forked from KellerJordan/modded-nanogpt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
3e39d446-d7e8-4c49-b92c-62c3848a3c01.txt
2165 lines (2092 loc) · 134 KB
/
3e39d446-d7e8-4c49-b92c-62c3848a3c01.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import os
import sys
with open(sys.argv[0]) as f:
code = f.read() # read the code of this file ASAP, for logging
import uuid
import glob
import time
import contextlib
from dataclasses import dataclass
import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
import torch.distributed as dist
import torch._inductor.config as config
from torch.nn.parallel import DistributedDataParallel as DDP
# Use of FlexAttention contributed by @KoszarskyB
from torch.nn.attention.flex_attention import flex_attention, create_block_mask
flex_attention = torch.compile(flex_attention, dynamic=False)
create_block_mask = torch.compile(create_block_mask, dynamic=False)
# -----------------------------------------------------------------------------
# Muon optimizer
def zeropower_via_svd(G, steps=None):
U, S, V = G.svd()
return U @ V.T
@torch.compile
def zeropower_via_newtonschulz5(G, steps=10, eps=1e-7):
"""
Newton-Schulz iteration to compute the zeroth power / orthogonalization of G. We opt to use a
quintic iteration whose coefficients are selected to maximize the slope at zero. For the purpose
of minimizing steps, it turns out to be empirically effective to keep increasing the slope at
zero even beyond the point where the iteration no longer converges all the way to one everywhere
on the interval. This iteration therefore does not produce UV^T but rather something like US'V^T
where S' is diagonal with S_{ii}' ~ Uniform(0.5, 1.5), which turns out not to hurt model
performance at all relative to UV^T, where USV^T = G is the SVD.
"""
assert len(G.shape) == 2
a, b, c = (3.4445, -4.7750, 2.0315)
X = G.bfloat16()
X /= (X.norm() + eps) # ensure top singular value <= 1
if G.size(0) > G.size(1):
X = X.T
for _ in range(steps):
A = X @ X.T
B = b * A + c * A @ A # adapted from suggestion by @jxbz, @leloykun, and @YouJiacheng
X = a * X + B @ X
if G.size(0) > G.size(1):
X = X.T
return X
zeropower_backends = dict(svd=zeropower_via_svd, newtonschulz5=zeropower_via_newtonschulz5)
class Muon(torch.optim.Optimizer):
"""
Muon - MomentUm Orthogonalized by Newton-schulz
Muon internally runs standard SGD-momentum, and then performs an orthogonalization post-
processing step, in which each 2D parameter's update is replaced with the nearest orthogonal
matrix. To efficiently orthogonalize each update, we use a Newton-Schulz iteration, which has
the advantage that it can be stably run in bfloat16 on the GPU.
Some warnings:
- This optimizer assumes that all parameters passed in are 2D.
- It should not be used for the embedding layer, the final fully connected layer, or any {0,1}-D
parameters; those should all be optimized by a standard method (e.g., AdamW).
- To use it with 4D convolutional filters, it works well to just flatten their last 3 dimensions.
- We believe it is unlikely to work well for training with small batch size.
- We believe it may not work well for finetuning pretrained models, but we haven't tested this.
- We have not yet tried this optimizer for training scenarios larger than NanoGPT (124M).
Arguments:
lr: The learning rate used by the internal SGD.
momentum: The momentum used by the internal SGD.
nesterov: Whether to use Nesterov-style momentum in the internal SGD. (recommended)
backend: The chosen backend for the orthogonalization step. (recommended: 'newtonschulz5')
backend_steps: The number of iteration steps to use in the backend, if it is iterative.
"""
def __init__(self, params, lr=0.02, momentum=0.95, nesterov=True,
backend='newtonschulz5', backend_steps=5):
defaults = dict(lr=lr, momentum=momentum, nesterov=nesterov, backend=backend, backend_steps=backend_steps)
super().__init__(params, defaults)
def step(self):
for group in self.param_groups:
lr = group['lr']
momentum = group['momentum']
zeropower_backend = zeropower_backends[group['backend']]
# generate weight updates in distributed fashion
total_params = sum(p.numel() for p in group['params'])
updates_flat = torch.zeros(total_params, device='cuda', dtype=torch.bfloat16)
curr_idx = 0
for i, p in enumerate(group['params']):
# luckily this will perfectly distribute a transformer with multiple of 4 layers to 8 GPUs
if i % int(os.environ['WORLD_SIZE']) == int(os.environ['RANK']):
g = p.grad
assert g is not None
state = self.state[p]
if 'momentum_buffer' not in state:
state['momentum_buffer'] = torch.zeros_like(g)
buf = state['momentum_buffer']
buf.mul_(momentum).add_(g)
g = g.add(buf, alpha=momentum) if group['nesterov'] else buf
g = zeropower_backend(g, steps=group['backend_steps'])
g *= max(1, g.size(0)/g.size(1))**0.5
updates_flat[curr_idx:curr_idx+p.numel()] = g.flatten()
curr_idx += p.numel()
# sync updates across devices. we are not memory-constrained so can do this simple deserialization
dist.all_reduce(updates_flat, op=dist.ReduceOp.SUM)
# deserialize and apply updates
curr_idx = 0
for p in group['params']:
g = updates_flat[curr_idx:curr_idx+p.numel()].view_as(p.data).type_as(p.data)
p.data.add_(g, alpha=-lr)
curr_idx += p.numel()
# -----------------------------------------------------------------------------
# PyTorch nn.Module definitions for the GPT-2 model
def norm(x):
return F.rms_norm(x, (x.size(-1),))
class CastedLinear(nn.Linear):
def __init__(self, in_features, out_features):
super().__init__(in_features, out_features, bias=False)
def forward(self, x):
return F.linear(x, self.weight.to(x.dtype))
class Rotary(torch.nn.Module):
def __init__(self, dim, base=10000):
super().__init__()
self.register_buffer('inv_freq', (1 / base) ** (torch.arange(0, dim, 2) / dim))
self.seq_len_cached = None
self.cos_cached = None
self.sin_cached = None
def forward(self, x):
seq_len = x.shape[1]
if seq_len != self.seq_len_cached:
t = torch.arange(seq_len, device=x.device)
freqs = torch.outer(t, self.inv_freq)
self.seq_len_cached = seq_len
self.cos_cached = freqs.cos()
self.sin_cached = freqs.sin()
cos, sin = self.cos_cached[None, :, None, :], self.sin_cached[None, :, None, :]
# apply_rotary_emb(x, cos, sin)
x1, x2 = x.chunk(2, dim=3)
y1 = x1 * cos + x2 * sin
y2 = x1 * (-sin) + x2 * cos
return torch.cat((y1, y2), 3).type_as(x)
class CausalSelfAttention(nn.Module):
def __init__(self, dim, n_head):
super().__init__()
assert dim % n_head == 0
self.n_head = n_head
self.c_q = CastedLinear(dim, dim)
self.c_k = CastedLinear(dim, dim)
self.c_v = CastedLinear(dim, dim)
# value residual lambda
self.lamb = nn.Parameter(torch.tensor(0.5)) # @Grad62304977
# rotary embeddings
self.rotary = Rotary(dim // n_head) # dim // n_head = head_dim
# output projection
self.c_proj = CastedLinear(dim, dim)
self.c_proj.weight.data.zero_() # zero init suggested by @Grad62304977
def forward(self, x, vi, block_mask):
B, T = x.size(0), x.size(1) # batch size, sequence length
assert B == 1, "Must use batch size = 1 for FlexAttention"
q = self.c_q(x).view(B, T, self.n_head, -1)
k = self.c_k(x).view(B, T, self.n_head, -1)
v = self.c_v(x).view(B, T, self.n_head, -1)
v = (1 - self.lamb) * v + self.lamb * vi.view_as(v) # @Grad62304977
q, k = norm(q), norm(k) # QK norm suggested by @Grad62304977
q, k = self.rotary(q), self.rotary(k)
y = flex_attention(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), block_mask=block_mask)
y = y.transpose(1, 2).contiguous().view_as(x) # re-assemble all head outputs side by side
y = self.c_proj(y)
return y
class MLP(nn.Module):
def __init__(self, dim):
super().__init__()
self.c_fc = CastedLinear(dim, 4 * dim)
self.c_proj = CastedLinear(4 * dim, dim)
self.c_proj.weight.data.zero_() # zero init suggested by @Grad62304977
def forward(self, x):
x = self.c_fc(x)
x = F.relu(x).square() # https://arxiv.org/abs/2109.08668v2; ~1-2% better than GELU; suggested by @SKYLINEZ007 and @Grad62304977
x = self.c_proj(x)
return x
class Block(nn.Module):
def __init__(self, config):
super().__init__()
self.attn = CausalSelfAttention(config.n_embd, config.n_head)
self.mlp = MLP(config.n_embd)
self.lambdas = nn.Parameter(torch.tensor([1., 0.]))
def forward(self, x, vi, x0, block_mask):
x = self.lambdas[0] * x + self.lambdas[1] * x0
x = x + self.attn(norm(x), vi, block_mask)
x = x + self.mlp(norm(x))
return x
# -----------------------------------------------------------------------------
# The main GPT-2 model
@dataclass
class GPTConfig:
vocab_size : int = 50304
n_layer : int = 12
n_head : int = 6 # head dim 128 suggested by @Grad62304977
n_embd : int = 768
class GPT(nn.Module):
def __init__(self, config):
super().__init__()
# U-net design by @brendanh0gan
self.num_encoder_layers = config.n_layer // 2 # Half of the layers for encoder
self.num_decoder_layers = config.n_layer - self.num_encoder_layers # Remaining for decoder
# Add learnable skip connection weights for decoder layers
self.skip_weights = nn.Parameter(torch.ones(self.num_decoder_layers))
self.transformer = nn.ModuleDict(dict(
wte = nn.Embedding(config.vocab_size, config.n_embd),
# token value embeddings by @KoszarskyB - inspired by @Grad62304977's value residual learning
vte = nn.Embedding(config.vocab_size, config.n_embd*12),
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
))
self.lm_head = CastedLinear(config.n_embd, config.vocab_size)
self.lm_head.weight.data.zero_() # @Grad62304977
def forward(self, idx, target, attn_blocksize):
docs = (idx == 50256).cumsum(0)
def document_causal_mask(b, h, q_idx, kv_idx):
causal_mask = q_idx >= kv_idx
document_mask = docs[q_idx] == docs[kv_idx]
window_mask = q_idx - kv_idx < attn_blocksize
return causal_mask & document_mask & window_mask
S = len(idx)
block_mask = create_block_mask(document_causal_mask, None, None, S, S, device="cuda", _compile=True)
# forward the GPT model itself
x = self.transformer.wte(idx[None]) # token embeddings of shape (b, t, n_embd)
x = norm(x) # @Grad62304977
x0 = x
vi = self.transformer.vte(idx[None]).chunk(12, dim=-1)
# Store outputs for U-Net skip connections
skip_connections = []
# Encoder pass - process only the first half of the blocks
for i in range(self.num_encoder_layers):
x = self.transformer.h[i](x, vi[i], x0, block_mask)
skip_connections.append(x)
# Decoder pass - process the remaining blocks with weighted skip connections
for i in range(self.num_decoder_layers):
x = x + self.skip_weights[i] * skip_connections.pop()
x = self.transformer.h[self.num_encoder_layers + i](x, vi[self.num_encoder_layers+i], x0, block_mask)
x = norm(x)
logits = self.lm_head(x)
logits = 30 * torch.tanh(logits / 30) # @Grad62304977
logits = logits.float()
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), target.view(-1))
return loss
# -----------------------------------------------------------------------------
# Our own simple Distributed Data Loader
def _peek_data_shard(filename):
# only reads the header, returns header data
with open(filename, "rb") as f:
# first read the header, which is 256 int32 integers (4 bytes each)
header = np.frombuffer(f.read(256*4), dtype=np.int32)
if header[0] != 20240520:
print("ERROR: magic number mismatch in the data .bin file!")
print("---> HINT: Are you passing in a correct file with --input_bin?")
print("---> HINT: Dataset encoding changed recently, re-run data prepro or refer again to README")
print("---> HINT: For example re-run: `python dev/data/tinyshakespeare.py`, then re-try")
exit(1)
assert header[1] == 1, "unsupported version"
ntok = header[2] # number of tokens (claimed)
return ntok # for now just return the number of tokens
def _load_data_shard(filename):
with open(filename, "rb") as f:
# first read the header, which is 256 int32 integers (4 bytes each)
header = np.frombuffer(f.read(256*4), dtype=np.int32)
assert header[0] == 20240520, "magic number mismatch in the data .bin file"
assert header[1] == 1, "unsupported version"
ntok = header[2] # number of tokens (claimed)
# the rest of it are tokens, stored as uint16
tokens = np.frombuffer(f.read(), dtype=np.uint16)
assert len(tokens) == ntok, "number of tokens read does not match header?"
return tokens
class DistributedDataLoader:
def __init__(self, filename_pattern, T, process_rank, num_processes):
self.process_rank = process_rank
self.num_processes = num_processes
self.T = T
# glob files that match the pattern
self.files = sorted(glob.glob(filename_pattern))
assert len(self.files) > 0, f"did not find any files that match the pattern {filename_pattern}"
# load and validate all data shards, count number of tokens in total
ntok_total = 0
for fname in self.files:
shard_ntok = _peek_data_shard(fname)
assert shard_ntok >= num_processes * T + 1
ntok_total += int(shard_ntok)
self.ntok_total = ntok_total
self.reset()
def reset(self):
self.current_shard = -1
self.advance()
def advance(self): # advance to next data shard
self.current_shard = (self.current_shard + 1) % len(self.files)
self.current_position = self.process_rank * self.T
self.tokens = _load_data_shard(self.files[self.current_shard])
def next_batch(self):
batch_size = self.T * self.num_processes
buf = self.tokens[self.current_position:self.current_position+self.T+1]
buf = torch.tensor(buf.astype(np.int32), dtype=torch.long)
x = buf[:-1] # inputs
y = buf[1:] # targets
# advance current position and load next shard if necessary
self.current_position += batch_size
if self.current_position + batch_size >= len(self.tokens):
self.advance()
return x.cuda(), y.cuda()
# -----------------------------------------------------------------------------
# int main
@dataclass
class Hyperparameters:
# data hyperparams
input_bin : str = 'data/fineweb10B/fineweb_train_*.bin' # input .bin to train on
input_val_bin : str = 'data/fineweb10B/fineweb_val_*.bin' # input .bin to eval validation loss on
# optimization hyperparams
batch_size : int = 8 # batch size, in sequences, across all devices
sequence_length : int = 64*1024 # sequence length, in tokens
num_iterations : int = 1530 # number of iterations to run
warmup_iters : int = 0
cooldown_iters : int = 600 # number of iterations of linear warmup/cooldown for triangular or trapezoidal schedule
weight_decay : float = 0
# evaluation and logging hyperparams
val_loss_every : int = 125 # every how many steps to evaluate val loss? 0 for only at the end
val_tokens : int = 10485760 # how many tokens of validation data? it's important to keep this fixed for consistent comparisons
save_every : int = 0 # every how many steps to save the checkpoint? 0 for only at the end
args = Hyperparameters()
# set up DDP (distributed data parallel). torchrun sets this env variable
assert torch.cuda.is_available()
dist.init_process_group(backend='nccl')
ddp_rank = int(os.environ['RANK'])
ddp_local_rank = int(os.environ['LOCAL_RANK'])
ddp_world_size = int(os.environ['WORLD_SIZE'])
device = f'cuda:{ddp_local_rank}'
torch.cuda.set_device(device)
print(f"using device: {device}")
master_process = (ddp_rank == 0) # this process will do logging, checkpointing etc.
# begin logging
logfile = None
if master_process:
run_id = str(uuid.uuid4())
logdir = 'logs/%s/' % run_id
os.makedirs(logdir, exist_ok=True)
logfile = 'logs/%s.txt' % run_id
# create the log file
with open(logfile, "w") as f:
# begin the log by printing this file (the Python code)
f.write(code)
f.write('='*100 + '\n')
def print0(s, logonly=False):
if master_process:
with open(logfile, "a") as f:
if not logonly:
print(s)
f.write(s+'\n')
# log information about the hardware/software environment this is running on
# and print the full `nvidia-smi` to file
print0(f"Running pytorch {torch.version.__version__} compiled for CUDA {torch.version.cuda}\nnvidia-smi:")
import subprocess
result = subprocess.run(['nvidia-smi'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
print0(f'{result.stdout}', logonly=True)
print0('='*100, logonly=True)
# convenience variables
T = args.sequence_length
# calculate the number of steps to take in the val loop.
assert args.val_tokens % (T * ddp_world_size) == 0
val_steps = args.val_tokens // (T * ddp_world_size)
# calculate the steps of gradient accumulation required to attain the desired global batch size.
assert args.batch_size % (ddp_world_size) == 0
train_accumulation_steps = args.batch_size // ddp_world_size
# load tokens
train_loader = DistributedDataLoader(args.input_bin, T, ddp_rank, ddp_world_size)
val_loader = DistributedDataLoader(args.input_val_bin, T, ddp_rank, ddp_world_size)
print0(f"Training DataLoader: total number of tokens: {train_loader.ntok_total} across {len(train_loader.files)} files")
print0(f"Validation DataLoader: total number of tokens: {val_loader.ntok_total} across {len(val_loader.files)} files")
print0('='*100, logonly=True)
x, y = train_loader.next_batch()
# there are only 50257 unique GPT-2 tokens; we extend to nearest multiple of 128 for efficiency. suggested to me by @Grad62304977.
# this originates from Karpathy's experiments.
num_vocab = 50304
model = GPT(GPTConfig(vocab_size=num_vocab, n_layer=12, n_head=6, n_embd=768))
model = model.cuda().bfloat16()
for m in model.modules():
if isinstance(m, CastedLinear):
m.float()
if hasattr(config, "coordinate_descent_tuning"):
config.coordinate_descent_tuning = True # suggested by @Chillee
model = torch.compile(model)
# here we wrap model into DDP container
model = DDP(model, device_ids=[ddp_local_rank])
raw_model = model.module # always contains the "raw" unwrapped model
# init the optimizer(s)
optimizer1 = torch.optim.Adam([raw_model.transformer.wte.weight, raw_model.transformer.vte.weight], lr=0.6, betas=(0.8, 0.95), fused=True)
optimizer2 = torch.optim.Adam([raw_model.lm_head.weight], lr=0.008, betas=(0.8, 0.95), fused=True)
params = list(raw_model.transformer.h.parameters())
matrix_params = [p for p in params if p.ndim == 2]
scalar_params = [p for p in params if p.ndim < 2] + [raw_model.skip_weights]
optimizer3 = Muon(matrix_params, lr=0.05, momentum=0.95)
optimizer4 = torch.optim.Adam(scalar_params, lr=0.04, betas=(0.8, 0.95), fused=True) # note that this learning rate is neither sensitive nor tuned
optimizers = [optimizer1, optimizer2, optimizer3, optimizer4]
# learning rate decay scheduler (linear warmup and cooldown)
def get_lr(it):
assert it <= args.num_iterations
# 1) linear warmup for warmup_iters steps
if it < args.warmup_iters:
return (it+1) / args.warmup_iters
# 2) constant lr for a while
elif it < args.num_iterations - args.cooldown_iters:
return 1.0
# 3) linear cooldown
else:
decay_ratio = (args.num_iterations - it) / args.cooldown_iters
return decay_ratio
schedulers = [torch.optim.lr_scheduler.LambdaLR(opt, get_lr) for opt in optimizers]
# Start training loop
training_time_ms = 0
# start the clock
torch.cuda.synchronize()
t0 = time.time()
# begin training
for step in range(args.num_iterations + 1):
last_step = (step == args.num_iterations)
# This effectively ignores timing first 10 steps, which are slower for weird reasons.
# Alternately, and slightly more correctly in terms of benchmarking, we could do 10
# steps with dummy data first, and then re-initialize the model and reset the loader.
if step == 10:
training_time_ms = 0
t0 = time.time()
timed_steps = float('nan') if step <= 11 else (step - 10) + 1 # <= 11 to avoid bug in val
# Set the attention blocksize for the current step, in chunks of 64. By @fernbear.bsky.social
attn_blocksize = torch.tensor(64*((step/args.num_iterations * (1792 - 64) + 64)//64), dtype=torch.int, device='cuda')
# once in a while evaluate the validation dataset
if (last_step or (args.val_loss_every > 0 and step % args.val_loss_every == 0)):
# stop the clock
torch.cuda.synchronize()
training_time_ms += 1000 * (time.time() - t0)
# run validation batches
model.eval()
val_loader.reset()
val_loss = 0.0
for _ in range(val_steps):
with torch.no_grad():
x_val, y_val = val_loader.next_batch()
val_loss += model(x_val, y_val, attn_blocksize=attn_blocksize)
dist.all_reduce(val_loss, op=dist.ReduceOp.AVG)
val_loss /= val_steps
# log val loss to console and to logfile
print0(f'step:{step}/{args.num_iterations} val_loss:{val_loss:.4f} train_time:{training_time_ms:.0f}ms step_avg:{training_time_ms/(timed_steps-1):.2f}ms')
# start the clock again
torch.cuda.synchronize()
t0 = time.time()
if master_process and (last_step or (args.save_every > 0 and step % args.save_every == 0)):
# stop the clock
torch.cuda.synchronize()
training_time_ms += 1000 * (time.time() - t0)
# save the state of the training process
log = dict(step=step, code=code, model=raw_model.state_dict(), optimizers=[opt.state_dict() for opt in optimizers])
torch.save(log, 'logs/%s/state_step%06d.pt' % (run_id, step))
# start the clock again
torch.cuda.synchronize()
t0 = time.time()
# bit confusing: we want to make sure to eval on 0th iteration
# but also after the very last iteration. so we loop for step <= num_iterations
# instead of just < num_iterations (one extra due to <=), only to do
# the validation/sampling one last time, and then we break right here as we're done.
if last_step:
break
# --------------- TRAINING SECTION BEGIN -----------------
model.train()
for i in range(1, train_accumulation_steps+1):
ctx = model.no_sync() if i < train_accumulation_steps else contextlib.nullcontext()
with ctx: # there's no need to sync gradients every accumulation step
# forward pass
loss = model(x, y, attn_blocksize=attn_blocksize)
# advance the dataset for the next batch
x, y = train_loader.next_batch()
# backward pass
loss.backward()
train_loss = loss.detach()
for p in model.parameters():
p.grad /= train_accumulation_steps
# momentum warmup for Muon
frac = min(step/300, 1)
optimizer3.param_groups[0]['momentum'] = (1 - frac) * 0.85 + frac * 0.95
# step the optimizers and schedulers
for opt, sched in zip(optimizers, schedulers):
opt.step()
sched.step()
# null the gradients
model.zero_grad(set_to_none=True)
# --------------- TRAINING SECTION END -------------------
# everything that follows now is just diagnostics, prints, logging, etc.
#dist.all_reduce(train_loss, op=dist.ReduceOp.AVG) # all-reducing the training loss would be more correct in terms of logging, but slower
approx_time = training_time_ms + 1000 * (time.time() - t0)
print0(f"step:{step+1}/{args.num_iterations} train_loss:{train_loss.item():.4f} train_time:{approx_time:.0f}ms step_avg:{approx_time/timed_steps:.2f}ms")
if master_process:
print(f"peak memory consumption: {torch.cuda.max_memory_allocated() // 1024 // 1024} MiB")
# -------------------------------------------------------------------------
# clean up nice
dist.destroy_process_group()
====================================================================================================
Running pytorch 2.6.0.dev20241203+cu124 compiled for CUDA 12.4
nvidia-smi:
Thu Dec 5 00:57:42 2024
+---------------------------------------------------------------------------------------+
| NVIDIA-SMI 535.183.06 Driver Version: 535.183.06 CUDA Version: 12.2 |
|-----------------------------------------+----------------------+----------------------+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+======================+======================|
| 0 NVIDIA H100 80GB HBM3 On | 00000000:19:00.0 Off | 0 |
| N/A 39C P0 76W / 700W | 3MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 1 NVIDIA H100 80GB HBM3 On | 00000000:3B:00.0 Off | 0 |
| N/A 31C P0 115W / 700W | 115MiB / 81559MiB | 1% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 2 NVIDIA H100 80GB HBM3 On | 00000000:4C:00.0 Off | 0 |
| N/A 31C P0 118W / 700W | 529MiB / 81559MiB | 1% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 3 NVIDIA H100 80GB HBM3 On | 00000000:5D:00.0 Off | 0 |
| N/A 38C P0 102W / 700W | 22MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 4 NVIDIA H100 80GB HBM3 On | 00000000:9B:00.0 Off | 0 |
| N/A 39C P0 123W / 700W | 35MiB / 81559MiB | 1% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 5 NVIDIA H100 80GB HBM3 On | 00000000:BB:00.0 Off | 0 |
| N/A 30C P0 110W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 6 NVIDIA H100 80GB HBM3 On | 00000000:CB:00.0 Off | 0 |
| N/A 39C P0 128W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 7 NVIDIA H100 80GB HBM3 On | 00000000:DB:00.0 Off | 0 |
| N/A 30C P0 119W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
+---------------------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=======================================================================================|
+---------------------------------------------------------------------------------------+
====================================================================================================
Training DataLoader: total number of tokens: 1100000000 across 11 files
Validation DataLoader: total number of tokens: 100000000 across 1 files
====================================================================================================
step:0/1530 val_loss:10.8258 train_time:0ms step_avg:nanms
step:1/1530 train_loss:10.8258 train_time:31730ms step_avg:nanms
step:2/1530 train_loss:10.0700 train_time:31841ms step_avg:nanms
step:3/1530 train_loss:8.3816 train_time:32001ms step_avg:nanms
step:4/1530 train_loss:7.5482 train_time:32162ms step_avg:nanms
step:5/1530 train_loss:7.4648 train_time:32323ms step_avg:nanms
step:6/1530 train_loss:6.9682 train_time:32484ms step_avg:nanms
step:7/1530 train_loss:7.2112 train_time:32645ms step_avg:nanms
step:8/1530 train_loss:6.7424 train_time:32806ms step_avg:nanms
step:9/1530 train_loss:6.6153 train_time:32967ms step_avg:nanms
step:10/1530 train_loss:6.5404 train_time:33128ms step_avg:nanms
step:11/1530 train_loss:6.4753 train_time:114ms step_avg:nanms
step:12/1530 train_loss:6.3450 train_time:275ms step_avg:nanms
step:13/1530 train_loss:6.2061 train_time:437ms step_avg:145.50ms
step:14/1530 train_loss:6.1681 train_time:596ms step_avg:149.09ms
step:15/1530 train_loss:6.1387 train_time:757ms step_avg:151.35ms
step:16/1530 train_loss:6.1526 train_time:916ms step_avg:152.73ms
step:17/1530 train_loss:6.1882 train_time:1078ms step_avg:153.94ms
step:18/1530 train_loss:5.9534 train_time:1238ms step_avg:154.72ms
step:19/1530 train_loss:5.9608 train_time:1397ms step_avg:155.23ms
step:20/1530 train_loss:5.6929 train_time:1558ms step_avg:155.81ms
step:21/1530 train_loss:5.9611 train_time:1718ms step_avg:156.16ms
step:22/1530 train_loss:6.1674 train_time:1878ms step_avg:156.53ms
step:23/1530 train_loss:5.8411 train_time:2039ms step_avg:156.82ms
step:24/1530 train_loss:6.0184 train_time:2198ms step_avg:157.02ms
step:25/1530 train_loss:5.6681 train_time:2358ms step_avg:157.22ms
step:26/1530 train_loss:5.5914 train_time:2518ms step_avg:157.37ms
step:27/1530 train_loss:5.7461 train_time:2678ms step_avg:157.55ms
step:28/1530 train_loss:5.4035 train_time:2839ms step_avg:157.70ms
step:29/1530 train_loss:5.6537 train_time:2998ms step_avg:157.81ms
step:30/1530 train_loss:5.4548 train_time:3159ms step_avg:157.97ms
step:31/1530 train_loss:5.4230 train_time:3320ms step_avg:158.07ms
step:32/1530 train_loss:5.2838 train_time:3479ms step_avg:158.16ms
step:33/1530 train_loss:5.5861 train_time:3639ms step_avg:158.23ms
step:34/1530 train_loss:5.4880 train_time:3799ms step_avg:158.30ms
step:35/1530 train_loss:5.5814 train_time:3960ms step_avg:158.38ms
step:36/1530 train_loss:5.5462 train_time:4119ms step_avg:158.42ms
step:37/1530 train_loss:5.4549 train_time:4279ms step_avg:158.49ms
step:38/1530 train_loss:5.3058 train_time:4440ms step_avg:158.58ms
step:39/1530 train_loss:5.3092 train_time:4600ms step_avg:158.61ms
step:40/1530 train_loss:5.2446 train_time:4760ms step_avg:158.67ms
step:41/1530 train_loss:5.2151 train_time:4920ms step_avg:158.72ms
step:42/1530 train_loss:5.1580 train_time:5080ms step_avg:158.74ms
step:43/1530 train_loss:5.2549 train_time:5240ms step_avg:158.77ms
step:44/1530 train_loss:5.2297 train_time:5400ms step_avg:158.81ms
step:45/1530 train_loss:5.3787 train_time:5560ms step_avg:158.86ms
step:46/1530 train_loss:5.1802 train_time:5720ms step_avg:158.89ms
step:47/1530 train_loss:5.0725 train_time:5880ms step_avg:158.91ms
step:48/1530 train_loss:5.2113 train_time:6040ms step_avg:158.95ms
step:49/1530 train_loss:5.1258 train_time:6200ms step_avg:158.97ms
step:50/1530 train_loss:5.2324 train_time:6360ms step_avg:159.00ms
step:51/1530 train_loss:5.1244 train_time:6520ms step_avg:159.03ms
step:52/1530 train_loss:5.0167 train_time:6680ms step_avg:159.04ms
step:53/1530 train_loss:5.1628 train_time:6840ms step_avg:159.07ms
step:54/1530 train_loss:5.0155 train_time:6998ms step_avg:159.05ms
step:55/1530 train_loss:5.4061 train_time:7160ms step_avg:159.12ms
step:56/1530 train_loss:5.0274 train_time:7320ms step_avg:159.12ms
step:57/1530 train_loss:4.8790 train_time:7480ms step_avg:159.14ms
step:58/1530 train_loss:5.0283 train_time:7640ms step_avg:159.16ms
step:59/1530 train_loss:5.0223 train_time:7800ms step_avg:159.19ms
step:60/1530 train_loss:5.1331 train_time:7960ms step_avg:159.20ms
step:61/1530 train_loss:4.8495 train_time:8119ms step_avg:159.20ms
step:62/1530 train_loss:4.9731 train_time:8279ms step_avg:159.21ms
step:63/1530 train_loss:4.9743 train_time:8440ms step_avg:159.24ms
step:64/1530 train_loss:4.8622 train_time:8599ms step_avg:159.24ms
step:65/1530 train_loss:4.7961 train_time:8759ms step_avg:159.26ms
step:66/1530 train_loss:4.9459 train_time:8919ms step_avg:159.27ms
step:67/1530 train_loss:4.8071 train_time:9079ms step_avg:159.29ms
step:68/1530 train_loss:5.0739 train_time:9240ms step_avg:159.31ms
step:69/1530 train_loss:4.7344 train_time:9400ms step_avg:159.32ms
step:70/1530 train_loss:4.8536 train_time:9560ms step_avg:159.33ms
step:71/1530 train_loss:4.9832 train_time:9719ms step_avg:159.33ms
step:72/1530 train_loss:4.8978 train_time:9879ms step_avg:159.34ms
step:73/1530 train_loss:4.7931 train_time:10040ms step_avg:159.36ms
step:74/1530 train_loss:4.9390 train_time:10199ms step_avg:159.36ms
step:75/1530 train_loss:4.8778 train_time:10360ms step_avg:159.38ms
step:76/1530 train_loss:4.8058 train_time:10520ms step_avg:159.40ms
step:77/1530 train_loss:4.9294 train_time:10681ms step_avg:159.42ms
step:78/1530 train_loss:5.1149 train_time:10840ms step_avg:159.42ms
step:79/1530 train_loss:4.8412 train_time:11000ms step_avg:159.42ms
step:80/1530 train_loss:4.8828 train_time:11160ms step_avg:159.43ms
step:81/1530 train_loss:4.6585 train_time:11320ms step_avg:159.44ms
step:82/1530 train_loss:4.8320 train_time:11480ms step_avg:159.44ms
step:83/1530 train_loss:4.7885 train_time:11640ms step_avg:159.45ms
step:84/1530 train_loss:4.7637 train_time:11800ms step_avg:159.46ms
step:85/1530 train_loss:4.6134 train_time:11960ms step_avg:159.47ms
step:86/1530 train_loss:4.8353 train_time:12121ms step_avg:159.48ms
step:87/1530 train_loss:4.7611 train_time:12281ms step_avg:159.49ms
step:88/1530 train_loss:4.7605 train_time:12441ms step_avg:159.50ms
step:89/1530 train_loss:4.7113 train_time:12601ms step_avg:159.51ms
step:90/1530 train_loss:4.6613 train_time:12762ms step_avg:159.52ms
step:91/1530 train_loss:4.6663 train_time:12921ms step_avg:159.52ms
step:92/1530 train_loss:4.8300 train_time:13080ms step_avg:159.51ms
step:93/1530 train_loss:4.6291 train_time:13242ms step_avg:159.54ms
step:94/1530 train_loss:4.6521 train_time:13402ms step_avg:159.55ms
step:95/1530 train_loss:4.7284 train_time:13563ms step_avg:159.56ms
step:96/1530 train_loss:4.6127 train_time:13723ms step_avg:159.56ms
step:97/1530 train_loss:4.6689 train_time:13882ms step_avg:159.56ms
step:98/1530 train_loss:4.5989 train_time:14043ms step_avg:159.58ms
step:99/1530 train_loss:4.6936 train_time:14203ms step_avg:159.58ms
step:100/1530 train_loss:4.7051 train_time:14366ms step_avg:159.63ms
step:101/1530 train_loss:4.5569 train_time:14527ms step_avg:159.64ms
step:102/1530 train_loss:4.7301 train_time:14688ms step_avg:159.65ms
step:103/1530 train_loss:4.6299 train_time:14849ms step_avg:159.66ms
step:104/1530 train_loss:4.5531 train_time:15009ms step_avg:159.68ms
step:105/1530 train_loss:4.5737 train_time:15171ms step_avg:159.70ms
step:106/1530 train_loss:4.6828 train_time:15332ms step_avg:159.71ms
step:107/1530 train_loss:4.5273 train_time:15493ms step_avg:159.72ms
step:108/1530 train_loss:4.3788 train_time:15654ms step_avg:159.73ms
step:109/1530 train_loss:4.4985 train_time:15813ms step_avg:159.73ms
step:110/1530 train_loss:4.5086 train_time:15974ms step_avg:159.74ms
step:111/1530 train_loss:4.4504 train_time:16135ms step_avg:159.75ms
step:112/1530 train_loss:4.6072 train_time:16295ms step_avg:159.76ms
step:113/1530 train_loss:4.5099 train_time:16455ms step_avg:159.76ms
step:114/1530 train_loss:4.3931 train_time:16614ms step_avg:159.75ms
step:115/1530 train_loss:4.5338 train_time:16777ms step_avg:159.78ms
step:116/1530 train_loss:4.4884 train_time:16940ms step_avg:159.82ms
step:117/1530 train_loss:4.4055 train_time:17104ms step_avg:159.85ms
step:118/1530 train_loss:4.5991 train_time:17268ms step_avg:159.89ms
step:119/1530 train_loss:4.4716 train_time:17433ms step_avg:159.93ms
step:120/1530 train_loss:4.3611 train_time:17597ms step_avg:159.97ms
step:121/1530 train_loss:4.3124 train_time:17760ms step_avg:160.00ms
step:122/1530 train_loss:4.4697 train_time:17924ms step_avg:160.03ms
step:123/1530 train_loss:4.3007 train_time:18087ms step_avg:160.06ms
step:124/1530 train_loss:4.6134 train_time:18252ms step_avg:160.11ms
step:125/1530 train_loss:4.4930 train_time:18416ms step_avg:160.14ms
step:125/1530 val_loss:4.4321 train_time:18463ms step_avg:160.55ms
step:126/1530 train_loss:4.4369 train_time:18583ms step_avg:160.20ms
step:127/1530 train_loss:4.4628 train_time:18750ms step_avg:160.26ms
step:128/1530 train_loss:4.3902 train_time:18914ms step_avg:160.29ms
step:129/1530 train_loss:4.6995 train_time:19078ms step_avg:160.32ms
step:130/1530 train_loss:4.3831 train_time:19242ms step_avg:160.35ms
step:131/1530 train_loss:4.4073 train_time:19405ms step_avg:160.37ms
step:132/1530 train_loss:4.3594 train_time:19569ms step_avg:160.40ms
step:133/1530 train_loss:4.4638 train_time:19735ms step_avg:160.45ms
step:134/1530 train_loss:4.2853 train_time:19899ms step_avg:160.47ms
step:135/1530 train_loss:4.4650 train_time:20062ms step_avg:160.50ms
step:136/1530 train_loss:4.2231 train_time:20226ms step_avg:160.53ms
step:137/1530 train_loss:4.3929 train_time:20391ms step_avg:160.56ms
step:138/1530 train_loss:4.3002 train_time:20555ms step_avg:160.59ms
step:139/1530 train_loss:4.3870 train_time:20719ms step_avg:160.61ms
step:140/1530 train_loss:4.4755 train_time:20882ms step_avg:160.63ms
step:141/1530 train_loss:4.3292 train_time:21047ms step_avg:160.66ms
step:142/1530 train_loss:4.3161 train_time:21212ms step_avg:160.69ms
step:143/1530 train_loss:4.2604 train_time:21375ms step_avg:160.72ms
step:144/1530 train_loss:4.3627 train_time:21540ms step_avg:160.74ms
step:145/1530 train_loss:4.3238 train_time:21703ms step_avg:160.76ms
step:146/1530 train_loss:4.1847 train_time:21866ms step_avg:160.78ms
step:147/1530 train_loss:4.3426 train_time:22030ms step_avg:160.80ms
step:148/1530 train_loss:4.3697 train_time:22194ms step_avg:160.83ms
step:149/1530 train_loss:4.3072 train_time:22359ms step_avg:160.85ms
step:150/1530 train_loss:4.4459 train_time:22522ms step_avg:160.87ms
step:151/1530 train_loss:4.2720 train_time:22685ms step_avg:160.88ms
step:152/1530 train_loss:4.2869 train_time:22848ms step_avg:160.90ms
step:153/1530 train_loss:4.3869 train_time:23013ms step_avg:160.93ms
step:154/1530 train_loss:4.3993 train_time:23176ms step_avg:160.95ms
step:155/1530 train_loss:4.2833 train_time:23340ms step_avg:160.96ms
step:156/1530 train_loss:4.3611 train_time:23504ms step_avg:160.99ms
step:157/1530 train_loss:4.4111 train_time:23668ms step_avg:161.01ms
step:158/1530 train_loss:4.2629 train_time:23834ms step_avg:161.04ms
step:159/1530 train_loss:4.3313 train_time:23997ms step_avg:161.06ms
step:160/1530 train_loss:4.1632 train_time:24161ms step_avg:161.08ms
step:161/1530 train_loss:4.3662 train_time:24323ms step_avg:161.08ms
step:162/1530 train_loss:4.3708 train_time:24488ms step_avg:161.10ms
step:163/1530 train_loss:4.3496 train_time:24653ms step_avg:161.13ms
step:164/1530 train_loss:4.1979 train_time:24816ms step_avg:161.15ms
step:165/1530 train_loss:4.2878 train_time:24980ms step_avg:161.16ms
step:166/1530 train_loss:4.3572 train_time:25144ms step_avg:161.18ms
step:167/1530 train_loss:4.2141 train_time:25308ms step_avg:161.20ms
step:168/1530 train_loss:4.2950 train_time:25473ms step_avg:161.22ms
step:169/1530 train_loss:4.1636 train_time:25637ms step_avg:161.24ms
step:170/1530 train_loss:4.0322 train_time:25800ms step_avg:161.25ms
step:171/1530 train_loss:4.2141 train_time:25962ms step_avg:161.26ms
step:172/1530 train_loss:4.2256 train_time:26125ms step_avg:161.27ms
step:173/1530 train_loss:4.2681 train_time:26287ms step_avg:161.27ms
step:174/1530 train_loss:4.4253 train_time:26451ms step_avg:161.29ms
step:175/1530 train_loss:4.2580 train_time:26615ms step_avg:161.30ms
step:176/1530 train_loss:4.1022 train_time:26778ms step_avg:161.31ms
step:177/1530 train_loss:4.0713 train_time:26941ms step_avg:161.32ms
step:178/1530 train_loss:4.1887 train_time:27103ms step_avg:161.33ms
step:179/1530 train_loss:4.1348 train_time:27265ms step_avg:161.33ms
step:180/1530 train_loss:4.1262 train_time:27429ms step_avg:161.35ms
step:181/1530 train_loss:4.2984 train_time:27593ms step_avg:161.36ms
step:182/1530 train_loss:4.1532 train_time:27755ms step_avg:161.37ms
step:183/1530 train_loss:4.1311 train_time:27919ms step_avg:161.38ms
step:184/1530 train_loss:4.1186 train_time:28081ms step_avg:161.39ms
step:185/1530 train_loss:4.2106 train_time:28243ms step_avg:161.39ms
step:186/1530 train_loss:4.1683 train_time:28406ms step_avg:161.40ms
step:187/1530 train_loss:4.2451 train_time:28569ms step_avg:161.41ms
step:188/1530 train_loss:4.1712 train_time:28877ms step_avg:162.23ms
step:189/1530 train_loss:4.1106 train_time:29208ms step_avg:163.17ms
step:190/1530 train_loss:4.2108 train_time:29369ms step_avg:163.16ms
step:191/1530 train_loss:4.0773 train_time:29533ms step_avg:163.16ms
step:192/1530 train_loss:4.0287 train_time:29695ms step_avg:163.16ms
step:193/1530 train_loss:4.2558 train_time:29858ms step_avg:163.16ms
step:194/1530 train_loss:4.1775 train_time:30022ms step_avg:163.16ms
step:195/1530 train_loss:4.3493 train_time:30184ms step_avg:163.16ms
step:196/1530 train_loss:4.1737 train_time:30345ms step_avg:163.15ms
step:197/1530 train_loss:4.0472 train_time:30509ms step_avg:163.15ms
step:198/1530 train_loss:4.1797 train_time:30673ms step_avg:163.15ms
step:199/1530 train_loss:4.0323 train_time:30835ms step_avg:163.15ms
step:200/1530 train_loss:4.1136 train_time:30997ms step_avg:163.14ms
step:201/1530 train_loss:4.0197 train_time:31160ms step_avg:163.14ms
step:202/1530 train_loss:4.2638 train_time:31322ms step_avg:163.14ms
step:203/1530 train_loss:4.0654 train_time:31484ms step_avg:163.13ms
step:204/1530 train_loss:4.1826 train_time:31647ms step_avg:163.13ms
step:205/1530 train_loss:4.2478 train_time:31810ms step_avg:163.13ms
step:206/1530 train_loss:3.9431 train_time:31973ms step_avg:163.13ms
step:207/1530 train_loss:4.0812 train_time:32136ms step_avg:163.13ms
step:208/1530 train_loss:4.1052 train_time:32298ms step_avg:163.12ms
step:209/1530 train_loss:4.2452 train_time:32460ms step_avg:163.12ms
step:210/1530 train_loss:4.1880 train_time:32623ms step_avg:163.11ms
step:211/1530 train_loss:4.0680 train_time:32785ms step_avg:163.11ms
step:212/1530 train_loss:4.1336 train_time:32947ms step_avg:163.10ms
step:213/1530 train_loss:4.0482 train_time:33112ms step_avg:163.12ms
step:214/1530 train_loss:4.1181 train_time:33275ms step_avg:163.11ms
step:215/1530 train_loss:3.9503 train_time:33438ms step_avg:163.11ms
step:216/1530 train_loss:4.0033 train_time:33601ms step_avg:163.11ms
step:217/1530 train_loss:4.0046 train_time:33762ms step_avg:163.10ms
step:218/1530 train_loss:4.0870 train_time:33926ms step_avg:163.11ms
step:219/1530 train_loss:4.0718 train_time:34089ms step_avg:163.10ms
step:220/1530 train_loss:4.0810 train_time:34253ms step_avg:163.11ms
step:221/1530 train_loss:4.0915 train_time:34416ms step_avg:163.11ms
step:222/1530 train_loss:3.9939 train_time:34579ms step_avg:163.11ms
step:223/1530 train_loss:3.9854 train_time:34741ms step_avg:163.11ms
step:224/1530 train_loss:4.2927 train_time:34904ms step_avg:163.10ms
step:225/1530 train_loss:3.9299 train_time:35066ms step_avg:163.10ms
step:226/1530 train_loss:3.9906 train_time:35230ms step_avg:163.10ms
step:227/1530 train_loss:3.9810 train_time:35392ms step_avg:163.10ms
step:228/1530 train_loss:4.1474 train_time:35558ms step_avg:163.11ms
step:229/1530 train_loss:3.9218 train_time:35723ms step_avg:163.12ms
step:230/1530 train_loss:4.0431 train_time:35889ms step_avg:163.13ms
step:231/1530 train_loss:3.9053 train_time:36055ms step_avg:163.15ms
step:232/1530 train_loss:3.9693 train_time:36220ms step_avg:163.15ms
step:233/1530 train_loss:4.0864 train_time:36386ms step_avg:163.17ms
step:234/1530 train_loss:4.0276 train_time:36553ms step_avg:163.18ms
step:235/1530 train_loss:3.9094 train_time:36720ms step_avg:163.20ms
step:236/1530 train_loss:4.0751 train_time:36885ms step_avg:163.21ms
step:237/1530 train_loss:4.0679 train_time:37053ms step_avg:163.23ms
step:238/1530 train_loss:3.9353 train_time:37218ms step_avg:163.24ms
step:239/1530 train_loss:4.0823 train_time:37384ms step_avg:163.25ms
step:240/1530 train_loss:4.1184 train_time:37550ms step_avg:163.26ms
step:241/1530 train_loss:3.9697 train_time:37717ms step_avg:163.28ms
step:242/1530 train_loss:4.1393 train_time:37883ms step_avg:163.29ms
step:243/1530 train_loss:4.0132 train_time:38048ms step_avg:163.30ms
step:244/1530 train_loss:4.0817 train_time:38216ms step_avg:163.32ms
step:245/1530 train_loss:4.1432 train_time:38382ms step_avg:163.33ms
step:246/1530 train_loss:4.0569 train_time:38550ms step_avg:163.35ms
step:247/1530 train_loss:3.9995 train_time:38718ms step_avg:163.37ms
step:248/1530 train_loss:4.1021 train_time:38883ms step_avg:163.37ms
step:249/1530 train_loss:3.9172 train_time:39050ms step_avg:163.39ms
step:250/1530 train_loss:3.9703 train_time:39216ms step_avg:163.40ms
step:250/1530 val_loss:3.9967 train_time:39263ms step_avg:163.60ms
step:251/1530 train_loss:4.0684 train_time:39385ms step_avg:163.42ms
step:252/1530 train_loss:4.1607 train_time:39551ms step_avg:163.43ms
step:253/1530 train_loss:3.9275 train_time:39717ms step_avg:163.44ms
step:254/1530 train_loss:3.8815 train_time:39883ms step_avg:163.45ms
step:255/1530 train_loss:4.0739 train_time:40048ms step_avg:163.46ms
step:256/1530 train_loss:3.9797 train_time:40214ms step_avg:163.47ms
step:257/1530 train_loss:3.9865 train_time:40380ms step_avg:163.48ms
step:258/1530 train_loss:3.9834 train_time:40546ms step_avg:163.49ms
step:259/1530 train_loss:4.0277 train_time:40712ms step_avg:163.50ms
step:260/1530 train_loss:4.0557 train_time:40879ms step_avg:163.52ms
step:261/1530 train_loss:4.0266 train_time:41046ms step_avg:163.53ms
step:262/1530 train_loss:3.9926 train_time:41212ms step_avg:163.54ms
step:263/1530 train_loss:3.8863 train_time:41378ms step_avg:163.55ms
step:264/1530 train_loss:3.9803 train_time:41545ms step_avg:163.56ms
step:265/1530 train_loss:3.8623 train_time:41711ms step_avg:163.57ms
step:266/1530 train_loss:3.9188 train_time:41876ms step_avg:163.58ms
step:267/1530 train_loss:3.9284 train_time:42043ms step_avg:163.59ms
step:268/1530 train_loss:3.9523 train_time:42209ms step_avg:163.60ms
step:269/1530 train_loss:3.8465 train_time:42375ms step_avg:163.61ms
step:270/1530 train_loss:4.0967 train_time:42541ms step_avg:163.62ms
step:271/1530 train_loss:3.9769 train_time:42708ms step_avg:163.63ms
step:272/1530 train_loss:3.9316 train_time:42873ms step_avg:163.64ms
step:273/1530 train_loss:3.9433 train_time:43039ms step_avg:163.64ms
step:274/1530 train_loss:4.0408 train_time:43206ms step_avg:163.66ms
step:275/1530 train_loss:4.0581 train_time:43371ms step_avg:163.66ms
step:276/1530 train_loss:4.2256 train_time:43536ms step_avg:163.67ms
step:277/1530 train_loss:4.0340 train_time:43704ms step_avg:163.69ms
step:278/1530 train_loss:4.0982 train_time:43870ms step_avg:163.69ms
step:279/1530 train_loss:3.9995 train_time:44035ms step_avg:163.70ms
step:280/1530 train_loss:4.2053 train_time:44204ms step_avg:163.72ms
step:281/1530 train_loss:3.9681 train_time:44369ms step_avg:163.72ms
step:282/1530 train_loss:3.9385 train_time:44537ms step_avg:163.74ms
step:283/1530 train_loss:3.9119 train_time:44703ms step_avg:163.75ms
step:284/1530 train_loss:4.0432 train_time:44868ms step_avg:163.75ms
step:285/1530 train_loss:4.0550 train_time:45033ms step_avg:163.76ms
step:286/1530 train_loss:4.0881 train_time:45199ms step_avg:163.77ms
step:287/1530 train_loss:3.8968 train_time:45364ms step_avg:163.77ms
step:288/1530 train_loss:4.0059 train_time:45529ms step_avg:163.77ms
step:289/1530 train_loss:3.8795 train_time:45695ms step_avg:163.78ms
step:290/1530 train_loss:3.8523 train_time:45860ms step_avg:163.79ms
step:291/1530 train_loss:3.9060 train_time:46025ms step_avg:163.79ms
step:292/1530 train_loss:3.8615 train_time:46189ms step_avg:163.79ms
step:293/1530 train_loss:3.9012 train_time:46353ms step_avg:163.79ms
step:294/1530 train_loss:3.9328 train_time:46518ms step_avg:163.80ms
step:295/1530 train_loss:3.8442 train_time:46683ms step_avg:163.80ms
step:296/1530 train_loss:3.8645 train_time:46849ms step_avg:163.81ms
step:297/1530 train_loss:3.8682 train_time:47014ms step_avg:163.81ms
step:298/1530 train_loss:3.9741 train_time:47179ms step_avg:163.81ms
step:299/1530 train_loss:3.8278 train_time:47345ms step_avg:163.82ms
step:300/1530 train_loss:3.9637 train_time:47510ms step_avg:163.83ms
step:301/1530 train_loss:3.9599 train_time:47675ms step_avg:163.83ms
step:302/1530 train_loss:3.9331 train_time:47841ms step_avg:163.84ms
step:303/1530 train_loss:3.9777 train_time:48006ms step_avg:163.84ms
step:304/1530 train_loss:3.9621 train_time:48170ms step_avg:163.84ms
step:305/1530 train_loss:4.4529 train_time:48335ms step_avg:163.85ms
step:306/1530 train_loss:3.9416 train_time:48501ms step_avg:163.85ms
step:307/1530 train_loss:3.8331 train_time:48665ms step_avg:163.86ms
step:308/1530 train_loss:3.9751 train_time:48830ms step_avg:163.86ms
step:309/1530 train_loss:3.8692 train_time:48995ms step_avg:163.86ms
step:310/1530 train_loss:4.0798 train_time:49162ms step_avg:163.87ms
step:311/1530 train_loss:3.9307 train_time:49328ms step_avg:163.88ms
step:312/1530 train_loss:3.8613 train_time:49493ms step_avg:163.88ms
step:313/1530 train_loss:3.9266 train_time:49658ms step_avg:163.89ms
step:314/1530 train_loss:4.0555 train_time:49824ms step_avg:163.90ms
step:315/1530 train_loss:3.9298 train_time:49989ms step_avg:163.90ms
step:316/1530 train_loss:3.7920 train_time:50154ms step_avg:163.90ms
step:317/1530 train_loss:3.8751 train_time:50321ms step_avg:163.91ms
step:318/1530 train_loss:3.9192 train_time:50486ms step_avg:163.92ms
step:319/1530 train_loss:3.8922 train_time:50651ms step_avg:163.92ms
step:320/1530 train_loss:4.0150 train_time:50815ms step_avg:163.92ms
step:321/1530 train_loss:3.9563 train_time:50982ms step_avg:163.93ms
step:322/1530 train_loss:3.9305 train_time:51148ms step_avg:163.94ms
step:323/1530 train_loss:4.0063 train_time:51314ms step_avg:163.94ms
step:324/1530 train_loss:3.9472 train_time:51479ms step_avg:163.95ms
step:325/1530 train_loss:4.0088 train_time:51644ms step_avg:163.95ms
step:326/1530 train_loss:3.8956 train_time:51810ms step_avg:163.95ms
step:327/1530 train_loss:4.3917 train_time:51974ms step_avg:163.96ms
step:328/1530 train_loss:4.0673 train_time:52141ms step_avg:163.96ms
step:329/1530 train_loss:3.7927 train_time:52306ms step_avg:163.97ms
step:330/1530 train_loss:3.7547 train_time:52471ms step_avg:163.97ms
step:331/1530 train_loss:3.9755 train_time:52635ms step_avg:163.97ms
step:332/1530 train_loss:3.8993 train_time:52803ms step_avg:163.98ms
step:333/1530 train_loss:3.8783 train_time:52968ms step_avg:163.99ms
step:334/1530 train_loss:3.8399 train_time:53132ms step_avg:163.99ms
step:335/1530 train_loss:4.0135 train_time:53297ms step_avg:163.99ms
step:336/1530 train_loss:3.9591 train_time:53462ms step_avg:164.00ms
step:337/1530 train_loss:4.4192 train_time:53629ms step_avg:164.00ms
step:338/1530 train_loss:3.9326 train_time:53793ms step_avg:164.00ms
step:339/1530 train_loss:3.8620 train_time:53959ms step_avg:164.01ms
step:340/1530 train_loss:3.9316 train_time:54125ms step_avg:164.01ms
step:341/1530 train_loss:3.8549 train_time:54290ms step_avg:164.02ms
step:342/1530 train_loss:3.8102 train_time:54456ms step_avg:164.02ms
step:343/1530 train_loss:3.8276 train_time:54627ms step_avg:164.05ms
step:344/1530 train_loss:3.9927 train_time:54794ms step_avg:164.05ms
step:345/1530 train_loss:3.8199 train_time:54963ms step_avg:164.07ms
step:346/1530 train_loss:3.7604 train_time:55131ms step_avg:164.08ms
step:347/1530 train_loss:3.7805 train_time:55300ms step_avg:164.09ms
step:348/1530 train_loss:3.8565 train_time:55467ms step_avg:164.10ms
step:349/1530 train_loss:3.8239 train_time:55635ms step_avg:164.11ms
step:350/1530 train_loss:3.5632 train_time:55804ms step_avg:164.13ms
step:351/1530 train_loss:3.8188 train_time:55971ms step_avg:164.14ms
step:352/1530 train_loss:4.1934 train_time:56138ms step_avg:164.15ms
step:353/1530 train_loss:3.6710 train_time:56308ms step_avg:164.16ms
step:354/1530 train_loss:3.9275 train_time:56474ms step_avg:164.17ms
step:355/1530 train_loss:3.7879 train_time:56643ms step_avg:164.18ms
step:356/1530 train_loss:3.8834 train_time:56812ms step_avg:164.20ms
step:357/1530 train_loss:3.7608 train_time:56981ms step_avg:164.21ms
step:358/1530 train_loss:3.8617 train_time:57149ms step_avg:164.22ms
step:359/1530 train_loss:3.7860 train_time:57321ms step_avg:164.24ms
step:360/1530 train_loss:3.4253 train_time:57490ms step_avg:164.26ms
step:361/1530 train_loss:4.0210 train_time:57659ms step_avg:164.27ms
step:362/1530 train_loss:3.9107 train_time:57827ms step_avg:164.28ms
step:363/1530 train_loss:3.8313 train_time:57994ms step_avg:164.29ms
step:364/1530 train_loss:3.7455 train_time:58162ms step_avg:164.30ms
step:365/1530 train_loss:3.9097 train_time:58329ms step_avg:164.31ms
step:366/1530 train_loss:3.8605 train_time:58497ms step_avg:164.32ms
step:367/1530 train_loss:3.8544 train_time:58666ms step_avg:164.33ms
step:368/1530 train_loss:3.8423 train_time:58833ms step_avg:164.34ms
step:369/1530 train_loss:3.7435 train_time:59001ms step_avg:164.35ms
step:370/1530 train_loss:3.8742 train_time:59169ms step_avg:164.36ms
step:371/1530 train_loss:3.7326 train_time:59336ms step_avg:164.37ms
step:372/1530 train_loss:3.6926 train_time:59507ms step_avg:164.38ms
step:373/1530 train_loss:3.9109 train_time:59673ms step_avg:164.39ms
step:374/1530 train_loss:3.8290 train_time:59841ms step_avg:164.40ms
step:375/1530 train_loss:3.7995 train_time:60010ms step_avg:164.41ms
step:375/1530 val_loss:3.8224 train_time:60058ms step_avg:164.54ms