forked from KellerJordan/modded-nanogpt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path4f8bcdc3-18cf-4743-895e-1deb08696fe7.txt
2165 lines (2092 loc) · 134 KB
/
4f8bcdc3-18cf-4743-895e-1deb08696fe7.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import os
import sys
with open(sys.argv[0]) as f:
code = f.read() # read the code of this file ASAP, for logging
import uuid
import glob
import time
import contextlib
from dataclasses import dataclass
import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
import torch.distributed as dist
import torch._inductor.config as config
from torch.nn.parallel import DistributedDataParallel as DDP
# Use of FlexAttention contributed by @KoszarskyB
from torch.nn.attention.flex_attention import flex_attention, create_block_mask
flex_attention = torch.compile(flex_attention, dynamic=False)
create_block_mask = torch.compile(create_block_mask, dynamic=False)
# -----------------------------------------------------------------------------
# Muon optimizer
def zeropower_via_svd(G, steps=None):
U, S, V = G.svd()
return U @ V.T
@torch.compile
def zeropower_via_newtonschulz5(G, steps=10, eps=1e-7):
"""
Newton-Schulz iteration to compute the zeroth power / orthogonalization of G. We opt to use a
quintic iteration whose coefficients are selected to maximize the slope at zero. For the purpose
of minimizing steps, it turns out to be empirically effective to keep increasing the slope at
zero even beyond the point where the iteration no longer converges all the way to one everywhere
on the interval. This iteration therefore does not produce UV^T but rather something like US'V^T
where S' is diagonal with S_{ii}' ~ Uniform(0.5, 1.5), which turns out not to hurt model
performance at all relative to UV^T, where USV^T = G is the SVD.
"""
assert len(G.shape) == 2
a, b, c = (3.4445, -4.7750, 2.0315)
X = G.bfloat16()
X /= (X.norm() + eps) # ensure top singular value <= 1
if G.size(0) > G.size(1):
X = X.T
for _ in range(steps):
A = X @ X.T
B = b * A + c * A @ A # adapted from suggestion by @jxbz, @leloykun, and @YouJiacheng
X = a * X + B @ X
if G.size(0) > G.size(1):
X = X.T
return X
zeropower_backends = dict(svd=zeropower_via_svd, newtonschulz5=zeropower_via_newtonschulz5)
class Muon(torch.optim.Optimizer):
"""
Muon - MomentUm Orthogonalized by Newton-schulz
Muon internally runs standard SGD-momentum, and then performs an orthogonalization post-
processing step, in which each 2D parameter's update is replaced with the nearest orthogonal
matrix. To efficiently orthogonalize each update, we use a Newton-Schulz iteration, which has
the advantage that it can be stably run in bfloat16 on the GPU.
Some warnings:
- This optimizer assumes that all parameters passed in are 2D.
- It should not be used for the embedding layer, the final fully connected layer, or any {0,1}-D
parameters; those should all be optimized by a standard method (e.g., AdamW).
- To use it with 4D convolutional filters, it works well to just flatten their last 3 dimensions.
- We believe it is unlikely to work well for training with small batch size.
- We believe it may not work well for finetuning pretrained models, but we haven't tested this.
- We have not yet tried this optimizer for training scenarios larger than NanoGPT (124M).
Arguments:
lr: The learning rate used by the internal SGD.
momentum: The momentum used by the internal SGD.
nesterov: Whether to use Nesterov-style momentum in the internal SGD. (recommended)
backend: The chosen backend for the orthogonalization step. (recommended: 'newtonschulz5')
backend_steps: The number of iteration steps to use in the backend, if it is iterative.
"""
def __init__(self, params, lr=0.02, momentum=0.95, nesterov=True,
backend='newtonschulz5', backend_steps=5):
defaults = dict(lr=lr, momentum=momentum, nesterov=nesterov, backend=backend, backend_steps=backend_steps)
super().__init__(params, defaults)
def step(self):
for group in self.param_groups:
lr = group['lr']
momentum = group['momentum']
zeropower_backend = zeropower_backends[group['backend']]
# generate weight updates in distributed fashion
total_params = sum(p.numel() for p in group['params'])
updates_flat = torch.zeros(total_params, device='cuda', dtype=torch.bfloat16)
curr_idx = 0
for i, p in enumerate(group['params']):
# luckily this will perfectly distribute a transformer with multiple of 4 layers to 8 GPUs
if i % int(os.environ['WORLD_SIZE']) == int(os.environ['RANK']):
g = p.grad
assert g is not None
state = self.state[p]
if 'momentum_buffer' not in state:
state['momentum_buffer'] = torch.zeros_like(g)
buf = state['momentum_buffer']
buf.mul_(momentum).add_(g)
g = g.add(buf, alpha=momentum) if group['nesterov'] else buf
g = zeropower_backend(g, steps=group['backend_steps'])
g *= max(1, g.size(0)/g.size(1))**0.5
updates_flat[curr_idx:curr_idx+p.numel()] = g.flatten()
curr_idx += p.numel()
# sync updates across devices. we are not memory-constrained so can do this simple deserialization
dist.all_reduce(updates_flat, op=dist.ReduceOp.SUM)
# deserialize and apply updates
curr_idx = 0
for p in group['params']:
g = updates_flat[curr_idx:curr_idx+p.numel()].view_as(p.data).type_as(p.data)
p.data.add_(g, alpha=-lr)
curr_idx += p.numel()
# -----------------------------------------------------------------------------
# PyTorch nn.Module definitions for the GPT-2 model
def norm(x):
return F.rms_norm(x, (x.size(-1),))
class CastedLinear(nn.Linear):
def __init__(self, in_features, out_features):
super().__init__(in_features, out_features, bias=False)
def forward(self, x):
return F.linear(x, self.weight.to(x.dtype))
class Rotary(torch.nn.Module):
def __init__(self, dim, base=10000):
super().__init__()
self.register_buffer('inv_freq', (1 / base) ** (torch.arange(0, dim, 2) / dim))
self.seq_len_cached = None
self.cos_cached = None
self.sin_cached = None
def forward(self, x):
seq_len = x.shape[1]
if seq_len != self.seq_len_cached:
t = torch.arange(seq_len, device=x.device)
freqs = torch.outer(t, self.inv_freq)
self.seq_len_cached = seq_len
self.cos_cached = freqs.cos()
self.sin_cached = freqs.sin()
cos, sin = self.cos_cached[None, :, None, :], self.sin_cached[None, :, None, :]
# apply_rotary_emb(x, cos, sin)
x1, x2 = x.chunk(2, dim=3)
y1 = x1 * cos + x2 * sin
y2 = x1 * (-sin) + x2 * cos
return torch.cat((y1, y2), 3).type_as(x)
class CausalSelfAttention(nn.Module):
def __init__(self, dim, n_head):
super().__init__()
assert dim % n_head == 0
self.n_head = n_head
self.c_q = CastedLinear(dim, dim)
self.c_k = CastedLinear(dim, dim)
self.c_v = CastedLinear(dim, dim)
# value residual lambda
self.lamb = nn.Parameter(torch.tensor(0.5)) # @Grad62304977
# rotary embeddings
self.rotary = Rotary(dim // n_head) # dim // n_head = head_dim
# output projection
self.c_proj = CastedLinear(dim, dim)
self.c_proj.weight.data.zero_() # zero init suggested by @Grad62304977
def forward(self, x, vi, block_mask):
B, T = x.size(0), x.size(1) # batch size, sequence length
assert B == 1, "Must use batch size = 1 for FlexAttention"
q = self.c_q(x).view(B, T, self.n_head, -1)
k = self.c_k(x).view(B, T, self.n_head, -1)
v = self.c_v(x).view(B, T, self.n_head, -1)
v = (1 - self.lamb) * v + self.lamb * vi.view_as(v) # @Grad62304977
q, k = norm(q), norm(k) # QK norm suggested by @Grad62304977
q, k = self.rotary(q), self.rotary(k)
y = flex_attention(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), block_mask=block_mask)
y = y.transpose(1, 2).contiguous().view_as(x) # re-assemble all head outputs side by side
y = self.c_proj(y)
return y
class MLP(nn.Module):
def __init__(self, dim):
super().__init__()
self.c_fc = CastedLinear(dim, 4 * dim)
self.c_proj = CastedLinear(4 * dim, dim)
self.c_proj.weight.data.zero_() # zero init suggested by @Grad62304977
def forward(self, x):
x = self.c_fc(x)
x = F.relu(x).square() # https://arxiv.org/abs/2109.08668v2; ~1-2% better than GELU; suggested by @SKYLINEZ007 and @Grad62304977
x = self.c_proj(x)
return x
class Block(nn.Module):
def __init__(self, config):
super().__init__()
self.attn = CausalSelfAttention(config.n_embd, config.n_head)
self.mlp = MLP(config.n_embd)
self.lambdas = nn.Parameter(torch.tensor([1., 0.]))
def forward(self, x, vi, x0, block_mask):
x = self.lambdas[0] * x + self.lambdas[1] * x0
x = x + self.attn(norm(x), vi, block_mask)
x = x + self.mlp(norm(x))
return x
# -----------------------------------------------------------------------------
# The main GPT-2 model
@dataclass
class GPTConfig:
vocab_size : int = 50304
n_layer : int = 12
n_head : int = 6 # head dim 128 suggested by @Grad62304977
n_embd : int = 768
class GPT(nn.Module):
def __init__(self, config):
super().__init__()
# U-net design by @brendanh0gan
self.num_encoder_layers = config.n_layer // 2 # Half of the layers for encoder
self.num_decoder_layers = config.n_layer - self.num_encoder_layers # Remaining for decoder
# Add learnable skip connection weights for decoder layers
self.skip_weights = nn.Parameter(torch.ones(self.num_decoder_layers))
self.transformer = nn.ModuleDict(dict(
wte = nn.Embedding(config.vocab_size, config.n_embd),
# token value embeddings by @KoszarskyB - inspired by @Grad62304977's value residual learning
vte = nn.Embedding(config.vocab_size, config.n_embd*12),
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
))
self.lm_head = CastedLinear(config.n_embd, config.vocab_size)
self.lm_head.weight.data.zero_() # @Grad62304977
def forward(self, idx, target, attn_blocksize):
docs = (idx == 50256).cumsum(0)
def document_causal_mask(b, h, q_idx, kv_idx):
causal_mask = q_idx >= kv_idx
document_mask = docs[q_idx] == docs[kv_idx]
window_mask = q_idx - kv_idx < attn_blocksize
return causal_mask & document_mask & window_mask
S = len(idx)
block_mask = create_block_mask(document_causal_mask, None, None, S, S, device="cuda", _compile=True)
# forward the GPT model itself
x = self.transformer.wte(idx[None]) # token embeddings of shape (b, t, n_embd)
x = norm(x) # @Grad62304977
x0 = x
vi = self.transformer.vte(idx[None]).chunk(12, dim=-1)
# Store outputs for U-Net skip connections
skip_connections = []
# Encoder pass - process only the first half of the blocks
for i in range(self.num_encoder_layers):
x = self.transformer.h[i](x, vi[i], x0, block_mask)
skip_connections.append(x)
# Decoder pass - process the remaining blocks with weighted skip connections
for i in range(self.num_decoder_layers):
x = x + self.skip_weights[i] * skip_connections.pop()
x = self.transformer.h[self.num_encoder_layers + i](x, vi[self.num_encoder_layers+i], x0, block_mask)
x = norm(x)
logits = self.lm_head(x)
logits = 30 * torch.tanh(logits / 30) # @Grad62304977
logits = logits.float()
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), target.view(-1))
return loss
# -----------------------------------------------------------------------------
# Our own simple Distributed Data Loader
def _peek_data_shard(filename):
# only reads the header, returns header data
with open(filename, "rb") as f:
# first read the header, which is 256 int32 integers (4 bytes each)
header = np.frombuffer(f.read(256*4), dtype=np.int32)
if header[0] != 20240520:
print("ERROR: magic number mismatch in the data .bin file!")
print("---> HINT: Are you passing in a correct file with --input_bin?")
print("---> HINT: Dataset encoding changed recently, re-run data prepro or refer again to README")
print("---> HINT: For example re-run: `python dev/data/tinyshakespeare.py`, then re-try")
exit(1)
assert header[1] == 1, "unsupported version"
ntok = header[2] # number of tokens (claimed)
return ntok # for now just return the number of tokens
def _load_data_shard(filename):
with open(filename, "rb") as f:
# first read the header, which is 256 int32 integers (4 bytes each)
header = np.frombuffer(f.read(256*4), dtype=np.int32)
assert header[0] == 20240520, "magic number mismatch in the data .bin file"
assert header[1] == 1, "unsupported version"
ntok = header[2] # number of tokens (claimed)
# the rest of it are tokens, stored as uint16
tokens = np.frombuffer(f.read(), dtype=np.uint16)
assert len(tokens) == ntok, "number of tokens read does not match header?"
return tokens
class DistributedDataLoader:
def __init__(self, filename_pattern, T, process_rank, num_processes):
self.process_rank = process_rank
self.num_processes = num_processes
self.T = T
# glob files that match the pattern
self.files = sorted(glob.glob(filename_pattern))
assert len(self.files) > 0, f"did not find any files that match the pattern {filename_pattern}"
# load and validate all data shards, count number of tokens in total
ntok_total = 0
for fname in self.files:
shard_ntok = _peek_data_shard(fname)
assert shard_ntok >= num_processes * T + 1
ntok_total += int(shard_ntok)
self.ntok_total = ntok_total
self.reset()
def reset(self):
self.current_shard = -1
self.advance()
def advance(self): # advance to next data shard
self.current_shard = (self.current_shard + 1) % len(self.files)
self.current_position = self.process_rank * self.T
self.tokens = _load_data_shard(self.files[self.current_shard])
def next_batch(self):
batch_size = self.T * self.num_processes
buf = self.tokens[self.current_position:self.current_position+self.T+1]
buf = torch.tensor(buf.astype(np.int32), dtype=torch.long)
x = buf[:-1] # inputs
y = buf[1:] # targets
# advance current position and load next shard if necessary
self.current_position += batch_size
if self.current_position + batch_size >= len(self.tokens):
self.advance()
return x.cuda(), y.cuda()
# -----------------------------------------------------------------------------
# int main
@dataclass
class Hyperparameters:
# data hyperparams
input_bin : str = 'data/fineweb10B/fineweb_train_*.bin' # input .bin to train on
input_val_bin : str = 'data/fineweb10B/fineweb_val_*.bin' # input .bin to eval validation loss on
# optimization hyperparams
batch_size : int = 8 # batch size, in sequences, across all devices
sequence_length : int = 64*1024 # sequence length, in tokens
num_iterations : int = 1530 # number of iterations to run
warmup_iters : int = 0
cooldown_iters : int = 600 # number of iterations of linear warmup/cooldown for triangular or trapezoidal schedule
weight_decay : float = 0
# evaluation and logging hyperparams
val_loss_every : int = 125 # every how many steps to evaluate val loss? 0 for only at the end
val_tokens : int = 10485760 # how many tokens of validation data? it's important to keep this fixed for consistent comparisons
save_every : int = 0 # every how many steps to save the checkpoint? 0 for only at the end
args = Hyperparameters()
# set up DDP (distributed data parallel). torchrun sets this env variable
assert torch.cuda.is_available()
dist.init_process_group(backend='nccl')
ddp_rank = int(os.environ['RANK'])
ddp_local_rank = int(os.environ['LOCAL_RANK'])
ddp_world_size = int(os.environ['WORLD_SIZE'])
device = f'cuda:{ddp_local_rank}'
torch.cuda.set_device(device)
print(f"using device: {device}")
master_process = (ddp_rank == 0) # this process will do logging, checkpointing etc.
# begin logging
logfile = None
if master_process:
run_id = str(uuid.uuid4())
logdir = 'logs/%s/' % run_id
os.makedirs(logdir, exist_ok=True)
logfile = 'logs/%s.txt' % run_id
# create the log file
with open(logfile, "w") as f:
# begin the log by printing this file (the Python code)
f.write(code)
f.write('='*100 + '\n')
def print0(s, logonly=False):
if master_process:
with open(logfile, "a") as f:
if not logonly:
print(s)
f.write(s+'\n')
# log information about the hardware/software environment this is running on
# and print the full `nvidia-smi` to file
print0(f"Running pytorch {torch.version.__version__} compiled for CUDA {torch.version.cuda}\nnvidia-smi:")
import subprocess
result = subprocess.run(['nvidia-smi'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
print0(f'{result.stdout}', logonly=True)
print0('='*100, logonly=True)
# convenience variables
T = args.sequence_length
# calculate the number of steps to take in the val loop.
assert args.val_tokens % (T * ddp_world_size) == 0
val_steps = args.val_tokens // (T * ddp_world_size)
# calculate the steps of gradient accumulation required to attain the desired global batch size.
assert args.batch_size % (ddp_world_size) == 0
train_accumulation_steps = args.batch_size // ddp_world_size
# load tokens
train_loader = DistributedDataLoader(args.input_bin, T, ddp_rank, ddp_world_size)
val_loader = DistributedDataLoader(args.input_val_bin, T, ddp_rank, ddp_world_size)
print0(f"Training DataLoader: total number of tokens: {train_loader.ntok_total} across {len(train_loader.files)} files")
print0(f"Validation DataLoader: total number of tokens: {val_loader.ntok_total} across {len(val_loader.files)} files")
print0('='*100, logonly=True)
x, y = train_loader.next_batch()
# there are only 50257 unique GPT-2 tokens; we extend to nearest multiple of 128 for efficiency. suggested to me by @Grad62304977.
# this originates from Karpathy's experiments.
num_vocab = 50304
model = GPT(GPTConfig(vocab_size=num_vocab, n_layer=12, n_head=6, n_embd=768))
model = model.cuda().bfloat16()
for m in model.modules():
if isinstance(m, CastedLinear):
m.float()
if hasattr(config, "coordinate_descent_tuning"):
config.coordinate_descent_tuning = True # suggested by @Chillee
model = torch.compile(model)
# here we wrap model into DDP container
model = DDP(model, device_ids=[ddp_local_rank])
raw_model = model.module # always contains the "raw" unwrapped model
# init the optimizer(s)
optimizer1 = torch.optim.Adam([raw_model.transformer.wte.weight, raw_model.transformer.vte.weight], lr=0.6, betas=(0.8, 0.95), fused=True)
optimizer2 = torch.optim.Adam([raw_model.lm_head.weight], lr=0.008, betas=(0.8, 0.95), fused=True)
params = list(raw_model.transformer.h.parameters())
matrix_params = [p for p in params if p.ndim == 2]
scalar_params = [p for p in params if p.ndim < 2] + [raw_model.skip_weights]
optimizer3 = Muon(matrix_params, lr=0.05, momentum=0.95)
optimizer4 = torch.optim.Adam(scalar_params, lr=0.04, betas=(0.8, 0.95), fused=True) # note that this learning rate is neither sensitive nor tuned
optimizers = [optimizer1, optimizer2, optimizer3, optimizer4]
# learning rate decay scheduler (linear warmup and cooldown)
def get_lr(it):
assert it <= args.num_iterations
# 1) linear warmup for warmup_iters steps
if it < args.warmup_iters:
return (it+1) / args.warmup_iters
# 2) constant lr for a while
elif it < args.num_iterations - args.cooldown_iters:
return 1.0
# 3) linear cooldown
else:
decay_ratio = (args.num_iterations - it) / args.cooldown_iters
return decay_ratio
schedulers = [torch.optim.lr_scheduler.LambdaLR(opt, get_lr) for opt in optimizers]
# Start training loop
training_time_ms = 0
# start the clock
torch.cuda.synchronize()
t0 = time.time()
# begin training
for step in range(args.num_iterations + 1):
last_step = (step == args.num_iterations)
# This effectively ignores timing first 10 steps, which are slower for weird reasons.
# Alternately, and slightly more correctly in terms of benchmarking, we could do 10
# steps with dummy data first, and then re-initialize the model and reset the loader.
if step == 10:
training_time_ms = 0
t0 = time.time()
timed_steps = float('nan') if step <= 11 else (step - 10) + 1 # <= 11 to avoid bug in val
# Set the attention blocksize for the current step, in chunks of 64. By @fernbear.bsky.social
attn_blocksize = torch.tensor(64*((step/args.num_iterations * (1792 - 64) + 64)//64), dtype=torch.int, device='cuda')
# once in a while evaluate the validation dataset
if (last_step or (args.val_loss_every > 0 and step % args.val_loss_every == 0)):
# stop the clock
torch.cuda.synchronize()
training_time_ms += 1000 * (time.time() - t0)
# run validation batches
model.eval()
val_loader.reset()
val_loss = 0.0
for _ in range(val_steps):
with torch.no_grad():
x_val, y_val = val_loader.next_batch()
val_loss += model(x_val, y_val, attn_blocksize=attn_blocksize)
dist.all_reduce(val_loss, op=dist.ReduceOp.AVG)
val_loss /= val_steps
# log val loss to console and to logfile
print0(f'step:{step}/{args.num_iterations} val_loss:{val_loss:.4f} train_time:{training_time_ms:.0f}ms step_avg:{training_time_ms/(timed_steps-1):.2f}ms')
# start the clock again
torch.cuda.synchronize()
t0 = time.time()
if master_process and (last_step or (args.save_every > 0 and step % args.save_every == 0)):
# stop the clock
torch.cuda.synchronize()
training_time_ms += 1000 * (time.time() - t0)
# save the state of the training process
log = dict(step=step, code=code, model=raw_model.state_dict(), optimizers=[opt.state_dict() for opt in optimizers])
torch.save(log, 'logs/%s/state_step%06d.pt' % (run_id, step))
# start the clock again
torch.cuda.synchronize()
t0 = time.time()
# bit confusing: we want to make sure to eval on 0th iteration
# but also after the very last iteration. so we loop for step <= num_iterations
# instead of just < num_iterations (one extra due to <=), only to do
# the validation/sampling one last time, and then we break right here as we're done.
if last_step:
break
# --------------- TRAINING SECTION BEGIN -----------------
model.train()
for i in range(1, train_accumulation_steps+1):
ctx = model.no_sync() if i < train_accumulation_steps else contextlib.nullcontext()
with ctx: # there's no need to sync gradients every accumulation step
# forward pass
loss = model(x, y, attn_blocksize=attn_blocksize)
# advance the dataset for the next batch
x, y = train_loader.next_batch()
# backward pass
loss.backward()
train_loss = loss.detach()
for p in model.parameters():
p.grad /= train_accumulation_steps
# momentum warmup for Muon
frac = min(step/300, 1)
optimizer3.param_groups[0]['momentum'] = (1 - frac) * 0.85 + frac * 0.95
# step the optimizers and schedulers
for opt, sched in zip(optimizers, schedulers):
opt.step()
sched.step()
# null the gradients
model.zero_grad(set_to_none=True)
# --------------- TRAINING SECTION END -------------------
# everything that follows now is just diagnostics, prints, logging, etc.
#dist.all_reduce(train_loss, op=dist.ReduceOp.AVG) # all-reducing the training loss would be more correct in terms of logging, but slower
approx_time = training_time_ms + 1000 * (time.time() - t0)
print0(f"step:{step+1}/{args.num_iterations} train_loss:{train_loss.item():.4f} train_time:{approx_time:.0f}ms step_avg:{approx_time/timed_steps:.2f}ms")
if master_process:
print(f"peak memory consumption: {torch.cuda.max_memory_allocated() // 1024 // 1024} MiB")
# -------------------------------------------------------------------------
# clean up nice
dist.destroy_process_group()
====================================================================================================
Running pytorch 2.6.0.dev20241203+cu124 compiled for CUDA 12.4
nvidia-smi:
Thu Dec 5 03:35:06 2024
+---------------------------------------------------------------------------------------+
| NVIDIA-SMI 535.183.06 Driver Version: 535.183.06 CUDA Version: 12.2 |
|-----------------------------------------+----------------------+----------------------+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+======================+======================|
| 0 NVIDIA H100 80GB HBM3 On | 00000000:19:00.0 Off | 0 |
| N/A 39C P0 76W / 700W | 3MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 1 NVIDIA H100 80GB HBM3 On | 00000000:3B:00.0 Off | 0 |
| N/A 30C P0 73W / 700W | 3MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 2 NVIDIA H100 80GB HBM3 On | 00000000:4C:00.0 Off | 0 |
| N/A 31C P0 113W / 700W | 22MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 3 NVIDIA H100 80GB HBM3 On | 00000000:5D:00.0 Off | 0 |
| N/A 38C P0 117W / 700W | 22MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 4 NVIDIA H100 80GB HBM3 On | 00000000:9B:00.0 Off | 0 |
| N/A 39C P0 99W / 700W | 22MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 5 NVIDIA H100 80GB HBM3 On | 00000000:BB:00.0 Off | 0 |
| N/A 30C P0 110W / 700W | 529MiB / 81559MiB | 1% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 6 NVIDIA H100 80GB HBM3 On | 00000000:CB:00.0 Off | 0 |
| N/A 39C P0 94W / 700W | 22MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 7 NVIDIA H100 80GB HBM3 On | 00000000:DB:00.0 Off | 0 |
| N/A 30C P0 119W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
+---------------------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=======================================================================================|
+---------------------------------------------------------------------------------------+
====================================================================================================
Training DataLoader: total number of tokens: 1100000000 across 11 files
Validation DataLoader: total number of tokens: 100000000 across 1 files
====================================================================================================
step:0/1530 val_loss:10.8258 train_time:0ms step_avg:nanms
step:1/1530 train_loss:10.8258 train_time:31906ms step_avg:nanms
step:2/1530 train_loss:10.0865 train_time:32016ms step_avg:nanms
step:3/1530 train_loss:8.3825 train_time:32176ms step_avg:nanms
step:4/1530 train_loss:7.5261 train_time:32338ms step_avg:nanms
step:5/1530 train_loss:7.4893 train_time:32498ms step_avg:nanms
step:6/1530 train_loss:6.9792 train_time:32658ms step_avg:nanms
step:7/1530 train_loss:7.1948 train_time:32818ms step_avg:nanms
step:8/1530 train_loss:6.7279 train_time:32979ms step_avg:nanms
step:9/1530 train_loss:6.6182 train_time:33140ms step_avg:nanms
step:10/1530 train_loss:6.4870 train_time:33301ms step_avg:nanms
step:11/1530 train_loss:6.4352 train_time:115ms step_avg:nanms
step:12/1530 train_loss:6.3162 train_time:275ms step_avg:nanms
step:13/1530 train_loss:6.2522 train_time:434ms step_avg:144.79ms
step:14/1530 train_loss:6.1979 train_time:595ms step_avg:148.78ms
step:15/1530 train_loss:6.1776 train_time:756ms step_avg:151.18ms
step:16/1530 train_loss:6.1079 train_time:915ms step_avg:152.58ms
step:17/1530 train_loss:6.1595 train_time:1076ms step_avg:153.73ms
step:18/1530 train_loss:5.9458 train_time:1236ms step_avg:154.51ms
step:19/1530 train_loss:5.9823 train_time:1396ms step_avg:155.14ms
step:20/1530 train_loss:5.6711 train_time:1556ms step_avg:155.60ms
step:21/1530 train_loss:5.9676 train_time:1717ms step_avg:156.07ms
step:22/1530 train_loss:6.1869 train_time:1877ms step_avg:156.44ms
step:23/1530 train_loss:5.8462 train_time:2038ms step_avg:156.78ms
step:24/1530 train_loss:6.0146 train_time:2199ms step_avg:157.08ms
step:25/1530 train_loss:5.6915 train_time:2360ms step_avg:157.35ms
step:26/1530 train_loss:5.5899 train_time:2521ms step_avg:157.59ms
step:27/1530 train_loss:5.7757 train_time:2682ms step_avg:157.76ms
step:28/1530 train_loss:5.3907 train_time:2843ms step_avg:157.93ms
step:29/1530 train_loss:5.6686 train_time:3003ms step_avg:158.05ms
step:30/1530 train_loss:5.4577 train_time:3163ms step_avg:158.17ms
step:31/1530 train_loss:5.4375 train_time:3324ms step_avg:158.28ms
step:32/1530 train_loss:5.2745 train_time:3484ms step_avg:158.39ms
step:33/1530 train_loss:5.5856 train_time:3645ms step_avg:158.49ms
step:34/1530 train_loss:5.4954 train_time:3805ms step_avg:158.55ms
step:35/1530 train_loss:5.5982 train_time:3966ms step_avg:158.64ms
step:36/1530 train_loss:5.5232 train_time:4127ms step_avg:158.72ms
step:37/1530 train_loss:5.4462 train_time:4286ms step_avg:158.75ms
step:38/1530 train_loss:5.2996 train_time:4448ms step_avg:158.87ms
step:39/1530 train_loss:5.3272 train_time:4608ms step_avg:158.89ms
step:40/1530 train_loss:5.2311 train_time:4769ms step_avg:158.95ms
step:41/1530 train_loss:5.2184 train_time:4930ms step_avg:159.02ms
step:42/1530 train_loss:5.1525 train_time:5090ms step_avg:159.07ms
step:43/1530 train_loss:5.2567 train_time:5250ms step_avg:159.10ms
step:44/1530 train_loss:5.2122 train_time:5410ms step_avg:159.13ms
step:45/1530 train_loss:5.3627 train_time:5571ms step_avg:159.17ms
step:46/1530 train_loss:5.1576 train_time:5731ms step_avg:159.20ms
step:47/1530 train_loss:5.0684 train_time:5891ms step_avg:159.22ms
step:48/1530 train_loss:5.2051 train_time:6053ms step_avg:159.29ms
step:49/1530 train_loss:5.1622 train_time:6213ms step_avg:159.31ms
step:50/1530 train_loss:5.2614 train_time:6373ms step_avg:159.32ms
step:51/1530 train_loss:5.1350 train_time:6534ms step_avg:159.36ms
step:52/1530 train_loss:5.0166 train_time:6694ms step_avg:159.39ms
step:53/1530 train_loss:5.1759 train_time:6855ms step_avg:159.42ms
step:54/1530 train_loss:5.0088 train_time:7015ms step_avg:159.43ms
step:55/1530 train_loss:5.3933 train_time:7175ms step_avg:159.44ms
step:56/1530 train_loss:5.0066 train_time:7335ms step_avg:159.47ms
step:57/1530 train_loss:4.8856 train_time:7496ms step_avg:159.50ms
step:58/1530 train_loss:5.0569 train_time:7657ms step_avg:159.52ms
step:59/1530 train_loss:5.0250 train_time:7818ms step_avg:159.55ms
step:60/1530 train_loss:5.1568 train_time:7978ms step_avg:159.57ms
step:61/1530 train_loss:4.8578 train_time:8138ms step_avg:159.56ms
step:62/1530 train_loss:4.9683 train_time:8298ms step_avg:159.58ms
step:63/1530 train_loss:4.9644 train_time:8460ms step_avg:159.62ms
step:64/1530 train_loss:4.9599 train_time:8620ms step_avg:159.63ms
step:65/1530 train_loss:4.8047 train_time:8780ms step_avg:159.64ms
step:66/1530 train_loss:4.9090 train_time:8942ms step_avg:159.67ms
step:67/1530 train_loss:4.8116 train_time:9102ms step_avg:159.69ms
step:68/1530 train_loss:5.0848 train_time:9263ms step_avg:159.71ms
step:69/1530 train_loss:4.7019 train_time:9424ms step_avg:159.72ms
step:70/1530 train_loss:4.8195 train_time:9584ms step_avg:159.73ms
step:71/1530 train_loss:4.9764 train_time:9744ms step_avg:159.74ms
step:72/1530 train_loss:4.8938 train_time:9904ms step_avg:159.74ms
step:73/1530 train_loss:4.7614 train_time:10064ms step_avg:159.75ms
step:74/1530 train_loss:4.9025 train_time:10224ms step_avg:159.76ms
step:75/1530 train_loss:4.8652 train_time:10385ms step_avg:159.77ms
step:76/1530 train_loss:4.8036 train_time:10546ms step_avg:159.78ms
step:77/1530 train_loss:4.9172 train_time:10705ms step_avg:159.78ms
step:78/1530 train_loss:5.1262 train_time:10867ms step_avg:159.81ms
step:79/1530 train_loss:4.8182 train_time:11028ms step_avg:159.82ms
step:80/1530 train_loss:4.8575 train_time:11188ms step_avg:159.82ms
step:81/1530 train_loss:4.6597 train_time:11348ms step_avg:159.83ms
step:82/1530 train_loss:4.8303 train_time:11509ms step_avg:159.85ms
step:83/1530 train_loss:4.7794 train_time:11670ms step_avg:159.87ms
step:84/1530 train_loss:4.7616 train_time:11831ms step_avg:159.88ms
step:85/1530 train_loss:4.6170 train_time:11992ms step_avg:159.89ms
step:86/1530 train_loss:4.8245 train_time:12152ms step_avg:159.90ms
step:87/1530 train_loss:4.7423 train_time:12313ms step_avg:159.91ms
step:88/1530 train_loss:4.7531 train_time:12472ms step_avg:159.90ms
step:89/1530 train_loss:4.7034 train_time:12634ms step_avg:159.92ms
step:90/1530 train_loss:4.6414 train_time:12795ms step_avg:159.93ms
step:91/1530 train_loss:4.6354 train_time:12955ms step_avg:159.94ms
step:92/1530 train_loss:4.7818 train_time:13115ms step_avg:159.94ms
step:93/1530 train_loss:4.6018 train_time:13275ms step_avg:159.94ms
step:94/1530 train_loss:4.6346 train_time:13436ms step_avg:159.95ms
step:95/1530 train_loss:4.6842 train_time:13595ms step_avg:159.94ms
step:96/1530 train_loss:4.5942 train_time:13756ms step_avg:159.96ms
step:97/1530 train_loss:4.6583 train_time:13917ms step_avg:159.96ms
step:98/1530 train_loss:4.5926 train_time:14076ms step_avg:159.95ms
step:99/1530 train_loss:4.6812 train_time:14237ms step_avg:159.96ms
step:100/1530 train_loss:4.6859 train_time:14398ms step_avg:159.98ms
step:101/1530 train_loss:4.5330 train_time:14559ms step_avg:159.99ms
step:102/1530 train_loss:4.6914 train_time:14722ms step_avg:160.02ms
step:103/1530 train_loss:4.5806 train_time:14883ms step_avg:160.03ms
step:104/1530 train_loss:4.5594 train_time:15043ms step_avg:160.04ms
step:105/1530 train_loss:4.5526 train_time:15203ms step_avg:160.03ms
step:106/1530 train_loss:4.6185 train_time:15364ms step_avg:160.05ms
step:107/1530 train_loss:4.5150 train_time:15525ms step_avg:160.05ms
step:108/1530 train_loss:4.3654 train_time:15685ms step_avg:160.05ms
step:109/1530 train_loss:4.4820 train_time:15845ms step_avg:160.05ms
step:110/1530 train_loss:4.4834 train_time:16005ms step_avg:160.05ms
step:111/1530 train_loss:4.4255 train_time:16167ms step_avg:160.06ms
step:112/1530 train_loss:4.5830 train_time:16327ms step_avg:160.07ms
step:113/1530 train_loss:4.4907 train_time:16487ms step_avg:160.07ms
step:114/1530 train_loss:4.3600 train_time:16648ms step_avg:160.08ms
step:115/1530 train_loss:4.5142 train_time:16811ms step_avg:160.10ms
step:116/1530 train_loss:4.4741 train_time:16976ms step_avg:160.15ms
step:117/1530 train_loss:4.3801 train_time:17141ms step_avg:160.19ms
step:118/1530 train_loss:4.5980 train_time:17304ms step_avg:160.22ms
step:119/1530 train_loss:4.4459 train_time:17468ms step_avg:160.26ms
step:120/1530 train_loss:4.3275 train_time:17632ms step_avg:160.29ms
step:121/1530 train_loss:4.2912 train_time:17797ms step_avg:160.33ms
step:122/1530 train_loss:4.4461 train_time:17962ms step_avg:160.37ms
step:123/1530 train_loss:4.2736 train_time:18126ms step_avg:160.41ms
step:124/1530 train_loss:4.5898 train_time:18289ms step_avg:160.43ms
step:125/1530 train_loss:4.4568 train_time:18453ms step_avg:160.47ms
step:125/1530 val_loss:4.4012 train_time:18500ms step_avg:160.87ms
step:126/1530 train_loss:4.4064 train_time:18619ms step_avg:160.51ms
step:127/1530 train_loss:4.4313 train_time:18786ms step_avg:160.57ms
step:128/1530 train_loss:4.3712 train_time:18950ms step_avg:160.59ms
step:129/1530 train_loss:4.6804 train_time:19114ms step_avg:160.62ms
step:130/1530 train_loss:4.3686 train_time:19278ms step_avg:160.65ms
step:131/1530 train_loss:4.4002 train_time:19442ms step_avg:160.68ms
step:132/1530 train_loss:4.3353 train_time:19606ms step_avg:160.71ms
step:133/1530 train_loss:4.4388 train_time:19771ms step_avg:160.74ms
step:134/1530 train_loss:4.2572 train_time:19936ms step_avg:160.77ms
step:135/1530 train_loss:4.4508 train_time:20100ms step_avg:160.80ms
step:136/1530 train_loss:4.2192 train_time:20264ms step_avg:160.83ms
step:137/1530 train_loss:4.3627 train_time:20429ms step_avg:160.86ms
step:138/1530 train_loss:4.2801 train_time:20594ms step_avg:160.89ms
step:139/1530 train_loss:4.3795 train_time:20758ms step_avg:160.92ms
step:140/1530 train_loss:4.4725 train_time:20923ms step_avg:160.94ms
step:141/1530 train_loss:4.3051 train_time:21087ms step_avg:160.97ms
step:142/1530 train_loss:4.2983 train_time:21251ms step_avg:160.99ms
step:143/1530 train_loss:4.2456 train_time:21416ms step_avg:161.02ms
step:144/1530 train_loss:4.3522 train_time:21580ms step_avg:161.04ms
step:145/1530 train_loss:4.3108 train_time:21743ms step_avg:161.06ms
step:146/1530 train_loss:4.1725 train_time:21908ms step_avg:161.08ms
step:147/1530 train_loss:4.3220 train_time:22072ms step_avg:161.11ms
step:148/1530 train_loss:4.3606 train_time:22236ms step_avg:161.13ms
step:149/1530 train_loss:4.2971 train_time:22401ms step_avg:161.16ms
step:150/1530 train_loss:4.4363 train_time:22564ms step_avg:161.17ms
step:151/1530 train_loss:4.2557 train_time:22729ms step_avg:161.20ms
step:152/1530 train_loss:4.2623 train_time:22894ms step_avg:161.22ms
step:153/1530 train_loss:4.3766 train_time:23059ms step_avg:161.25ms
step:154/1530 train_loss:4.3671 train_time:23222ms step_avg:161.26ms
step:155/1530 train_loss:4.2723 train_time:23386ms step_avg:161.28ms
step:156/1530 train_loss:4.3486 train_time:23550ms step_avg:161.30ms
step:157/1530 train_loss:4.3973 train_time:23714ms step_avg:161.32ms
step:158/1530 train_loss:4.2340 train_time:23877ms step_avg:161.33ms
step:159/1530 train_loss:4.2998 train_time:24041ms step_avg:161.35ms
step:160/1530 train_loss:4.1253 train_time:24205ms step_avg:161.37ms
step:161/1530 train_loss:4.3435 train_time:24370ms step_avg:161.39ms
step:162/1530 train_loss:4.3517 train_time:24534ms step_avg:161.41ms
step:163/1530 train_loss:4.3271 train_time:24697ms step_avg:161.42ms
step:164/1530 train_loss:4.1794 train_time:24860ms step_avg:161.43ms
step:165/1530 train_loss:4.2814 train_time:25025ms step_avg:161.45ms
step:166/1530 train_loss:4.3459 train_time:25189ms step_avg:161.47ms
step:167/1530 train_loss:4.1979 train_time:25353ms step_avg:161.48ms
step:168/1530 train_loss:4.2877 train_time:25516ms step_avg:161.50ms
step:169/1530 train_loss:4.1579 train_time:25679ms step_avg:161.50ms
step:170/1530 train_loss:4.0152 train_time:25843ms step_avg:161.52ms
step:171/1530 train_loss:4.1912 train_time:26007ms step_avg:161.53ms
step:172/1530 train_loss:4.2138 train_time:26170ms step_avg:161.54ms
step:173/1530 train_loss:4.2594 train_time:26334ms step_avg:161.56ms
step:174/1530 train_loss:4.4070 train_time:26496ms step_avg:161.56ms
step:175/1530 train_loss:4.2380 train_time:26659ms step_avg:161.57ms
step:176/1530 train_loss:4.0865 train_time:26821ms step_avg:161.57ms
step:177/1530 train_loss:4.0582 train_time:26984ms step_avg:161.58ms
step:178/1530 train_loss:4.1698 train_time:27148ms step_avg:161.60ms
step:179/1530 train_loss:4.1196 train_time:27312ms step_avg:161.61ms
step:180/1530 train_loss:4.1189 train_time:27475ms step_avg:161.62ms
step:181/1530 train_loss:4.2942 train_time:27638ms step_avg:161.63ms
step:182/1530 train_loss:4.1618 train_time:27801ms step_avg:161.63ms
step:183/1530 train_loss:4.1140 train_time:27965ms step_avg:161.65ms
step:184/1530 train_loss:4.1183 train_time:28128ms step_avg:161.66ms
step:185/1530 train_loss:4.1903 train_time:28291ms step_avg:161.66ms
step:186/1530 train_loss:4.1657 train_time:28453ms step_avg:161.66ms
step:187/1530 train_loss:4.2305 train_time:28616ms step_avg:161.67ms
step:188/1530 train_loss:4.1606 train_time:28913ms step_avg:162.43ms
step:189/1530 train_loss:4.1057 train_time:29236ms step_avg:163.33ms
step:190/1530 train_loss:4.2055 train_time:29398ms step_avg:163.32ms
step:191/1530 train_loss:4.0766 train_time:29561ms step_avg:163.32ms
step:192/1530 train_loss:4.0267 train_time:29723ms step_avg:163.32ms
step:193/1530 train_loss:4.2441 train_time:29886ms step_avg:163.31ms
step:194/1530 train_loss:4.1647 train_time:30049ms step_avg:163.31ms
step:195/1530 train_loss:4.3425 train_time:30213ms step_avg:163.31ms
step:196/1530 train_loss:4.1727 train_time:30376ms step_avg:163.31ms
step:197/1530 train_loss:4.0364 train_time:30538ms step_avg:163.31ms
step:198/1530 train_loss:4.1724 train_time:30700ms step_avg:163.30ms
step:199/1530 train_loss:4.0318 train_time:30863ms step_avg:163.30ms
step:200/1530 train_loss:4.1119 train_time:31027ms step_avg:163.30ms
step:201/1530 train_loss:4.0095 train_time:31188ms step_avg:163.29ms
step:202/1530 train_loss:4.2566 train_time:31351ms step_avg:163.29ms
step:203/1530 train_loss:4.0708 train_time:31515ms step_avg:163.29ms
step:204/1530 train_loss:4.1916 train_time:31677ms step_avg:163.29ms
step:205/1530 train_loss:4.2389 train_time:31840ms step_avg:163.28ms
step:206/1530 train_loss:3.9407 train_time:32003ms step_avg:163.28ms
step:207/1530 train_loss:4.0654 train_time:32166ms step_avg:163.28ms
step:208/1530 train_loss:4.0884 train_time:32331ms step_avg:163.29ms
step:209/1530 train_loss:4.2310 train_time:32494ms step_avg:163.29ms
step:210/1530 train_loss:4.1699 train_time:32658ms step_avg:163.29ms
step:211/1530 train_loss:4.0581 train_time:32820ms step_avg:163.28ms
step:212/1530 train_loss:4.1243 train_time:32983ms step_avg:163.28ms
step:213/1530 train_loss:4.0383 train_time:33147ms step_avg:163.29ms
step:214/1530 train_loss:4.1071 train_time:33310ms step_avg:163.29ms
step:215/1530 train_loss:3.9465 train_time:33473ms step_avg:163.28ms
step:216/1530 train_loss:3.9956 train_time:33636ms step_avg:163.28ms
step:217/1530 train_loss:4.0028 train_time:33799ms step_avg:163.28ms
step:218/1530 train_loss:4.0802 train_time:33961ms step_avg:163.28ms
step:219/1530 train_loss:4.0672 train_time:34124ms step_avg:163.27ms
step:220/1530 train_loss:4.0735 train_time:34287ms step_avg:163.27ms
step:221/1530 train_loss:4.0979 train_time:34450ms step_avg:163.27ms
step:222/1530 train_loss:4.0052 train_time:34613ms step_avg:163.27ms
step:223/1530 train_loss:3.9859 train_time:34776ms step_avg:163.27ms
step:224/1530 train_loss:4.2958 train_time:34939ms step_avg:163.27ms
step:225/1530 train_loss:3.9261 train_time:35101ms step_avg:163.26ms
step:226/1530 train_loss:3.9834 train_time:35263ms step_avg:163.25ms
step:227/1530 train_loss:3.9866 train_time:35428ms step_avg:163.26ms
step:228/1530 train_loss:4.1343 train_time:35594ms step_avg:163.27ms
step:229/1530 train_loss:3.9196 train_time:35760ms step_avg:163.29ms
step:230/1530 train_loss:4.0376 train_time:35925ms step_avg:163.30ms
step:231/1530 train_loss:3.8971 train_time:36091ms step_avg:163.31ms
step:232/1530 train_loss:3.9680 train_time:36257ms step_avg:163.32ms
step:233/1530 train_loss:4.0864 train_time:36423ms step_avg:163.33ms
step:234/1530 train_loss:4.0258 train_time:36588ms step_avg:163.34ms
step:235/1530 train_loss:3.8979 train_time:36757ms step_avg:163.37ms
step:236/1530 train_loss:4.0770 train_time:36923ms step_avg:163.38ms
step:237/1530 train_loss:4.0777 train_time:37090ms step_avg:163.39ms
step:238/1530 train_loss:3.9406 train_time:37257ms step_avg:163.41ms
step:239/1530 train_loss:4.0757 train_time:37423ms step_avg:163.42ms
step:240/1530 train_loss:4.1053 train_time:37590ms step_avg:163.43ms
step:241/1530 train_loss:3.9603 train_time:37755ms step_avg:163.44ms
step:242/1530 train_loss:4.1401 train_time:37921ms step_avg:163.45ms
step:243/1530 train_loss:4.0031 train_time:38087ms step_avg:163.46ms
step:244/1530 train_loss:4.0793 train_time:38253ms step_avg:163.47ms
step:245/1530 train_loss:4.1363 train_time:38419ms step_avg:163.48ms
step:246/1530 train_loss:4.0545 train_time:38583ms step_avg:163.49ms
step:247/1530 train_loss:4.0019 train_time:38750ms step_avg:163.50ms
step:248/1530 train_loss:4.0983 train_time:38918ms step_avg:163.52ms
step:249/1530 train_loss:3.9144 train_time:39082ms step_avg:163.52ms
step:250/1530 train_loss:3.9742 train_time:39249ms step_avg:163.54ms
step:250/1530 val_loss:4.0030 train_time:39298ms step_avg:163.74ms
step:251/1530 train_loss:4.0742 train_time:39419ms step_avg:163.56ms
step:252/1530 train_loss:4.1657 train_time:39586ms step_avg:163.58ms
step:253/1530 train_loss:3.9309 train_time:39753ms step_avg:163.59ms
step:254/1530 train_loss:3.8772 train_time:39919ms step_avg:163.60ms
step:255/1530 train_loss:4.0701 train_time:40085ms step_avg:163.61ms
step:256/1530 train_loss:3.9905 train_time:40253ms step_avg:163.63ms
step:257/1530 train_loss:3.9995 train_time:40418ms step_avg:163.64ms
step:258/1530 train_loss:3.9913 train_time:40584ms step_avg:163.65ms
step:259/1530 train_loss:4.0292 train_time:40751ms step_avg:163.66ms
step:260/1530 train_loss:4.0585 train_time:40917ms step_avg:163.67ms
step:261/1530 train_loss:4.0189 train_time:41083ms step_avg:163.68ms
step:262/1530 train_loss:3.9849 train_time:41249ms step_avg:163.69ms
step:263/1530 train_loss:3.8886 train_time:41416ms step_avg:163.70ms
step:264/1530 train_loss:3.9811 train_time:41582ms step_avg:163.71ms
step:265/1530 train_loss:3.8645 train_time:41749ms step_avg:163.72ms
step:266/1530 train_loss:3.9142 train_time:41915ms step_avg:163.73ms
step:267/1530 train_loss:3.9234 train_time:42081ms step_avg:163.74ms
step:268/1530 train_loss:3.9621 train_time:42246ms step_avg:163.75ms
step:269/1530 train_loss:3.8485 train_time:42412ms step_avg:163.75ms
step:270/1530 train_loss:4.0967 train_time:42579ms step_avg:163.76ms
step:271/1530 train_loss:3.9692 train_time:42744ms step_avg:163.77ms
step:272/1530 train_loss:3.9304 train_time:42911ms step_avg:163.78ms
step:273/1530 train_loss:3.9455 train_time:43077ms step_avg:163.79ms
step:274/1530 train_loss:4.0416 train_time:43243ms step_avg:163.80ms
step:275/1530 train_loss:4.0655 train_time:43409ms step_avg:163.81ms
step:276/1530 train_loss:4.2267 train_time:43577ms step_avg:163.82ms
step:277/1530 train_loss:4.0354 train_time:43742ms step_avg:163.83ms
step:278/1530 train_loss:4.0833 train_time:43909ms step_avg:163.84ms
step:279/1530 train_loss:3.9965 train_time:44076ms step_avg:163.85ms
step:280/1530 train_loss:4.1975 train_time:44242ms step_avg:163.86ms
step:281/1530 train_loss:3.9716 train_time:44408ms step_avg:163.87ms
step:282/1530 train_loss:3.9500 train_time:44576ms step_avg:163.88ms
step:283/1530 train_loss:3.9178 train_time:44741ms step_avg:163.89ms
step:284/1530 train_loss:4.0504 train_time:44908ms step_avg:163.90ms
step:285/1530 train_loss:4.0650 train_time:45074ms step_avg:163.91ms
step:286/1530 train_loss:4.0946 train_time:45238ms step_avg:163.91ms
step:287/1530 train_loss:3.9123 train_time:45403ms step_avg:163.91ms
step:288/1530 train_loss:4.0129 train_time:45568ms step_avg:163.91ms
step:289/1530 train_loss:3.8763 train_time:45734ms step_avg:163.92ms
step:290/1530 train_loss:3.8585 train_time:45900ms step_avg:163.93ms
step:291/1530 train_loss:3.9084 train_time:46064ms step_avg:163.93ms
step:292/1530 train_loss:3.8650 train_time:46230ms step_avg:163.94ms
step:293/1530 train_loss:3.9073 train_time:46396ms step_avg:163.94ms
step:294/1530 train_loss:3.9407 train_time:46561ms step_avg:163.95ms
step:295/1530 train_loss:3.8371 train_time:46727ms step_avg:163.95ms
step:296/1530 train_loss:3.8654 train_time:46894ms step_avg:163.97ms
step:297/1530 train_loss:3.8598 train_time:47059ms step_avg:163.97ms
step:298/1530 train_loss:3.9709 train_time:47224ms step_avg:163.97ms
step:299/1530 train_loss:3.8254 train_time:47389ms step_avg:163.97ms
step:300/1530 train_loss:3.9731 train_time:47554ms step_avg:163.98ms
step:301/1530 train_loss:3.9578 train_time:47720ms step_avg:163.99ms
step:302/1530 train_loss:3.9354 train_time:47885ms step_avg:163.99ms
step:303/1530 train_loss:3.9812 train_time:48050ms step_avg:163.99ms
step:304/1530 train_loss:3.9656 train_time:48216ms step_avg:164.00ms
step:305/1530 train_loss:4.4519 train_time:48381ms step_avg:164.00ms
step:306/1530 train_loss:3.9376 train_time:48546ms step_avg:164.01ms
step:307/1530 train_loss:3.8336 train_time:48712ms step_avg:164.01ms
step:308/1530 train_loss:3.9876 train_time:48877ms step_avg:164.02ms
step:309/1530 train_loss:3.8706 train_time:49041ms step_avg:164.02ms
step:310/1530 train_loss:4.0833 train_time:49206ms step_avg:164.02ms
step:311/1530 train_loss:3.9308 train_time:49372ms step_avg:164.03ms
step:312/1530 train_loss:3.8614 train_time:49538ms step_avg:164.03ms
step:313/1530 train_loss:3.9391 train_time:49704ms step_avg:164.04ms
step:314/1530 train_loss:4.0635 train_time:49870ms step_avg:164.05ms
step:315/1530 train_loss:3.9416 train_time:50035ms step_avg:164.05ms
step:316/1530 train_loss:3.7897 train_time:50201ms step_avg:164.05ms
step:317/1530 train_loss:3.8792 train_time:50366ms step_avg:164.06ms
step:318/1530 train_loss:3.9222 train_time:50531ms step_avg:164.06ms
step:319/1530 train_loss:3.8922 train_time:50697ms step_avg:164.07ms
step:320/1530 train_loss:4.0196 train_time:50862ms step_avg:164.07ms
step:321/1530 train_loss:3.9568 train_time:51026ms step_avg:164.07ms
step:322/1530 train_loss:3.9350 train_time:51194ms step_avg:164.08ms
step:323/1530 train_loss:4.0068 train_time:51360ms step_avg:164.09ms
step:324/1530 train_loss:3.9491 train_time:51526ms step_avg:164.09ms
step:325/1530 train_loss:4.0197 train_time:51692ms step_avg:164.10ms
step:326/1530 train_loss:3.9012 train_time:51857ms step_avg:164.10ms
step:327/1530 train_loss:4.4027 train_time:52023ms step_avg:164.11ms
step:328/1530 train_loss:4.0770 train_time:52188ms step_avg:164.11ms
step:329/1530 train_loss:3.7980 train_time:52353ms step_avg:164.11ms
step:330/1530 train_loss:3.7450 train_time:52518ms step_avg:164.12ms
step:331/1530 train_loss:3.9792 train_time:52683ms step_avg:164.12ms
step:332/1530 train_loss:3.9177 train_time:52848ms step_avg:164.12ms
step:333/1530 train_loss:3.8874 train_time:53014ms step_avg:164.13ms
step:334/1530 train_loss:3.8391 train_time:53180ms step_avg:164.14ms
step:335/1530 train_loss:4.0088 train_time:53345ms step_avg:164.14ms
step:336/1530 train_loss:3.9676 train_time:53511ms step_avg:164.14ms
step:337/1530 train_loss:4.4283 train_time:53677ms step_avg:164.15ms
step:338/1530 train_loss:3.9423 train_time:53842ms step_avg:164.15ms
step:339/1530 train_loss:3.8674 train_time:54008ms step_avg:164.16ms
step:340/1530 train_loss:3.9365 train_time:54174ms step_avg:164.16ms
step:341/1530 train_loss:3.8595 train_time:54340ms step_avg:164.17ms
step:342/1530 train_loss:3.8098 train_time:54508ms step_avg:164.18ms
step:343/1530 train_loss:3.8388 train_time:54677ms step_avg:164.20ms
step:344/1530 train_loss:3.9993 train_time:54844ms step_avg:164.20ms
step:345/1530 train_loss:3.8132 train_time:55014ms step_avg:164.22ms
step:346/1530 train_loss:3.7683 train_time:55182ms step_avg:164.23ms
step:347/1530 train_loss:3.7955 train_time:55350ms step_avg:164.24ms
step:348/1530 train_loss:3.8587 train_time:55518ms step_avg:164.25ms
step:349/1530 train_loss:3.8306 train_time:55686ms step_avg:164.26ms
step:350/1530 train_loss:3.5719 train_time:55855ms step_avg:164.28ms
step:351/1530 train_loss:3.8275 train_time:56023ms step_avg:164.29ms
step:352/1530 train_loss:4.1890 train_time:56192ms step_avg:164.31ms
step:353/1530 train_loss:3.6631 train_time:56360ms step_avg:164.32ms
step:354/1530 train_loss:3.9306 train_time:56527ms step_avg:164.32ms
step:355/1530 train_loss:3.7854 train_time:56697ms step_avg:164.34ms
step:356/1530 train_loss:3.8817 train_time:56865ms step_avg:164.35ms
step:357/1530 train_loss:3.7622 train_time:57033ms step_avg:164.36ms
step:358/1530 train_loss:3.8680 train_time:57202ms step_avg:164.37ms
step:359/1530 train_loss:3.8012 train_time:57371ms step_avg:164.39ms
step:360/1530 train_loss:3.4198 train_time:57540ms step_avg:164.40ms
step:361/1530 train_loss:4.0292 train_time:57709ms step_avg:164.41ms
step:362/1530 train_loss:3.9218 train_time:57878ms step_avg:164.43ms
step:363/1530 train_loss:3.8413 train_time:58044ms step_avg:164.43ms
step:364/1530 train_loss:3.7536 train_time:58213ms step_avg:164.44ms
step:365/1530 train_loss:3.9184 train_time:58381ms step_avg:164.45ms
step:366/1530 train_loss:3.8680 train_time:58548ms step_avg:164.46ms
step:367/1530 train_loss:3.8638 train_time:58717ms step_avg:164.47ms
step:368/1530 train_loss:3.8572 train_time:58884ms step_avg:164.48ms
step:369/1530 train_loss:3.7507 train_time:59052ms step_avg:164.49ms
step:370/1530 train_loss:3.8797 train_time:59220ms step_avg:164.50ms
step:371/1530 train_loss:3.7302 train_time:59388ms step_avg:164.51ms
step:372/1530 train_loss:3.6931 train_time:59558ms step_avg:164.52ms
step:373/1530 train_loss:3.9106 train_time:59726ms step_avg:164.53ms
step:374/1530 train_loss:3.8277 train_time:59895ms step_avg:164.55ms
step:375/1530 train_loss:3.8069 train_time:60062ms step_avg:164.55ms
step:375/1530 val_loss:3.8269 train_time:60110ms step_avg:164.69ms