldown_iters:
return 1.0
# 3) linear cooldown
else:
decay_ratio = (args.num_iterations - it) / args.cooldown_iters
return decay_ratio
schedulers = [torch.optim.lr_scheduler.LambdaLR(opt, get_lr) for opt in optimizers]
# Start training loop
training_time_ms = 0
# start the clock
torch.cuda.synchronize()
t0 = time.time()
# begin training
for step in range(args.num_iterations + 1):
last_step = (step == args.num_iterations)
# This effectively ignores timing first 10 steps, which are slower for weird reasons.
# Alternately, and slightly more correctly in terms of benchmarking, we could do 10
# steps with dummy data first, and then re-initialize the model and reset the loader.
if step == 10:
training_time_ms = 0
t0 = time.time()
timed_steps = float('nan') if step <= 11 else (step - 10) + 1 # <= 11 to avoid bug in val
# Set the attention blocksize for the current step, in chunks of 64. By @fernbear.bsky.social
attn_blocksize = torch.tensor(64*((step/args.num_iterations * (1792 - 64) + 64)//64), dtype=torch.int, device='cuda')
# once in a while evaluate the validation dataset
if (last_step or (args.val_loss_every > 0 and step % args.val_loss_every == 0)):
# stop the clock
torch.cuda.synchronize()
training_time_ms += 1000 * (time.time() - t0)
# run validation batches
model.eval()
val_loader.reset()
val_loss = 0.0
for _ in range(val_steps):
with torch.no_grad():
x_val, y_val = val_loader.next_batch()
val_loss += model(x_val, y_val, attn_blocksize=attn_blocksize)
dist.all_reduce(val_loss, op=dist.ReduceOp.AVG)
val_loss /= val_steps
# log val loss to console and to logfile
print0(f'step:{step}/{args.num_iterations} val_loss:{val_loss:.4f} train_time:{training_time_ms:.0f}ms step_avg:{training_time_ms/(timed_steps-1):.2f}ms')
# start the clock again
torch.cuda.synchronize()
t0 = time.time()
if master_process and (last_step or (args.save_every > 0 and step % args.save_every == 0)):
# stop the clock
torch.cuda.synchronize()
training_time_ms += 1000 * (time.time() - t0)
# save the state of the training process
log = dict(step=step, code=code, model=raw_model.state_dict(), optimizers=[opt.state_dict() for opt in optimizers])
torch.save(log, 'logs/%s/state_step%06d.pt' % (run_id, step))
# start the clock again
torch.cuda.synchronize()
t0 = time.time()
# bit confusing: we want to make sure to eval on 0th iteration
# but also after the very last iteration. so we loop for step <= num_iterations
# instead of just < num_iterations (one extra due to <=), only to do
# the validation/sampling one last time, and then we break right here as we're done.
if last_step:
break
# --------------- TRAINING SECTION BEGIN -----------------
model.train()
for i in range(1, train_accumulation_steps+1):
ctx = model.no_sync() if i < train_accumulation_steps else contextlib.nullcontext()
with ctx: # there's no need to sync gradients every accumulation step
# forward pass
loss = model(x, y, attn_blocksize=attn_blocksize)
# advance the dataset for the next batch
x, y = train_loader.next_batch()
# backward pass
loss.backward()
train_loss = loss.detach()
for p in model.parameters():
p.grad /= train_accumulation_steps
# momentum warmup for Muon
frac = min(step/300, 1)
optimizer3.param_groups[0]['momentum'] = (1 - frac) * 0.85 + frac * 0.95
# step the optimizers and schedulers
for opt, sched in zip(optimizers, schedulers):
opt.step()
sched.step()
# null the gradients
model.zero_grad(set_to_none=True)
# --------------- TRAINING SECTION END -------------------
# everything that follows now is just diagnostics, prints, logging, etc.
#dist.all_reduce(train_loss, op=dist.ReduceOp.AVG) # all-reducing the training loss would be more correct in terms of logging, but slower
approx_time = training_time_ms + 1000 * (time.time() - t0)
print0(f"step:{step+1}/{args.num_iterations} train_loss:{train_loss.item():.4f} train_time:{approx_time:.0f}ms step_avg:{approx_time/timed_steps:.2f}ms")
if master_process:
print(f"peak memory consumption: {torch.cuda.max_memory_allocated() // 1024 // 1024} MiB")
# -------------------------------------------------------------------------
# clean up nice
dist.destroy_process_group()
====================================================================================================
Running pytorch 2.6.0.dev20241203+cu124 compiled for CUDA 12.4
nvidia-smi:
Thu Dec 5 03:16:14 2024
+---------------------------------------------------------------------------------------+
| NVIDIA-SMI 535.183.06 Driver Version: 535.183.06 CUDA Version: 12.2 |
|-----------------------------------------+----------------------+----------------------+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+======================+======================|
| 0 NVIDIA H100 80GB HBM3 On | 00000000:19:00.0 Off | 0 |
| N/A 38C P0 75W / 700W | 3MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 1 NVIDIA H100 80GB HBM3 On | 00000000:3B:00.0 Off | 0 |
| N/A 31C P0 115W / 700W | 529MiB / 81559MiB | 1% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 2 NVIDIA H100 80GB HBM3 On | 00000000:4C:00.0 Off | 0 |
| N/A 31C P0 118W / 700W | 529MiB / 81559MiB | 1% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 3 NVIDIA H100 80GB HBM3 On | 00000000:5D:00.0 Off | 0 |
| N/A 38C P0 112W / 700W | 22MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 4 NVIDIA H100 80GB HBM3 On | 00000000:9B:00.0 Off | 0 |
| N/A 39C P0 123W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 5 NVIDIA H100 80GB HBM3 On | 00000000:BB:00.0 Off | 0 |
| N/A 30C P0 110W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 6 NVIDIA H100 80GB HBM3 On | 00000000:CB:00.0 Off | 0 |
| N/A 39C P0 128W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 7 NVIDIA H100 80GB HBM3 On | 00000000:DB:00.0 Off | 0 |
| N/A 30C P0 119W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
+---------------------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=======================================================================================|
+---------------------------------------------------------------------------------------+
====================================================================================================
Training DataLoader: total number of tokens: 1100000000 across 11 files
Validation DataLoader: total number of tokens: 100000000 across 1 files
====================================================================================================
step:0/1530 val_loss:10.8258 train_time:0ms step_avg:nanms
step:1/1530 train_loss:10.8258 train_time:31769ms step_avg:nanms
step:2/1530 train_loss:10.0645 train_time:31881ms step_avg:nanms
step:3/1530 train_loss:8.3889 train_time:32038ms step_avg:nanms
step:4/1530 train_loss:7.5858 train_time:32199ms step_avg:nanms
step:5/1530 train_loss:7.4682 train_time:32360ms step_avg:nanms
step:6/1530 train_loss:6.9610 train_time:32519ms step_avg:nanms
step:7/1530 train_loss:7.1938 train_time:32680ms step_avg:nanms
step:8/1530 train_loss:6.7272 train_time:32840ms step_avg:nanms
step:9/1530 train_loss:6.6129 train_time:33000ms step_avg:nanms
step:10/1530 train_loss:6.4778 train_time:33161ms step_avg:nanms
step:11/1530 train_loss:6.4571 train_time:115ms step_avg:nanms
step:12/1530 train_loss:6.3979 train_time:276ms step_avg:nanms
step:13/1530 train_loss:6.2246 train_time:436ms step_avg:145.22ms
step:14/1530 train_loss:6.1766 train_time:596ms step_avg:149.00ms
step:15/1530 train_loss:6.1255 train_time:757ms step_avg:151.37ms
step:16/1530 train_loss:6.1241 train_time:916ms step_avg:152.74ms
step:17/1530 train_loss:6.1636 train_time:1078ms step_avg:153.97ms
step:18/1530 train_loss:5.9646 train_time:1238ms step_avg:154.74ms
step:19/1530 train_loss:5.9665 train_time:1398ms step_avg:155.37ms
step:20/1530 train_loss:5.6527 train_time:1558ms step_avg:155.77ms
step:21/1530 train_loss:5.9246 train_time:1720ms step_avg:156.37ms
step:22/1530 train_loss:6.1633 train_time:1881ms step_avg:156.77ms
step:23/1530 train_loss:5.8529 train_time:2041ms step_avg:157.03ms
step:24/1530 train_loss:5.9985 train_time:2202ms step_avg:157.32ms
step:25/1530 train_loss:5.6675 train_time:2362ms step_avg:157.47ms
step:26/1530 train_loss:5.6063 train_time:2523ms step_avg:157.72ms
step:27/1530 train_loss:5.7418 train_time:2684ms step_avg:157.88ms
step:28/1530 train_loss:5.4140 train_time:2844ms step_avg:158.02ms
step:29/1530 train_loss:5.6604 train_time:3005ms step_avg:158.17ms
step:30/1530 train_loss:5.4494 train_time:3165ms step_avg:158.26ms
step:31/1530 train_loss:5.4206 train_time:3327ms step_avg:158.42ms
step:32/1530 train_loss:5.2890 train_time:3488ms step_avg:158.52ms
step:33/1530 train_loss:5.5723 train_time:3648ms step_avg:158.61ms
step:34/1530 train_loss:5.4897 train_time:3810ms step_avg:158.74ms
step:35/1530 train_loss:5.5933 train_time:3969ms step_avg:158.77ms
step:36/1530 train_loss:5.5515 train_time:4130ms step_avg:158.84ms
step:37/1530 train_loss:5.4401 train_time:4290ms step_avg:158.88ms
step:38/1530 train_loss:5.2921 train_time:4451ms step_avg:158.95ms
step:39/1530 train_loss:5.3112 train_time:4610ms step_avg:158.98ms
step:40/1530 train_loss:5.2388 train_time:4770ms step_avg:159.01ms
step:41/1530 train_loss:5.2186 train_time:4931ms step_avg:159.06ms
step:42/1530 train_loss:5.1743 train_time:5091ms step_avg:159.10ms
step:43/1530 train_loss:5.2598 train_time:5252ms step_avg:159.15ms
step:44/1530 train_loss:5.2245 train_time:5412ms step_avg:159.18ms
step:45/1530 train_loss:5.3787 train_time:5571ms step_avg:159.18ms
step:46/1530 train_loss:5.1736 train_time:5731ms step_avg:159.19ms
step:47/1530 train_loss:5.0532 train_time:5891ms step_avg:159.21ms
step:48/1530 train_loss:5.2116 train_time:6051ms step_avg:159.24ms
step:49/1530 train_loss:5.1432 train_time:6212ms step_avg:159.27ms
step:50/1530 train_loss:5.2353 train_time:6371ms step_avg:159.28ms
step:51/1530 train_loss:5.1240 train_time:6531ms step_avg:159.30ms
step:52/1530 train_loss:5.0093 train_time:6691ms step_avg:159.32ms
step:53/1530 train_loss:5.1556 train_time:6851ms step_avg:159.33ms
step:54/1530 train_loss:5.0106 train_time:7011ms step_avg:159.33ms
step:55/1530 train_loss:5.4146 train_time:7171ms step_avg:159.36ms
step:56/1530 train_loss:5.0248 train_time:7332ms step_avg:159.39ms
step:57/1530 train_loss:4.8784 train_time:7492ms step_avg:159.41ms
step:58/1530 train_loss:5.0471 train_time:7653ms step_avg:159.43ms
step:59/1530 train_loss:5.0361 train_time:7813ms step_avg:159.46ms
step:60/1530 train_loss:5.1390 train_time:7974ms step_avg:159.48ms
step:61/1530 train_loss:4.8671 train_time:8134ms step_avg:159.48ms
step:62/1530 train_loss:4.9887 train_time:8294ms step_avg:159.50ms
step:63/1530 train_loss:4.9775 train_time:8455ms step_avg:159.53ms
step:64/1530 train_loss:4.8769 train_time:8616ms step_avg:159.56ms
step:65/1530 train_loss:4.7899 train_time:8776ms step_avg:159.57ms
step:66/1530 train_loss:4.9105 train_time:8937ms step_avg:159.59ms
step:67/1530 train_loss:4.8061 train_time:9097ms step_avg:159.60ms
step:68/1530 train_loss:5.0799 train_time:9257ms step_avg:159.60ms
step:69/1530 train_loss:4.7173 train_time:9417ms step_avg:159.62ms
step:70/1530 train_loss:4.8425 train_time:9579ms step_avg:159.64ms
step:71/1530 train_loss:4.9709 train_time:9739ms step_avg:159.66ms
step:72/1530 train_loss:4.8881 train_time:9900ms step_avg:159.69ms
step:73/1530 train_loss:4.7664 train_time:10061ms step_avg:159.70ms
step:74/1530 train_loss:4.9120 train_time:10222ms step_avg:159.72ms
step:75/1530 train_loss:4.8803 train_time:10383ms step_avg:159.73ms
step:76/1530 train_loss:4.8130 train_time:10543ms step_avg:159.75ms
step:77/1530 train_loss:4.9224 train_time:10704ms step_avg:159.76ms
step:78/1530 train_loss:5.1217 train_time:10864ms step_avg:159.76ms
step:79/1530 train_loss:4.8318 train_time:11026ms step_avg:159.79ms
step:80/1530 train_loss:4.8635 train_time:11187ms step_avg:159.81ms
step:81/1530 train_loss:4.6568 train_time:11348ms step_avg:159.82ms
step:82/1530 train_loss:4.8201 train_time:11508ms step_avg:159.84ms
step:83/1530 train_loss:4.7802 train_time:11668ms step_avg:159.84ms
step:84/1530 train_loss:4.7654 train_time:11829ms step_avg:159.85ms
step:85/1530 train_loss:4.6330 train_time:11989ms step_avg:159.86ms
step:86/1530 train_loss:4.8375 train_time:12152ms step_avg:159.90ms
step:87/1530 train_loss:4.7417 train_time:12313ms step_avg:159.91ms
step:88/1530 train_loss:4.7588 train_time:12472ms step_avg:159.90ms
step:89/1530 train_loss:4.7139 train_time:12633ms step_avg:159.91ms
step:90/1530 train_loss:4.6441 train_time:12793ms step_avg:159.92ms
step:91/1530 train_loss:4.6282 train_time:12954ms step_avg:159.93ms
step:92/1530 train_loss:4.8062 train_time:13116ms step_avg:159.95ms
step:93/1530 train_loss:4.6224 train_time:13276ms step_avg:159.95ms
step:94/1530 train_loss:4.6352 train_time:13436ms step_avg:159.95ms
step:95/1530 train_loss:4.6821 train_time:13596ms step_avg:159.95ms
step:96/1530 train_loss:4.5774 train_time:13756ms step_avg:159.96ms
step:97/1530 train_loss:4.6319 train_time:13917ms step_avg:159.96ms
step:98/1530 train_loss:4.5690 train_time:14077ms step_avg:159.97ms
step:99/1530 train_loss:4.6615 train_time:14237ms step_avg:159.96ms
step:100/1530 train_loss:4.6742 train_time:14398ms step_avg:159.98ms
step:101/1530 train_loss:4.5428 train_time:14559ms step_avg:159.98ms
step:102/1530 train_loss:4.7115 train_time:14720ms step_avg:160.00ms
step:103/1530 train_loss:4.5963 train_time:14881ms step_avg:160.01ms
step:104/1530 train_loss:4.5353 train_time:15041ms step_avg:160.01ms
step:105/1530 train_loss:4.5792 train_time:15202ms step_avg:160.02ms
step:106/1530 train_loss:4.6441 train_time:15362ms step_avg:160.03ms
step:107/1530 train_loss:4.4971 train_time:15523ms step_avg:160.04ms
step:108/1530 train_loss:4.3557 train_time:15684ms step_avg:160.04ms
step:109/1530 train_loss:4.4815 train_time:15844ms step_avg:160.04ms
step:110/1530 train_loss:4.4805 train_time:16005ms step_avg:160.05ms
step:111/1530 train_loss:4.4131 train_time:16166ms step_avg:160.06ms
step:112/1530 train_loss:4.5787 train_time:16327ms step_avg:160.07ms
step:113/1530 train_loss:4.4986 train_time:16488ms step_avg:160.07ms
step:114/1530 train_loss:4.3620 train_time:16648ms step_avg:160.08ms
step:115/1530 train_loss:4.4982 train_time:16811ms step_avg:160.10ms
step:116/1530 train_loss:4.4583 train_time:16975ms step_avg:160.14ms
step:117/1530 train_loss:4.3649 train_time:17138ms step_avg:160.17ms
step:118/1530 train_loss:4.5887 train_time:17304ms step_avg:160.22ms
step:119/1530 train_loss:4.4588 train_time:17468ms step_avg:160.26ms
step:120/1530 train_loss:4.3324 train_time:17632ms step_avg:160.29ms
step:121/1530 train_loss:4.3037 train_time:17795ms step_avg:160.31ms
step:122/1530 train_loss:4.4481 train_time:17959ms step_avg:160.35ms
step:123/1530 train_loss:4.2743 train_time:18124ms step_avg:160.39ms
step:124/1530 train_loss:4.5685 train_time:18287ms step_avg:160.41ms
step:125/1530 train_loss:4.4368 train_time:18451ms step_avg:160.44ms
step:125/1530 val_loss:4.3998 train_time:18498ms step_avg:160.86ms
step:126/1530 train_loss:4.4178 train_time:18617ms step_avg:160.49ms
step:127/1530 train_loss:4.4352 train_time:18784ms step_avg:160.54ms
step:128/1530 train_loss:4.3691 train_time:18948ms step_avg:160.58ms
step:129/1530 train_loss:4.6728 train_time:19112ms step_avg:160.60ms
step:130/1530 train_loss:4.3475 train_time:19275ms step_avg:160.63ms
step:131/1530 train_loss:4.3799 train_time:19440ms step_avg:160.66ms
step:132/1530 train_loss:4.3286 train_time:19604ms step_avg:160.69ms
step:133/1530 train_loss:4.4386 train_time:19769ms step_avg:160.72ms
step:134/1530 train_loss:4.2688 train_time:19933ms step_avg:160.75ms
step:135/1530 train_loss:4.4397 train_time:20096ms step_avg:160.77ms
step:136/1530 train_loss:4.2002 train_time:20261ms step_avg:160.80ms
step:137/1530 train_loss:4.3581 train_time:20426ms step_avg:160.83ms
step:138/1530 train_loss:4.2699 train_time:20590ms step_avg:160.86ms
step:139/1530 train_loss:4.3830 train_time:20754ms step_avg:160.88ms
step:140/1530 train_loss:4.4707 train_time:20918ms step_avg:160.91ms
step:141/1530 train_loss:4.2978 train_time:21083ms step_avg:160.94ms
step:142/1530 train_loss:4.2807 train_time:21246ms step_avg:160.96ms
step:143/1530 train_loss:4.2406 train_time:21409ms step_avg:160.97ms
step:144/1530 train_loss:4.3382 train_time:21573ms step_avg:161.00ms
step:145/1530 train_loss:4.3023 train_time:21737ms step_avg:161.01ms
step:146/1530 train_loss:4.1518 train_time:21901ms step_avg:161.03ms
step:147/1530 train_loss:4.3118 train_time:22065ms step_avg:161.06ms
step:148/1530 train_loss:4.3518 train_time:22228ms step_avg:161.08ms
step:149/1530 train_loss:4.2977 train_time:22393ms step_avg:161.10ms
step:150/1530 train_loss:4.4399 train_time:22558ms step_avg:161.13ms
step:151/1530 train_loss:4.2659 train_time:22722ms step_avg:161.15ms
step:152/1530 train_loss:4.2489 train_time:22886ms step_avg:161.17ms
step:153/1530 train_loss:4.3506 train_time:23049ms step_avg:161.18ms
step:154/1530 train_loss:4.3549 train_time:23213ms step_avg:161.20ms
step:155/1530 train_loss:4.2538 train_time:23377ms step_avg:161.22ms
step:156/1530 train_loss:4.3301 train_time:23541ms step_avg:161.24ms
step:157/1530 train_loss:4.3904 train_time:23705ms step_avg:161.26ms
step:158/1530 train_loss:4.2431 train_time:23869ms step_avg:161.28ms
step:159/1530 train_loss:4.3066 train_time:24032ms step_avg:161.29ms
step:160/1530 train_loss:4.1132 train_time:24195ms step_avg:161.30ms
step:161/1530 train_loss:4.3391 train_time:24359ms step_avg:161.32ms
step:162/1530 train_loss:4.3549 train_time:24523ms step_avg:161.34ms
step:163/1530 train_loss:4.3395 train_time:24687ms step_avg:161.35ms
step:164/1530 train_loss:4.1759 train_time:24850ms step_avg:161.36ms
step:165/1530 train_loss:4.2711 train_time:25014ms step_avg:161.38ms
step:166/1530 train_loss:4.3315 train_time:25179ms step_avg:161.40ms
step:167/1530 train_loss:4.2066 train_time:25343ms step_avg:161.42ms
step:168/1530 train_loss:4.2766 train_time:25506ms step_avg:161.43ms
step:169/1530 train_loss:4.1470 train_time:25670ms step_avg:161.45ms
step:170/1530 train_loss:4.0134 train_time:25835ms step_avg:161.47ms
step:171/1530 train_loss:4.1854 train_time:25997ms step_avg:161.47ms
step:172/1530 train_loss:4.1904 train_time:26160ms step_avg:161.48ms
step:173/1530 train_loss:4.2502 train_time:26323ms step_avg:161.49ms
step:174/1530 train_loss:4.4112 train_time:26486ms step_avg:161.50ms
step:175/1530 train_loss:4.2289 train_time:26649ms step_avg:161.51ms
step:176/1530 train_loss:4.0842 train_time:26811ms step_avg:161.51ms
step:177/1530 train_loss:4.0576 train_time:26974ms step_avg:161.52ms
step:178/1530 train_loss:4.1693 train_time:27136ms step_avg:161.52ms
step:179/1530 train_loss:4.1021 train_time:27299ms step_avg:161.54ms
step:180/1530 train_loss:4.0986 train_time:27462ms step_avg:161.54ms
step:181/1530 train_loss:4.2878 train_time:27625ms step_avg:161.55ms
step:182/1530 train_loss:4.1394 train_time:27790ms step_avg:161.57ms
step:183/1530 train_loss:4.1162 train_time:27953ms step_avg:161.58ms
step:184/1530 train_loss:4.1111 train_time:28116ms step_avg:161.59ms
step:185/1530 train_loss:4.1910 train_time:28279ms step_avg:161.59ms
step:186/1530 train_loss:4.1555 train_time:28441ms step_avg:161.60ms
step:187/1530 train_loss:4.2112 train_time:28604ms step_avg:161.60ms
step:188/1530 train_loss:4.1515 train_time:28901ms step_avg:162.36ms
step:189/1530 train_loss:4.0987 train_time:29228ms step_avg:163.29ms
step:190/1530 train_loss:4.1924 train_time:29389ms step_avg:163.27ms
step:191/1530 train_loss:4.0737 train_time:29552ms step_avg:163.27ms
step:192/1530 train_loss:4.0215 train_time:29714ms step_avg:163.26ms
step:193/1530 train_loss:4.2553 train_time:29878ms step_avg:163.27ms
step:194/1530 train_loss:4.1636 train_time:30040ms step_avg:163.26ms
step:195/1530 train_loss:4.3371 train_time:30203ms step_avg:163.26ms
step:196/1530 train_loss:4.1562 train_time:30366ms step_avg:163.26ms
step:197/1530 train_loss:4.0292 train_time:30528ms step_avg:163.25ms
step:198/1530 train_loss:4.1609 train_time:30692ms step_avg:163.26ms
step:199/1530 train_loss:4.0166 train_time:30855ms step_avg:163.25ms
step:200/1530 train_loss:4.0993 train_time:31018ms step_avg:163.25ms
step:201/1530 train_loss:3.9830 train_time:31180ms step_avg:163.24ms
step:202/1530 train_loss:4.2410 train_time:31344ms step_avg:163.25ms
step:203/1530 train_loss:4.0522 train_time:31506ms step_avg:163.25ms
step:204/1530 train_loss:4.1804 train_time:31669ms step_avg:163.24ms
step:205/1530 train_loss:4.2351 train_time:31832ms step_avg:163.24ms
step:206/1530 train_loss:3.9410 train_time:31995ms step_avg:163.24ms
step:207/1530 train_loss:4.0612 train_time:32158ms step_avg:163.24ms
step:208/1530 train_loss:4.0787 train_time:32321ms step_avg:163.24ms
step:209/1530 train_loss:4.2191 train_time:32485ms step_avg:163.24ms
step:210/1530 train_loss:4.1622 train_time:32648ms step_avg:163.24ms
step:211/1530 train_loss:4.0444 train_time:32811ms step_avg:163.24ms
step:212/1530 train_loss:4.1180 train_time:32974ms step_avg:163.24ms
step:213/1530 train_loss:4.0467 train_time:33136ms step_avg:163.23ms
step:214/1530 train_loss:4.1118 train_time:33298ms step_avg:163.22ms
step:215/1530 train_loss:3.9338 train_time:33461ms step_avg:163.23ms
step:216/1530 train_loss:3.9888 train_time:33625ms step_avg:163.23ms
step:217/1530 train_loss:4.0036 train_time:33787ms step_avg:163.22ms
step:218/1530 train_loss:4.0723 train_time:33950ms step_avg:163.22ms
step:219/1530 train_loss:4.0639 train_time:34113ms step_avg:163.22ms
step:220/1530 train_loss:4.0668 train_time:34276ms step_avg:163.22ms
step:221/1530 train_loss:4.0820 train_time:34438ms step_avg:163.21ms
step:222/1530 train_loss:3.9935 train_time:34601ms step_avg:163.21ms
step:223/1530 train_loss:3.9833 train_time:34764ms step_avg:163.21ms
step:224/1530 train_loss:4.2858 train_time:34927ms step_avg:163.21ms
step:225/1530 train_loss:3.9108 train_time:35090ms step_avg:163.21ms
step:226/1530 train_loss:3.9824 train_time:35254ms step_avg:163.21ms
step:227/1530 train_loss:3.9651 train_time:35417ms step_avg:163.21ms
step:228/1530 train_loss:4.1324 train_time:35581ms step_avg:163.21ms
step:229/1530 train_loss:3.9155 train_time:35747ms step_avg:163.23ms
step:230/1530 train_loss:4.0301 train_time:35912ms step_avg:163.24ms
step:231/1530 train_loss:3.8906 train_time:36078ms step_avg:163.25ms
step:232/1530 train_loss:3.9448 train_time:36245ms step_avg:163.26ms
step:233/1530 train_loss:4.0724 train_time:36411ms step_avg:163.28ms
step:234/1530 train_loss:4.0199 train_time:36578ms step_avg:163.29ms
step:235/1530 train_loss:3.8948 train_time:36746ms step_avg:163.32ms
step:236/1530 train_loss:4.0695 train_time:36912ms step_avg:163.33ms
step:237/1530 train_loss:4.0747 train_time:37078ms step_avg:163.34ms
step:238/1530 train_loss:3.9346 train_time:37244ms step_avg:163.35ms
step:239/1530 train_loss:4.0626 train_time:37410ms step_avg:163.36ms
step:240/1530 train_loss:4.0926 train_time:37577ms step_avg:163.38ms
step:241/1530 train_loss:3.9462 train_time:37744ms step_avg:163.39ms
step:242/1530 train_loss:4.1316 train_time:37910ms step_avg:163.40ms
step:243/1530 train_loss:3.9946 train_time:38075ms step_avg:163.41ms
step:244/1530 train_loss:4.0660 train_time:38241ms step_avg:163.43ms
step:245/1530 train_loss:4.1245 train_time:38408ms step_avg:163.44ms
step:246/1530 train_loss:4.0441 train_time:38574ms step_avg:163.45ms
step:247/1530 train_loss:3.9996 train_time:38740ms step_avg:163.46ms
step:248/1530 train_loss:4.1029 train_time:38906ms step_avg:163.47ms
step:249/1530 train_loss:3.9103 train_time:39072ms step_avg:163.48ms
step:250/1530 train_loss:3.9604 train_time:39238ms step_avg:163.49ms
step:250/1530 val_loss:3.9894 train_time:39286ms step_avg:163.69ms
step:251/1530 train_loss:4.0598 train_time:39406ms step_avg:163.51ms
step:252/1530 train_loss:4.1612 train_time:39573ms step_avg:163.53ms
step:253/1530 train_loss:3.9132 train_time:39740ms step_avg:163.54ms
step:254/1530 train_loss:3.8765 train_time:39906ms step_avg:163.55ms
step:255/1530 train_loss:4.0662 train_time:40073ms step_avg:163.56ms
step:256/1530 train_loss:3.9759 train_time:40239ms step_avg:163.57ms
step:257/1530 train_loss:3.9824 train_time:40405ms step_avg:163.58ms
step:258/1530 train_loss:3.9715 train_time:40571ms step_avg:163.59ms
step:259/1530 train_loss:4.0168 train_time:40737ms step_avg:163.60ms
step:260/1530 train_loss:4.0436 train_time:40904ms step_avg:163.61ms
step:261/1530 train_loss:4.0082 train_time:41070ms step_avg:163.63ms
step:262/1530 train_loss:3.9838 train_time:41237ms step_avg:163.64ms
step:263/1530 train_loss:3.8713 train_time:41403ms step_avg:163.65ms
step:264/1530 train_loss:3.9697 train_time:41568ms step_avg:163.66ms
step:265/1530 train_loss:3.8536 train_time:41735ms step_avg:163.67ms
step:266/1530 train_loss:3.9116 train_time:41901ms step_avg:163.68ms
step:267/1530 train_loss:3.9143 train_time:42069ms step_avg:163.69ms
step:268/1530 train_loss:3.9516 train_time:42236ms step_avg:163.70ms
step:269/1530 train_loss:3.8354 train_time:42401ms step_avg:163.71ms
step:270/1530 train_loss:4.0866 train_time:42569ms step_avg:163.73ms
step:271/1530 train_loss:3.9557 train_time:42735ms step_avg:163.73ms
step:272/1530 train_loss:3.9247 train_time:42900ms step_avg:163.74ms
step:273/1530 train_loss:3.9430 train_time:43065ms step_avg:163.75ms
step:274/1530 train_loss:4.0322 train_time:43232ms step_avg:163.76ms
step:275/1530 train_loss:4.0474 train_time:43398ms step_avg:163.77ms
step:276/1530 train_loss:4.2171 train_time:43564ms step_avg:163.78ms
step:277/1530 train_loss:4.0276 train_time:43732ms step_avg:163.79ms
step:278/1530 train_loss:4.0737 train_time:43898ms step_avg:163.80ms
step:279/1530 train_loss:3.9856 train_time:44064ms step_avg:163.81ms
step:280/1530 train_loss:4.1962 train_time:44233ms step_avg:163.83ms
step:281/1530 train_loss:3.9626 train_time:44399ms step_avg:163.83ms
step:282/1530 train_loss:3.9336 train_time:44565ms step_avg:163.84ms
step:283/1530 train_loss:3.9135 train_time:44731ms step_avg:163.85ms
step:284/1530 train_loss:4.0304 train_time:44897ms step_avg:163.86ms
step:285/1530 train_loss:4.0412 train_time:45061ms step_avg:163.86ms
step:286/1530 train_loss:4.0732 train_time:45228ms step_avg:163.87ms
step:287/1530 train_loss:3.8991 train_time:45394ms step_avg:163.88ms
step:288/1530 train_loss:4.0028 train_time:45559ms step_avg:163.88ms
step:289/1530 train_loss:3.8824 train_time:45725ms step_avg:163.89ms
step:290/1530 train_loss:3.8574 train_time:45890ms step_avg:163.89ms
step:291/1530 train_loss:3.9046 train_time:46056ms step_avg:163.90ms
step:292/1530 train_loss:3.8521 train_time:46221ms step_avg:163.90ms
step:293/1530 train_loss:3.8963 train_time:46384ms step_avg:163.90ms
step:294/1530 train_loss:3.9285 train_time:46550ms step_avg:163.91ms
step:295/1530 train_loss:3.8278 train_time:46716ms step_avg:163.92ms
step:296/1530 train_loss:3.8441 train_time:46881ms step_avg:163.92ms
step:297/1530 train_loss:3.8545 train_time:47046ms step_avg:163.92ms
step:298/1530 train_loss:3.9566 train_time:47212ms step_avg:163.93ms
step:299/1530 train_loss:3.8096 train_time:47376ms step_avg:163.93ms
step:300/1530 train_loss:3.9541 train_time:47541ms step_avg:163.94ms
step:301/1530 train_loss:3.9547 train_time:47706ms step_avg:163.94ms
step:302/1530 train_loss:3.9268 train_time:47872ms step_avg:163.95ms
step:303/1530 train_loss:3.9666 train_time:48037ms step_avg:163.95ms
step:304/1530 train_loss:3.9521 train_time:48201ms step_avg:163.95ms
step:305/1530 train_loss:4.4356 train_time:48367ms step_avg:163.96ms
step:306/1530 train_loss:3.9210 train_time:48533ms step_avg:163.96ms
step:307/1530 train_loss:3.8185 train_time:48698ms step_avg:163.97ms
step:308/1530 train_loss:3.9650 train_time:48864ms step_avg:163.97ms
step:309/1530 train_loss:3.8789 train_time:49031ms step_avg:163.98ms
step:310/1530 train_loss:4.0742 train_time:49196ms step_avg:163.99ms
step:311/1530 train_loss:3.9203 train_time:49360ms step_avg:163.99ms
step:312/1530 train_loss:3.8499 train_time:49525ms step_avg:163.99ms
step:313/1530 train_loss:3.9211 train_time:49691ms step_avg:164.00ms
step:314/1530 train_loss:4.0412 train_time:49856ms step_avg:164.00ms
step:315/1530 train_loss:3.9288 train_time:50021ms step_avg:164.00ms
step:316/1530 train_loss:3.7834 train_time:50187ms step_avg:164.01ms
step:317/1530 train_loss:3.8693 train_time:50353ms step_avg:164.02ms
step:318/1530 train_loss:3.9114 train_time:50518ms step_avg:164.02ms
step:319/1530 train_loss:3.8800 train_time:50682ms step_avg:164.02ms
step:320/1530 train_loss:4.0024 train_time:50848ms step_avg:164.03ms
step:321/1530 train_loss:3.9444 train_time:51013ms step_avg:164.03ms
step:322/1530 train_loss:3.9175 train_time:51178ms step_avg:164.03ms
step:323/1530 train_loss:3.9959 train_time:51344ms step_avg:164.04ms
step:324/1530 train_loss:3.9361 train_time:51511ms step_avg:164.05ms
step:325/1530 train_loss:4.0039 train_time:51676ms step_avg:164.05ms
step:326/1530 train_loss:3.8848 train_time:51842ms step_avg:164.06ms
step:327/1530 train_loss:4.3787 train_time:52008ms step_avg:164.06ms
step:328/1530 train_loss:4.0634 train_time:52174ms step_avg:164.07ms
step:329/1530 train_loss:3.7923 train_time:52341ms step_avg:164.08ms
step:330/1530 train_loss:3.7421 train_time:52508ms step_avg:164.09ms
step:331/1530 train_loss:3.9644 train_time:52673ms step_avg:164.09ms
step:332/1530 train_loss:3.8993 train_time:52838ms step_avg:164.09ms
step:333/1530 train_loss:3.8676 train_time:53003ms step_avg:164.10ms
step:334/1530 train_loss:3.8289 train_time:53168ms step_avg:164.10ms
step:335/1530 train_loss:4.0021 train_time:53334ms step_avg:164.10ms
step:336/1530 train_loss:3.9589 train_time:53498ms step_avg:164.10ms
step:337/1530 train_loss:4.4109 train_time:53663ms step_avg:164.11ms
step:338/1530 train_loss:3.9255 train_time:53830ms step_avg:164.12ms
step:339/1530 train_loss:3.8500 train_time:53995ms step_avg:164.12ms
step:340/1530 train_loss:3.9277 train_time:54160ms step_avg:164.12ms
step:341/1530 train_loss:3.8527 train_time:54329ms step_avg:164.14ms
step:342/1530 train_loss:3.7976 train_time:54496ms step_avg:164.15ms
step:343/1530 train_loss:3.8235 train_time:54664ms step_avg:164.16ms
step:344/1530 train_loss:3.9853 train_time:54833ms step_avg:164.17ms
step:345/1530 train_loss:3.8117 train_time:55001ms step_avg:164.18ms
step:346/1530 train_loss:3.7553 train_time:55169ms step_avg:164.19ms
step:347/1530 train_loss:3.7772 train_time:55338ms step_avg:164.21ms
step:348/1530 train_loss:3.8457 train_time:55505ms step_avg:164.22ms
step:349/1530 train_loss:3.8252 train_time:55673ms step_avg:164.23ms
step:350/1530 train_loss:3.5651 train_time:55841ms step_avg:164.24ms
step:351/1530 train_loss:3.8221 train_time:56009ms step_avg:164.25ms
step:352/1530 train_loss:4.1781 train_time:56177ms step_avg:164.26ms
step:353/1530 train_loss:3.6505 train_time:56345ms step_avg:164.27ms
step:354/1530 train_loss:3.9296 train_time:56513ms step_avg:164.28ms
step:355/1530 train_loss:3.7819 train_time:56680ms step_avg:164.29ms
step:356/1530 train_loss:3.8803 train_time:56848ms step_avg:164.30ms
step:357/1530 train_loss:3.7491 train_time:57017ms step_avg:164.31ms
step:358/1530 train_loss:3.8541 train_time:57186ms step_avg:164.33ms
step:359/1530 train_loss:3.7865 train_time:57355ms step_avg:164.34ms
step:360/1530 train_loss:3.4130 train_time:57525ms step_avg:164.36ms
step:361/1530 train_loss:4.0106 train_time:57695ms step_avg:164.37ms
step:362/1530 train_loss:3.9016 train_time:57862ms step_avg:164.38ms
step:363/1530 train_loss:3.8288 train_time:58030ms step_avg:164.39ms
step:364/1530 train_loss:3.7316 train_time:58199ms step_avg:164.40ms
step:365/1530 train_loss:3.9085 train_time:58368ms step_avg:164.42ms
step:366/1530 train_loss:3.8505 train_time:58536ms step_avg:164.43ms
step:367/1530 train_loss:3.8425 train_time:58703ms step_avg:164.43ms
step:368/1530 train_loss:3.8464 train_time:58873ms step_avg:164.45ms
step:369/1530 train_loss:3.7406 train_time:59041ms step_avg:164.46ms
step:370/1530 train_loss:3.8638 train_time:59209ms step_avg:164.47ms
step:371/1530 train_loss:3.7243 train_time:59376ms step_avg:164.48ms
step:372/1530 train_loss:3.6887 train_time:59544ms step_avg:164.49ms
step:373/1530 train_loss:3.9027 train_time:59713ms step_avg:164.50ms
step:374/1530 train_loss:3.8200 train_time:59882ms step_avg:164.51ms
step:375/1530 train_loss:3.7891 train_time:60051ms step_avg:164.52ms
step:375/1530 val_loss:3.8173 train_time:60099ms step_avg:164.65ms