forked from KellerJordan/modded-nanogpt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
385d2312-0cf9-48c3-af3f-35c12c12a38d.txt
2165 lines (2092 loc) · 134 KB
/
385d2312-0cf9-48c3-af3f-35c12c12a38d.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import os
import sys
with open(sys.argv[0]) as f:
code = f.read() # read the code of this file ASAP, for logging
import uuid
import glob
import time
import contextlib
from dataclasses import dataclass
import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
import torch.distributed as dist
import torch._inductor.config as config
from torch.nn.parallel import DistributedDataParallel as DDP
# Use of FlexAttention contributed by @KoszarskyB
from torch.nn.attention.flex_attention import flex_attention, create_block_mask
flex_attention = torch.compile(flex_attention, dynamic=False)
create_block_mask = torch.compile(create_block_mask, dynamic=False)
# -----------------------------------------------------------------------------
# Muon optimizer
def zeropower_via_svd(G, steps=None):
U, S, V = G.svd()
return U @ V.T
@torch.compile
def zeropower_via_newtonschulz5(G, steps=10, eps=1e-7):
"""
Newton-Schulz iteration to compute the zeroth power / orthogonalization of G. We opt to use a
quintic iteration whose coefficients are selected to maximize the slope at zero. For the purpose
of minimizing steps, it turns out to be empirically effective to keep increasing the slope at
zero even beyond the point where the iteration no longer converges all the way to one everywhere
on the interval. This iteration therefore does not produce UV^T but rather something like US'V^T
where S' is diagonal with S_{ii}' ~ Uniform(0.5, 1.5), which turns out not to hurt model
performance at all relative to UV^T, where USV^T = G is the SVD.
"""
assert len(G.shape) == 2
a, b, c = (3.4445, -4.7750, 2.0315)
X = G.bfloat16()
X /= (X.norm() + eps) # ensure top singular value <= 1
if G.size(0) > G.size(1):
X = X.T
for _ in range(steps):
A = X @ X.T
B = b * A + c * A @ A # adapted from suggestion by @jxbz, @leloykun, and @YouJiacheng
X = a * X + B @ X
if G.size(0) > G.size(1):
X = X.T
return X
zeropower_backends = dict(svd=zeropower_via_svd, newtonschulz5=zeropower_via_newtonschulz5)
class Muon(torch.optim.Optimizer):
"""
Muon - MomentUm Orthogonalized by Newton-schulz
Muon internally runs standard SGD-momentum, and then performs an orthogonalization post-
processing step, in which each 2D parameter's update is replaced with the nearest orthogonal
matrix. To efficiently orthogonalize each update, we use a Newton-Schulz iteration, which has
the advantage that it can be stably run in bfloat16 on the GPU.
Some warnings:
- This optimizer assumes that all parameters passed in are 2D.
- It should not be used for the embedding layer, the final fully connected layer, or any {0,1}-D
parameters; those should all be optimized by a standard method (e.g., AdamW).
- To use it with 4D convolutional filters, it works well to just flatten their last 3 dimensions.
- We believe it is unlikely to work well for training with small batch size.
- We believe it may not work well for finetuning pretrained models, but we haven't tested this.
- We have not yet tried this optimizer for training scenarios larger than NanoGPT (124M).
Arguments:
lr: The learning rate used by the internal SGD.
momentum: The momentum used by the internal SGD.
nesterov: Whether to use Nesterov-style momentum in the internal SGD. (recommended)
backend: The chosen backend for the orthogonalization step. (recommended: 'newtonschulz5')
backend_steps: The number of iteration steps to use in the backend, if it is iterative.
"""
def __init__(self, params, lr=0.02, momentum=0.95, nesterov=True,
backend='newtonschulz5', backend_steps=5):
defaults = dict(lr=lr, momentum=momentum, nesterov=nesterov, backend=backend, backend_steps=backend_steps)
super().__init__(params, defaults)
def step(self):
for group in self.param_groups:
lr = group['lr']
momentum = group['momentum']
zeropower_backend = zeropower_backends[group['backend']]
# generate weight updates in distributed fashion
total_params = sum(p.numel() for p in group['params'])
updates_flat = torch.zeros(total_params, device='cuda', dtype=torch.bfloat16)
curr_idx = 0
for i, p in enumerate(group['params']):
# luckily this will perfectly distribute a transformer with multiple of 4 layers to 8 GPUs
if i % int(os.environ['WORLD_SIZE']) == int(os.environ['RANK']):
g = p.grad
assert g is not None
state = self.state[p]
if 'momentum_buffer' not in state:
state['momentum_buffer'] = torch.zeros_like(g)
buf = state['momentum_buffer']
buf.mul_(momentum).add_(g)
g = g.add(buf, alpha=momentum) if group['nesterov'] else buf
g = zeropower_backend(g, steps=group['backend_steps'])
g *= max(1, g.size(0)/g.size(1))**0.5
updates_flat[curr_idx:curr_idx+p.numel()] = g.flatten()
curr_idx += p.numel()
# sync updates across devices. we are not memory-constrained so can do this simple deserialization
dist.all_reduce(updates_flat, op=dist.ReduceOp.SUM)
# deserialize and apply updates
curr_idx = 0
for p in group['params']:
g = updates_flat[curr_idx:curr_idx+p.numel()].view_as(p.data).type_as(p.data)
p.data.add_(g, alpha=-lr)
curr_idx += p.numel()
# -----------------------------------------------------------------------------
# PyTorch nn.Module definitions for the GPT-2 model
def norm(x):
return F.rms_norm(x, (x.size(-1),))
class CastedLinear(nn.Linear):
def __init__(self, in_features, out_features):
super().__init__(in_features, out_features, bias=False)
def forward(self, x):
return F.linear(x, self.weight.to(x.dtype))
class Rotary(torch.nn.Module):
def __init__(self, dim, base=10000):
super().__init__()
self.register_buffer('inv_freq', (1 / base) ** (torch.arange(0, dim, 2) / dim))
self.seq_len_cached = None
self.cos_cached = None
self.sin_cached = None
def forward(self, x):
seq_len = x.shape[1]
if seq_len != self.seq_len_cached:
t = torch.arange(seq_len, device=x.device)
freqs = torch.outer(t, self.inv_freq)
self.seq_len_cached = seq_len
self.cos_cached = freqs.cos()
self.sin_cached = freqs.sin()
cos, sin = self.cos_cached[None, :, None, :], self.sin_cached[None, :, None, :]
# apply_rotary_emb(x, cos, sin)
x1, x2 = x.chunk(2, dim=3)
y1 = x1 * cos + x2 * sin
y2 = x1 * (-sin) + x2 * cos
return torch.cat((y1, y2), 3).type_as(x)
class CausalSelfAttention(nn.Module):
def __init__(self, dim, n_head):
super().__init__()
assert dim % n_head == 0
self.n_head = n_head
self.c_q = CastedLinear(dim, dim)
self.c_k = CastedLinear(dim, dim)
self.c_v = CastedLinear(dim, dim)
# value residual lambda
self.lamb = nn.Parameter(torch.tensor(0.5)) # @Grad62304977
# rotary embeddings
self.rotary = Rotary(dim // n_head) # dim // n_head = head_dim
# output projection
self.c_proj = CastedLinear(dim, dim)
self.c_proj.weight.data.zero_() # zero init suggested by @Grad62304977
def forward(self, x, vi, block_mask):
B, T = x.size(0), x.size(1) # batch size, sequence length
assert B == 1, "Must use batch size = 1 for FlexAttention"
q = self.c_q(x).view(B, T, self.n_head, -1)
k = self.c_k(x).view(B, T, self.n_head, -1)
v = self.c_v(x).view(B, T, self.n_head, -1)
v = (1 - self.lamb) * v + self.lamb * vi.view_as(v) # @Grad62304977
q, k = norm(q), norm(k) # QK norm suggested by @Grad62304977
q, k = self.rotary(q), self.rotary(k)
y = flex_attention(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), block_mask=block_mask)
y = y.transpose(1, 2).contiguous().view_as(x) # re-assemble all head outputs side by side
y = self.c_proj(y)
return y
class MLP(nn.Module):
def __init__(self, dim):
super().__init__()
self.c_fc = CastedLinear(dim, 4 * dim)
self.c_proj = CastedLinear(4 * dim, dim)
self.c_proj.weight.data.zero_() # zero init suggested by @Grad62304977
def forward(self, x):
x = self.c_fc(x)
x = F.relu(x).square() # https://arxiv.org/abs/2109.08668v2; ~1-2% better than GELU; suggested by @SKYLINEZ007 and @Grad62304977
x = self.c_proj(x)
return x
class Block(nn.Module):
def __init__(self, config):
super().__init__()
self.attn = CausalSelfAttention(config.n_embd, config.n_head)
self.mlp = MLP(config.n_embd)
self.lambdas = nn.Parameter(torch.tensor([1., 0.]))
def forward(self, x, vi, x0, block_mask):
x = self.lambdas[0] * x + self.lambdas[1] * x0
x = x + self.attn(norm(x), vi, block_mask)
x = x + self.mlp(norm(x))
return x
# -----------------------------------------------------------------------------
# The main GPT-2 model
@dataclass
class GPTConfig:
vocab_size : int = 50304
n_layer : int = 12
n_head : int = 6 # head dim 128 suggested by @Grad62304977
n_embd : int = 768
class GPT(nn.Module):
def __init__(self, config):
super().__init__()
# U-net design by @brendanh0gan
self.num_encoder_layers = config.n_layer // 2 # Half of the layers for encoder
self.num_decoder_layers = config.n_layer - self.num_encoder_layers # Remaining for decoder
# Add learnable skip connection weights for decoder layers
self.skip_weights = nn.Parameter(torch.ones(self.num_decoder_layers))
self.transformer = nn.ModuleDict(dict(
wte = nn.Embedding(config.vocab_size, config.n_embd),
# token value embeddings by @KoszarskyB - inspired by @Grad62304977's value residual learning
vte = nn.Embedding(config.vocab_size, config.n_embd*12),
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
))
self.lm_head = CastedLinear(config.n_embd, config.vocab_size)
self.lm_head.weight.data.zero_() # @Grad62304977
def forward(self, idx, target, attn_blocksize):
docs = (idx == 50256).cumsum(0)
def document_causal_mask(b, h, q_idx, kv_idx):
causal_mask = q_idx >= kv_idx
document_mask = docs[q_idx] == docs[kv_idx]
window_mask = q_idx - kv_idx < attn_blocksize
return causal_mask & document_mask & window_mask
S = len(idx)
block_mask = create_block_mask(document_causal_mask, None, None, S, S, device="cuda", _compile=True)
# forward the GPT model itself
x = self.transformer.wte(idx[None]) # token embeddings of shape (b, t, n_embd)
x = norm(x) # @Grad62304977
x0 = x
vi = self.transformer.vte(idx[None]).chunk(12, dim=-1)
# Store outputs for U-Net skip connections
skip_connections = []
# Encoder pass - process only the first half of the blocks
for i in range(self.num_encoder_layers):
x = self.transformer.h[i](x, vi[i], x0, block_mask)
skip_connections.append(x)
# Decoder pass - process the remaining blocks with weighted skip connections
for i in range(self.num_decoder_layers):
x = x + self.skip_weights[i] * skip_connections.pop()
x = self.transformer.h[self.num_encoder_layers + i](x, vi[self.num_encoder_layers+i], x0, block_mask)
x = norm(x)
logits = self.lm_head(x)
logits = 30 * torch.tanh(logits / 30) # @Grad62304977
logits = logits.float()
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), target.view(-1))
return loss
# -----------------------------------------------------------------------------
# Our own simple Distributed Data Loader
def _peek_data_shard(filename):
# only reads the header, returns header data
with open(filename, "rb") as f:
# first read the header, which is 256 int32 integers (4 bytes each)
header = np.frombuffer(f.read(256*4), dtype=np.int32)
if header[0] != 20240520:
print("ERROR: magic number mismatch in the data .bin file!")
print("---> HINT: Are you passing in a correct file with --input_bin?")
print("---> HINT: Dataset encoding changed recently, re-run data prepro or refer again to README")
print("---> HINT: For example re-run: `python dev/data/tinyshakespeare.py`, then re-try")
exit(1)
assert header[1] == 1, "unsupported version"
ntok = header[2] # number of tokens (claimed)
return ntok # for now just return the number of tokens
def _load_data_shard(filename):
with open(filename, "rb") as f:
# first read the header, which is 256 int32 integers (4 bytes each)
header = np.frombuffer(f.read(256*4), dtype=np.int32)
assert header[0] == 20240520, "magic number mismatch in the data .bin file"
assert header[1] == 1, "unsupported version"
ntok = header[2] # number of tokens (claimed)
# the rest of it are tokens, stored as uint16
tokens = np.frombuffer(f.read(), dtype=np.uint16)
assert len(tokens) == ntok, "number of tokens read does not match header?"
return tokens
class DistributedDataLoader:
def __init__(self, filename_pattern, T, process_rank, num_processes):
self.process_rank = process_rank
self.num_processes = num_processes
self.T = T
# glob files that match the pattern
self.files = sorted(glob.glob(filename_pattern))
assert len(self.files) > 0, f"did not find any files that match the pattern {filename_pattern}"
# load and validate all data shards, count number of tokens in total
ntok_total = 0
for fname in self.files:
shard_ntok = _peek_data_shard(fname)
assert shard_ntok >= num_processes * T + 1
ntok_total += int(shard_ntok)
self.ntok_total = ntok_total
self.reset()
def reset(self):
self.current_shard = -1
self.advance()
def advance(self): # advance to next data shard
self.current_shard = (self.current_shard + 1) % len(self.files)
self.current_position = self.process_rank * self.T
self.tokens = _load_data_shard(self.files[self.current_shard])
def next_batch(self):
batch_size = self.T * self.num_processes
buf = self.tokens[self.current_position:self.current_position+self.T+1]
buf = torch.tensor(buf.astype(np.int32), dtype=torch.long)
x = buf[:-1] # inputs
y = buf[1:] # targets
# advance current position and load next shard if necessary
self.current_position += batch_size
if self.current_position + batch_size >= len(self.tokens):
self.advance()
return x.cuda(), y.cuda()
# -----------------------------------------------------------------------------
# int main
@dataclass
class Hyperparameters:
# data hyperparams
input_bin : str = 'data/fineweb10B/fineweb_train_*.bin' # input .bin to train on
input_val_bin : str = 'data/fineweb10B/fineweb_val_*.bin' # input .bin to eval validation loss on
# optimization hyperparams
batch_size : int = 8 # batch size, in sequences, across all devices
sequence_length : int = 64*1024 # sequence length, in tokens
num_iterations : int = 1530 # number of iterations to run
warmup_iters : int = 0
cooldown_iters : int = 600 # number of iterations of linear warmup/cooldown for triangular or trapezoidal schedule
weight_decay : float = 0
# evaluation and logging hyperparams
val_loss_every : int = 125 # every how many steps to evaluate val loss? 0 for only at the end
val_tokens : int = 10485760 # how many tokens of validation data? it's important to keep this fixed for consistent comparisons
save_every : int = 0 # every how many steps to save the checkpoint? 0 for only at the end
args = Hyperparameters()
# set up DDP (distributed data parallel). torchrun sets this env variable
assert torch.cuda.is_available()
dist.init_process_group(backend='nccl')
ddp_rank = int(os.environ['RANK'])
ddp_local_rank = int(os.environ['LOCAL_RANK'])
ddp_world_size = int(os.environ['WORLD_SIZE'])
device = f'cuda:{ddp_local_rank}'
torch.cuda.set_device(device)
print(f"using device: {device}")
master_process = (ddp_rank == 0) # this process will do logging, checkpointing etc.
# begin logging
logfile = None
if master_process:
run_id = str(uuid.uuid4())
logdir = 'logs/%s/' % run_id
os.makedirs(logdir, exist_ok=True)
logfile = 'logs/%s.txt' % run_id
# create the log file
with open(logfile, "w") as f:
# begin the log by printing this file (the Python code)
f.write(code)
f.write('='*100 + '\n')
def print0(s, logonly=False):
if master_process:
with open(logfile, "a") as f:
if not logonly:
print(s)
f.write(s+'\n')
# log information about the hardware/software environment this is running on
# and print the full `nvidia-smi` to file
print0(f"Running pytorch {torch.version.__version__} compiled for CUDA {torch.version.cuda}\nnvidia-smi:")
import subprocess
result = subprocess.run(['nvidia-smi'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
print0(f'{result.stdout}', logonly=True)
print0('='*100, logonly=True)
# convenience variables
T = args.sequence_length
# calculate the number of steps to take in the val loop.
assert args.val_tokens % (T * ddp_world_size) == 0
val_steps = args.val_tokens // (T * ddp_world_size)
# calculate the steps of gradient accumulation required to attain the desired global batch size.
assert args.batch_size % (ddp_world_size) == 0
train_accumulation_steps = args.batch_size // ddp_world_size
# load tokens
train_loader = DistributedDataLoader(args.input_bin, T, ddp_rank, ddp_world_size)
val_loader = DistributedDataLoader(args.input_val_bin, T, ddp_rank, ddp_world_size)
print0(f"Training DataLoader: total number of tokens: {train_loader.ntok_total} across {len(train_loader.files)} files")
print0(f"Validation DataLoader: total number of tokens: {val_loader.ntok_total} across {len(val_loader.files)} files")
print0('='*100, logonly=True)
x, y = train_loader.next_batch()
# there are only 50257 unique GPT-2 tokens; we extend to nearest multiple of 128 for efficiency. suggested to me by @Grad62304977.
# this originates from Karpathy's experiments.
num_vocab = 50304
model = GPT(GPTConfig(vocab_size=num_vocab, n_layer=12, n_head=6, n_embd=768))
model = model.cuda().bfloat16()
for m in model.modules():
if isinstance(m, CastedLinear):
m.float()
if hasattr(config, "coordinate_descent_tuning"):
config.coordinate_descent_tuning = True # suggested by @Chillee
model = torch.compile(model)
# here we wrap model into DDP container
model = DDP(model, device_ids=[ddp_local_rank])
raw_model = model.module # always contains the "raw" unwrapped model
# init the optimizer(s)
optimizer1 = torch.optim.Adam([raw_model.transformer.wte.weight, raw_model.transformer.vte.weight], lr=0.6, betas=(0.8, 0.95), fused=True)
optimizer2 = torch.optim.Adam([raw_model.lm_head.weight], lr=0.008, betas=(0.8, 0.95), fused=True)
params = list(raw_model.transformer.h.parameters())
matrix_params = [p for p in params if p.ndim == 2]
scalar_params = [p for p in params if p.ndim < 2] + [raw_model.skip_weights]
optimizer3 = Muon(matrix_params, lr=0.05, momentum=0.95)
optimizer4 = torch.optim.Adam(scalar_params, lr=0.04, betas=(0.8, 0.95), fused=True) # note that this learning rate is neither sensitive nor tuned
optimizers = [optimizer1, optimizer2, optimizer3, optimizer4]
# learning rate decay scheduler (linear warmup and cooldown)
def get_lr(it):
assert it <= args.num_iterations
# 1) linear warmup for warmup_iters steps
if it < args.warmup_iters:
return (it+1) / args.warmup_iters
# 2) constant lr for a while
elif it < args.num_iterations - args.cooldown_iters:
return 1.0
# 3) linear cooldown
else:
decay_ratio = (args.num_iterations - it) / args.cooldown_iters
return decay_ratio
schedulers = [torch.optim.lr_scheduler.LambdaLR(opt, get_lr) for opt in optimizers]
# Start training loop
training_time_ms = 0
# start the clock
torch.cuda.synchronize()
t0 = time.time()
# begin training
for step in range(args.num_iterations + 1):
last_step = (step == args.num_iterations)
# This effectively ignores timing first 10 steps, which are slower for weird reasons.
# Alternately, and slightly more correctly in terms of benchmarking, we could do 10
# steps with dummy data first, and then re-initialize the model and reset the loader.
if step == 10:
training_time_ms = 0
t0 = time.time()
timed_steps = float('nan') if step <= 11 else (step - 10) + 1 # <= 11 to avoid bug in val
# Set the attention blocksize for the current step, in chunks of 64. By @fernbear.bsky.social
attn_blocksize = torch.tensor(64*((step/args.num_iterations * (1792 - 64) + 64)//64), dtype=torch.int, device='cuda')
# once in a while evaluate the validation dataset
if (last_step or (args.val_loss_every > 0 and step % args.val_loss_every == 0)):
# stop the clock
torch.cuda.synchronize()
training_time_ms += 1000 * (time.time() - t0)
# run validation batches
model.eval()
val_loader.reset()
val_loss = 0.0
for _ in range(val_steps):
with torch.no_grad():
x_val, y_val = val_loader.next_batch()
val_loss += model(x_val, y_val, attn_blocksize=attn_blocksize)
dist.all_reduce(val_loss, op=dist.ReduceOp.AVG)
val_loss /= val_steps
# log val loss to console and to logfile
print0(f'step:{step}/{args.num_iterations} val_loss:{val_loss:.4f} train_time:{training_time_ms:.0f}ms step_avg:{training_time_ms/(timed_steps-1):.2f}ms')
# start the clock again
torch.cuda.synchronize()
t0 = time.time()
if master_process and (last_step or (args.save_every > 0 and step % args.save_every == 0)):
# stop the clock
torch.cuda.synchronize()
training_time_ms += 1000 * (time.time() - t0)
# save the state of the training process
log = dict(step=step, code=code, model=raw_model.state_dict(), optimizers=[opt.state_dict() for opt in optimizers])
torch.save(log, 'logs/%s/state_step%06d.pt' % (run_id, step))
# start the clock again
torch.cuda.synchronize()
t0 = time.time()
# bit confusing: we want to make sure to eval on 0th iteration
# but also after the very last iteration. so we loop for step <= num_iterations
# instead of just < num_iterations (one extra due to <=), only to do
# the validation/sampling one last time, and then we break right here as we're done.
if last_step:
break
# --------------- TRAINING SECTION BEGIN -----------------
model.train()
for i in range(1, train_accumulation_steps+1):
ctx = model.no_sync() if i < train_accumulation_steps else contextlib.nullcontext()
with ctx: # there's no need to sync gradients every accumulation step
# forward pass
loss = model(x, y, attn_blocksize=attn_blocksize)
# advance the dataset for the next batch
x, y = train_loader.next_batch()
# backward pass
loss.backward()
train_loss = loss.detach()
for p in model.parameters():
p.grad /= train_accumulation_steps
# momentum warmup for Muon
frac = min(step/300, 1)
optimizer3.param_groups[0]['momentum'] = (1 - frac) * 0.85 + frac * 0.95
# step the optimizers and schedulers
for opt, sched in zip(optimizers, schedulers):
opt.step()
sched.step()
# null the gradients
model.zero_grad(set_to_none=True)
# --------------- TRAINING SECTION END -------------------
# everything that follows now is just diagnostics, prints, logging, etc.
#dist.all_reduce(train_loss, op=dist.ReduceOp.AVG) # all-reducing the training loss would be more correct in terms of logging, but slower
approx_time = training_time_ms + 1000 * (time.time() - t0)
print0(f"step:{step+1}/{args.num_iterations} train_loss:{train_loss.item():.4f} train_time:{approx_time:.0f}ms step_avg:{approx_time/timed_steps:.2f}ms")
if master_process:
print(f"peak memory consumption: {torch.cuda.max_memory_allocated() // 1024 // 1024} MiB")
# -------------------------------------------------------------------------
# clean up nice
dist.destroy_process_group()
====================================================================================================
Running pytorch 2.6.0.dev20241203+cu124 compiled for CUDA 12.4
nvidia-smi:
Thu Dec 5 01:29:13 2024
+---------------------------------------------------------------------------------------+
| NVIDIA-SMI 535.183.06 Driver Version: 535.183.06 CUDA Version: 12.2 |
|-----------------------------------------+----------------------+----------------------+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+======================+======================|
| 0 NVIDIA H100 80GB HBM3 On | 00000000:19:00.0 Off | 0 |
| N/A 39C P0 76W / 700W | 3MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 1 NVIDIA H100 80GB HBM3 On | 00000000:3B:00.0 Off | 0 |
| N/A 31C P0 115W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 2 NVIDIA H100 80GB HBM3 On | 00000000:4C:00.0 Off | 0 |
| N/A 31C P0 118W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 3 NVIDIA H100 80GB HBM3 On | 00000000:5D:00.0 Off | 0 |
| N/A 39C P0 119W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 4 NVIDIA H100 80GB HBM3 On | 00000000:9B:00.0 Off | 0 |
| N/A 40C P0 124W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 5 NVIDIA H100 80GB HBM3 On | 00000000:BB:00.0 Off | 0 |
| N/A 30C P0 110W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 6 NVIDIA H100 80GB HBM3 On | 00000000:CB:00.0 Off | 0 |
| N/A 40C P0 128W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 7 NVIDIA H100 80GB HBM3 On | 00000000:DB:00.0 Off | 0 |
| N/A 30C P0 119W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
+---------------------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=======================================================================================|
+---------------------------------------------------------------------------------------+
====================================================================================================
Training DataLoader: total number of tokens: 1100000000 across 11 files
Validation DataLoader: total number of tokens: 100000000 across 1 files
====================================================================================================
step:0/1530 val_loss:10.8258 train_time:0ms step_avg:nanms
step:1/1530 train_loss:10.8258 train_time:32049ms step_avg:nanms
step:2/1530 train_loss:10.0766 train_time:32160ms step_avg:nanms
step:3/1530 train_loss:8.3879 train_time:32319ms step_avg:nanms
step:4/1530 train_loss:7.5514 train_time:32480ms step_avg:nanms
step:5/1530 train_loss:7.4792 train_time:32640ms step_avg:nanms
step:6/1530 train_loss:6.9785 train_time:32801ms step_avg:nanms
step:7/1530 train_loss:7.2038 train_time:32960ms step_avg:nanms
step:8/1530 train_loss:6.7355 train_time:33122ms step_avg:nanms
step:9/1530 train_loss:6.6138 train_time:33283ms step_avg:nanms
step:10/1530 train_loss:6.5174 train_time:33443ms step_avg:nanms
step:11/1530 train_loss:6.4147 train_time:114ms step_avg:nanms
step:12/1530 train_loss:6.3597 train_time:274ms step_avg:nanms
step:13/1530 train_loss:6.2692 train_time:434ms step_avg:144.80ms
step:14/1530 train_loss:6.2541 train_time:594ms step_avg:148.61ms
step:15/1530 train_loss:6.1734 train_time:754ms step_avg:150.89ms
step:16/1530 train_loss:6.1208 train_time:914ms step_avg:152.40ms
step:17/1530 train_loss:6.1645 train_time:1075ms step_avg:153.55ms
step:18/1530 train_loss:5.9837 train_time:1234ms step_avg:154.30ms
step:19/1530 train_loss:5.9729 train_time:1395ms step_avg:154.96ms
step:20/1530 train_loss:5.7055 train_time:1554ms step_avg:155.45ms
step:21/1530 train_loss:5.9536 train_time:1715ms step_avg:155.90ms
step:22/1530 train_loss:6.1746 train_time:1875ms step_avg:156.27ms
step:23/1530 train_loss:5.8526 train_time:2036ms step_avg:156.59ms
step:24/1530 train_loss:6.0153 train_time:2196ms step_avg:156.85ms
step:25/1530 train_loss:5.6742 train_time:2355ms step_avg:157.00ms
step:26/1530 train_loss:5.5956 train_time:2515ms step_avg:157.19ms
step:27/1530 train_loss:5.7718 train_time:2676ms step_avg:157.41ms
step:28/1530 train_loss:5.4122 train_time:2835ms step_avg:157.52ms
step:29/1530 train_loss:5.6699 train_time:2996ms step_avg:157.67ms
step:30/1530 train_loss:5.4832 train_time:3155ms step_avg:157.75ms
step:31/1530 train_loss:5.4433 train_time:3315ms step_avg:157.88ms
step:32/1530 train_loss:5.3056 train_time:3475ms step_avg:157.94ms
step:33/1530 train_loss:5.5735 train_time:3635ms step_avg:158.02ms
step:34/1530 train_loss:5.4909 train_time:3795ms step_avg:158.12ms
step:35/1530 train_loss:5.6217 train_time:3954ms step_avg:158.17ms
step:36/1530 train_loss:5.5430 train_time:4114ms step_avg:158.24ms
step:37/1530 train_loss:5.4593 train_time:4275ms step_avg:158.32ms
step:38/1530 train_loss:5.3352 train_time:4435ms step_avg:158.38ms
step:39/1530 train_loss:5.3491 train_time:4595ms step_avg:158.43ms
step:40/1530 train_loss:5.2653 train_time:4754ms step_avg:158.47ms
step:41/1530 train_loss:5.2242 train_time:4914ms step_avg:158.51ms
step:42/1530 train_loss:5.1802 train_time:5075ms step_avg:158.58ms
step:43/1530 train_loss:5.2754 train_time:5234ms step_avg:158.59ms
step:44/1530 train_loss:5.2398 train_time:5395ms step_avg:158.67ms
step:45/1530 train_loss:5.3888 train_time:5554ms step_avg:158.70ms
step:46/1530 train_loss:5.1736 train_time:5714ms step_avg:158.73ms
step:47/1530 train_loss:5.0503 train_time:5875ms step_avg:158.80ms
step:48/1530 train_loss:5.2002 train_time:6036ms step_avg:158.84ms
step:49/1530 train_loss:5.1374 train_time:6196ms step_avg:158.87ms
step:50/1530 train_loss:5.2522 train_time:6355ms step_avg:158.89ms
step:51/1530 train_loss:5.1427 train_time:6515ms step_avg:158.90ms
step:52/1530 train_loss:5.0396 train_time:6675ms step_avg:158.94ms
step:53/1530 train_loss:5.1746 train_time:6835ms step_avg:158.96ms
step:54/1530 train_loss:5.0111 train_time:6996ms step_avg:159.00ms
step:55/1530 train_loss:5.4062 train_time:7155ms step_avg:159.01ms
step:56/1530 train_loss:5.0336 train_time:7315ms step_avg:159.02ms
step:57/1530 train_loss:4.8878 train_time:7475ms step_avg:159.05ms
step:58/1530 train_loss:5.0415 train_time:7635ms step_avg:159.06ms
step:59/1530 train_loss:5.0225 train_time:7795ms step_avg:159.08ms
step:60/1530 train_loss:5.1434 train_time:7954ms step_avg:159.09ms
step:61/1530 train_loss:4.8463 train_time:8115ms step_avg:159.11ms
step:62/1530 train_loss:4.9889 train_time:8275ms step_avg:159.13ms
step:63/1530 train_loss:5.0081 train_time:8435ms step_avg:159.15ms
step:64/1530 train_loss:4.8897 train_time:8596ms step_avg:159.18ms
step:65/1530 train_loss:4.8017 train_time:8755ms step_avg:159.18ms
step:66/1530 train_loss:4.9138 train_time:8915ms step_avg:159.20ms
step:67/1530 train_loss:4.8269 train_time:9075ms step_avg:159.21ms
step:68/1530 train_loss:5.0798 train_time:9235ms step_avg:159.22ms
step:69/1530 train_loss:4.7338 train_time:9395ms step_avg:159.24ms
step:70/1530 train_loss:4.8304 train_time:9555ms step_avg:159.25ms
step:71/1530 train_loss:4.9506 train_time:9714ms step_avg:159.25ms
step:72/1530 train_loss:4.8748 train_time:9875ms step_avg:159.27ms
step:73/1530 train_loss:4.7697 train_time:10034ms step_avg:159.27ms
step:74/1530 train_loss:4.9003 train_time:10195ms step_avg:159.29ms
step:75/1530 train_loss:4.8667 train_time:10354ms step_avg:159.29ms
step:76/1530 train_loss:4.7999 train_time:10514ms step_avg:159.30ms
step:77/1530 train_loss:4.9133 train_time:10674ms step_avg:159.31ms
step:78/1530 train_loss:5.1067 train_time:10833ms step_avg:159.31ms
step:79/1530 train_loss:4.8159 train_time:10994ms step_avg:159.33ms
step:80/1530 train_loss:4.8492 train_time:11153ms step_avg:159.33ms
step:81/1530 train_loss:4.6301 train_time:11314ms step_avg:159.35ms
step:82/1530 train_loss:4.8048 train_time:11474ms step_avg:159.36ms
step:83/1530 train_loss:4.7637 train_time:11634ms step_avg:159.37ms
step:84/1530 train_loss:4.7538 train_time:11794ms step_avg:159.38ms
step:85/1530 train_loss:4.6187 train_time:11954ms step_avg:159.39ms
step:86/1530 train_loss:4.8284 train_time:12115ms step_avg:159.40ms
step:87/1530 train_loss:4.7432 train_time:12275ms step_avg:159.41ms
step:88/1530 train_loss:4.7297 train_time:12435ms step_avg:159.42ms
step:89/1530 train_loss:4.7038 train_time:12596ms step_avg:159.44ms
step:90/1530 train_loss:4.6253 train_time:12755ms step_avg:159.44ms
step:91/1530 train_loss:4.6209 train_time:12915ms step_avg:159.45ms
step:92/1530 train_loss:4.7771 train_time:13075ms step_avg:159.45ms
step:93/1530 train_loss:4.6067 train_time:13235ms step_avg:159.46ms
step:94/1530 train_loss:4.6593 train_time:13396ms step_avg:159.47ms
step:95/1530 train_loss:4.6921 train_time:13555ms step_avg:159.47ms
step:96/1530 train_loss:4.5678 train_time:13715ms step_avg:159.47ms
step:97/1530 train_loss:4.6205 train_time:13875ms step_avg:159.48ms
step:98/1530 train_loss:4.5836 train_time:14035ms step_avg:159.49ms
step:99/1530 train_loss:4.6571 train_time:14195ms step_avg:159.50ms
step:100/1530 train_loss:4.6659 train_time:14355ms step_avg:159.50ms
step:101/1530 train_loss:4.5085 train_time:14515ms step_avg:159.51ms
step:102/1530 train_loss:4.6956 train_time:14675ms step_avg:159.51ms
step:103/1530 train_loss:4.5793 train_time:14835ms step_avg:159.52ms
step:104/1530 train_loss:4.5305 train_time:14995ms step_avg:159.53ms
step:105/1530 train_loss:4.5440 train_time:15155ms step_avg:159.53ms
step:106/1530 train_loss:4.5875 train_time:15315ms step_avg:159.53ms
step:107/1530 train_loss:4.4964 train_time:15475ms step_avg:159.54ms
step:108/1530 train_loss:4.3544 train_time:15636ms step_avg:159.55ms
step:109/1530 train_loss:4.4752 train_time:15795ms step_avg:159.55ms
step:110/1530 train_loss:4.4697 train_time:15956ms step_avg:159.56ms
step:111/1530 train_loss:4.4217 train_time:16115ms step_avg:159.56ms
step:112/1530 train_loss:4.5815 train_time:16275ms step_avg:159.56ms
step:113/1530 train_loss:4.4849 train_time:16434ms step_avg:159.55ms
step:114/1530 train_loss:4.3570 train_time:16595ms step_avg:159.57ms
step:115/1530 train_loss:4.4921 train_time:16756ms step_avg:159.59ms
step:116/1530 train_loss:4.4644 train_time:16919ms step_avg:159.62ms
step:117/1530 train_loss:4.3616 train_time:17084ms step_avg:159.66ms
step:118/1530 train_loss:4.5899 train_time:17249ms step_avg:159.71ms
step:119/1530 train_loss:4.4482 train_time:17413ms step_avg:159.75ms
step:120/1530 train_loss:4.3223 train_time:17576ms step_avg:159.79ms
step:121/1530 train_loss:4.2922 train_time:17739ms step_avg:159.81ms
step:122/1530 train_loss:4.4401 train_time:17902ms step_avg:159.84ms
step:123/1530 train_loss:4.2692 train_time:18067ms step_avg:159.89ms
step:124/1530 train_loss:4.5733 train_time:18231ms step_avg:159.92ms
step:125/1530 train_loss:4.4439 train_time:18394ms step_avg:159.95ms
step:125/1530 val_loss:4.4102 train_time:18442ms step_avg:160.36ms
step:126/1530 train_loss:4.4245 train_time:18561ms step_avg:160.01ms
step:127/1530 train_loss:4.4265 train_time:18726ms step_avg:160.06ms
step:128/1530 train_loss:4.3756 train_time:18891ms step_avg:160.09ms
step:129/1530 train_loss:4.6875 train_time:19054ms step_avg:160.11ms
step:130/1530 train_loss:4.3524 train_time:19217ms step_avg:160.14ms
step:131/1530 train_loss:4.3831 train_time:19382ms step_avg:160.18ms
step:132/1530 train_loss:4.3359 train_time:19545ms step_avg:160.21ms
step:133/1530 train_loss:4.4405 train_time:19711ms step_avg:160.25ms
step:134/1530 train_loss:4.2636 train_time:19875ms step_avg:160.28ms
step:135/1530 train_loss:4.4497 train_time:20038ms step_avg:160.30ms
step:136/1530 train_loss:4.2115 train_time:20202ms step_avg:160.33ms
step:137/1530 train_loss:4.3634 train_time:20366ms step_avg:160.37ms
step:138/1530 train_loss:4.2748 train_time:20530ms step_avg:160.39ms
step:139/1530 train_loss:4.3748 train_time:20693ms step_avg:160.41ms
step:140/1530 train_loss:4.4702 train_time:20858ms step_avg:160.45ms
step:141/1530 train_loss:4.3077 train_time:21023ms step_avg:160.48ms
step:142/1530 train_loss:4.2950 train_time:21188ms step_avg:160.52ms
step:143/1530 train_loss:4.2474 train_time:21353ms step_avg:160.55ms
step:144/1530 train_loss:4.3498 train_time:21516ms step_avg:160.57ms
step:145/1530 train_loss:4.2928 train_time:21680ms step_avg:160.59ms
step:146/1530 train_loss:4.1631 train_time:21845ms step_avg:160.62ms
step:147/1530 train_loss:4.3283 train_time:22009ms step_avg:160.65ms
step:148/1530 train_loss:4.3609 train_time:22174ms step_avg:160.68ms
step:149/1530 train_loss:4.2926 train_time:22337ms step_avg:160.70ms
step:150/1530 train_loss:4.4321 train_time:22500ms step_avg:160.72ms
step:151/1530 train_loss:4.2803 train_time:22665ms step_avg:160.75ms
step:152/1530 train_loss:4.2895 train_time:22829ms step_avg:160.77ms
step:153/1530 train_loss:4.3739 train_time:22993ms step_avg:160.79ms
step:154/1530 train_loss:4.3655 train_time:23156ms step_avg:160.81ms
step:155/1530 train_loss:4.2668 train_time:23321ms step_avg:160.83ms
step:156/1530 train_loss:4.3551 train_time:23486ms step_avg:160.86ms
step:157/1530 train_loss:4.4121 train_time:23650ms step_avg:160.88ms
step:158/1530 train_loss:4.2425 train_time:23813ms step_avg:160.90ms
step:159/1530 train_loss:4.2988 train_time:23977ms step_avg:160.92ms
step:160/1530 train_loss:4.1345 train_time:24141ms step_avg:160.94ms
step:161/1530 train_loss:4.3538 train_time:24304ms step_avg:160.96ms
step:162/1530 train_loss:4.3591 train_time:24468ms step_avg:160.98ms
step:163/1530 train_loss:4.3353 train_time:24632ms step_avg:160.99ms
step:164/1530 train_loss:4.1799 train_time:24795ms step_avg:161.00ms
step:165/1530 train_loss:4.2811 train_time:24960ms step_avg:161.03ms
step:166/1530 train_loss:4.3336 train_time:25125ms step_avg:161.06ms
step:167/1530 train_loss:4.2020 train_time:25289ms step_avg:161.07ms
step:168/1530 train_loss:4.2987 train_time:25453ms step_avg:161.09ms
step:169/1530 train_loss:4.1721 train_time:25616ms step_avg:161.11ms
step:170/1530 train_loss:4.0415 train_time:25779ms step_avg:161.12ms
step:171/1530 train_loss:4.2175 train_time:25943ms step_avg:161.13ms
step:172/1530 train_loss:4.2202 train_time:26105ms step_avg:161.14ms
step:173/1530 train_loss:4.2685 train_time:26268ms step_avg:161.15ms
step:174/1530 train_loss:4.4191 train_time:26430ms step_avg:161.16ms
step:175/1530 train_loss:4.2482 train_time:26593ms step_avg:161.17ms
step:176/1530 train_loss:4.0979 train_time:26755ms step_avg:161.17ms
step:177/1530 train_loss:4.0759 train_time:26918ms step_avg:161.19ms
step:178/1530 train_loss:4.1880 train_time:27081ms step_avg:161.19ms
step:179/1530 train_loss:4.1258 train_time:27244ms step_avg:161.21ms
step:180/1530 train_loss:4.1144 train_time:27407ms step_avg:161.22ms
step:181/1530 train_loss:4.2912 train_time:27571ms step_avg:161.23ms
step:182/1530 train_loss:4.1480 train_time:27733ms step_avg:161.24ms
step:183/1530 train_loss:4.1168 train_time:27895ms step_avg:161.24ms
step:184/1530 train_loss:4.1312 train_time:28058ms step_avg:161.25ms
step:185/1530 train_loss:4.2027 train_time:28221ms step_avg:161.26ms
step:186/1530 train_loss:4.1701 train_time:28384ms step_avg:161.28ms
step:187/1530 train_loss:4.2349 train_time:28547ms step_avg:161.28ms
step:188/1530 train_loss:4.1704 train_time:28842ms step_avg:162.03ms
step:189/1530 train_loss:4.1156 train_time:29176ms step_avg:162.99ms
step:190/1530 train_loss:4.2088 train_time:29341ms step_avg:163.00ms
step:191/1530 train_loss:4.0866 train_time:29504ms step_avg:163.00ms
step:192/1530 train_loss:4.0404 train_time:29667ms step_avg:163.01ms
step:193/1530 train_loss:4.2535 train_time:29829ms step_avg:163.00ms
step:194/1530 train_loss:4.1861 train_time:29993ms step_avg:163.01ms
step:195/1530 train_loss:4.3595 train_time:30155ms step_avg:163.00ms
step:196/1530 train_loss:4.1803 train_time:30317ms step_avg:162.99ms
step:197/1530 train_loss:4.0483 train_time:30481ms step_avg:163.00ms
step:198/1530 train_loss:4.1801 train_time:30645ms step_avg:163.01ms
step:199/1530 train_loss:4.0396 train_time:30809ms step_avg:163.01ms
step:200/1530 train_loss:4.1253 train_time:30972ms step_avg:163.01ms
step:201/1530 train_loss:4.0086 train_time:31134ms step_avg:163.00ms
step:202/1530 train_loss:4.2546 train_time:31295ms step_avg:163.00ms
step:203/1530 train_loss:4.0619 train_time:31459ms step_avg:163.00ms
step:204/1530 train_loss:4.1928 train_time:31622ms step_avg:163.00ms
step:205/1530 train_loss:4.2541 train_time:31787ms step_avg:163.01ms
step:206/1530 train_loss:3.9447 train_time:31950ms step_avg:163.01ms
step:207/1530 train_loss:4.0788 train_time:32114ms step_avg:163.01ms
step:208/1530 train_loss:4.1005 train_time:32276ms step_avg:163.01ms
step:209/1530 train_loss:4.2331 train_time:32439ms step_avg:163.01ms
step:210/1530 train_loss:4.1706 train_time:32602ms step_avg:163.01ms
step:211/1530 train_loss:4.0611 train_time:32765ms step_avg:163.01ms
step:212/1530 train_loss:4.1271 train_time:32927ms step_avg:163.01ms
step:213/1530 train_loss:4.0453 train_time:33090ms step_avg:163.01ms
step:214/1530 train_loss:4.1187 train_time:33253ms step_avg:163.01ms
step:215/1530 train_loss:3.9530 train_time:33415ms step_avg:163.00ms
step:216/1530 train_loss:4.0102 train_time:33578ms step_avg:163.00ms
step:217/1530 train_loss:4.0215 train_time:33741ms step_avg:163.00ms
step:218/1530 train_loss:4.0878 train_time:33904ms step_avg:163.00ms
step:219/1530 train_loss:4.0736 train_time:34068ms step_avg:163.00ms
step:220/1530 train_loss:4.0858 train_time:34230ms step_avg:163.00ms
step:221/1530 train_loss:4.0938 train_time:34392ms step_avg:162.99ms
step:222/1530 train_loss:4.0005 train_time:34555ms step_avg:163.00ms
step:223/1530 train_loss:4.0003 train_time:34718ms step_avg:163.00ms
step:224/1530 train_loss:4.3042 train_time:34880ms step_avg:162.99ms
step:225/1530 train_loss:3.9248 train_time:35043ms step_avg:162.99ms
step:226/1530 train_loss:3.9993 train_time:35207ms step_avg:163.00ms
step:227/1530 train_loss:3.9746 train_time:35370ms step_avg:163.00ms
step:228/1530 train_loss:4.1469 train_time:35535ms step_avg:163.01ms
step:229/1530 train_loss:3.9321 train_time:35701ms step_avg:163.02ms
step:230/1530 train_loss:4.0409 train_time:35867ms step_avg:163.03ms
step:231/1530 train_loss:3.9116 train_time:36032ms step_avg:163.04ms
step:232/1530 train_loss:3.9702 train_time:36198ms step_avg:163.05ms
step:233/1530 train_loss:4.0902 train_time:36365ms step_avg:163.07ms
step:234/1530 train_loss:4.0324 train_time:36530ms step_avg:163.08ms
step:235/1530 train_loss:3.9093 train_time:36696ms step_avg:163.09ms
step:236/1530 train_loss:4.0859 train_time:36863ms step_avg:163.11ms
step:237/1530 train_loss:4.0804 train_time:37030ms step_avg:163.13ms
step:238/1530 train_loss:3.9431 train_time:37196ms step_avg:163.14ms
step:239/1530 train_loss:4.0733 train_time:37362ms step_avg:163.15ms
step:240/1530 train_loss:4.1140 train_time:37527ms step_avg:163.16ms
step:241/1530 train_loss:3.9646 train_time:37694ms step_avg:163.18ms
step:242/1530 train_loss:4.1454 train_time:37861ms step_avg:163.20ms
step:243/1530 train_loss:4.0111 train_time:38028ms step_avg:163.21ms
step:244/1530 train_loss:4.0807 train_time:38193ms step_avg:163.22ms
step:245/1530 train_loss:4.1415 train_time:38358ms step_avg:163.22ms
step:246/1530 train_loss:4.0562 train_time:38523ms step_avg:163.23ms
step:247/1530 train_loss:4.0085 train_time:38689ms step_avg:163.25ms
step:248/1530 train_loss:4.1126 train_time:38855ms step_avg:163.26ms
step:249/1530 train_loss:3.9322 train_time:39021ms step_avg:163.27ms
step:250/1530 train_loss:3.9855 train_time:39188ms step_avg:163.28ms
step:250/1530 val_loss:4.0119 train_time:39235ms step_avg:163.48ms
step:251/1530 train_loss:4.0810 train_time:39355ms step_avg:163.30ms
step:252/1530 train_loss:4.1773 train_time:39520ms step_avg:163.31ms
step:253/1530 train_loss:3.9333 train_time:39687ms step_avg:163.32ms
step:254/1530 train_loss:3.8914 train_time:39852ms step_avg:163.33ms
step:255/1530 train_loss:4.0816 train_time:40018ms step_avg:163.34ms
step:256/1530 train_loss:3.9920 train_time:40184ms step_avg:163.35ms
step:257/1530 train_loss:3.9910 train_time:40350ms step_avg:163.36ms
step:258/1530 train_loss:3.9876 train_time:40516ms step_avg:163.37ms
step:259/1530 train_loss:4.0380 train_time:40683ms step_avg:163.39ms
step:260/1530 train_loss:4.0640 train_time:40850ms step_avg:163.40ms
step:261/1530 train_loss:4.0331 train_time:41017ms step_avg:163.41ms
step:262/1530 train_loss:4.0063 train_time:41182ms step_avg:163.42ms
step:263/1530 train_loss:3.9036 train_time:41348ms step_avg:163.43ms
step:264/1530 train_loss:4.0001 train_time:41514ms step_avg:163.44ms
step:265/1530 train_loss:3.8656 train_time:41680ms step_avg:163.45ms
step:266/1530 train_loss:3.9256 train_time:41847ms step_avg:163.47ms
step:267/1530 train_loss:3.9353 train_time:42012ms step_avg:163.47ms
step:268/1530 train_loss:3.9722 train_time:42177ms step_avg:163.48ms
step:269/1530 train_loss:3.8556 train_time:42344ms step_avg:163.49ms
step:270/1530 train_loss:4.1016 train_time:42510ms step_avg:163.50ms
step:271/1530 train_loss:3.9705 train_time:42675ms step_avg:163.51ms
step:272/1530 train_loss:3.9417 train_time:42844ms step_avg:163.53ms
step:273/1530 train_loss:3.9660 train_time:43011ms step_avg:163.54ms
step:274/1530 train_loss:4.0509 train_time:43177ms step_avg:163.55ms
step:275/1530 train_loss:4.0623 train_time:43344ms step_avg:163.56ms
step:276/1530 train_loss:4.2354 train_time:43510ms step_avg:163.57ms
step:277/1530 train_loss:4.0423 train_time:43676ms step_avg:163.58ms
step:278/1530 train_loss:4.0950 train_time:43842ms step_avg:163.59ms
step:279/1530 train_loss:4.0034 train_time:44008ms step_avg:163.60ms
step:280/1530 train_loss:4.1916 train_time:44176ms step_avg:163.61ms
step:281/1530 train_loss:3.9708 train_time:44344ms step_avg:163.63ms
step:282/1530 train_loss:3.9481 train_time:44511ms step_avg:163.65ms
step:283/1530 train_loss:3.9124 train_time:44678ms step_avg:163.65ms
step:284/1530 train_loss:4.0442 train_time:44844ms step_avg:163.66ms
step:285/1530 train_loss:4.0616 train_time:45009ms step_avg:163.67ms
step:286/1530 train_loss:4.0915 train_time:45173ms step_avg:163.67ms
step:287/1530 train_loss:3.9090 train_time:45339ms step_avg:163.68ms
step:288/1530 train_loss:4.0181 train_time:45504ms step_avg:163.69ms
step:289/1530 train_loss:3.8735 train_time:45670ms step_avg:163.69ms
step:290/1530 train_loss:3.8640 train_time:45835ms step_avg:163.70ms
step:291/1530 train_loss:3.9133 train_time:46001ms step_avg:163.70ms
step:292/1530 train_loss:3.8644 train_time:46168ms step_avg:163.72ms
step:293/1530 train_loss:3.9046 train_time:46333ms step_avg:163.72ms
step:294/1530 train_loss:3.9432 train_time:46498ms step_avg:163.72ms
step:295/1530 train_loss:3.8450 train_time:46662ms step_avg:163.73ms
step:296/1530 train_loss:3.8650 train_time:46828ms step_avg:163.73ms
step:297/1530 train_loss:3.8710 train_time:46993ms step_avg:163.74ms
step:298/1530 train_loss:3.9772 train_time:47158ms step_avg:163.74ms
step:299/1530 train_loss:3.8260 train_time:47323ms step_avg:163.75ms
step:300/1530 train_loss:3.9758 train_time:47488ms step_avg:163.75ms
step:301/1530 train_loss:3.9708 train_time:47653ms step_avg:163.76ms
step:302/1530 train_loss:3.9394 train_time:47818ms step_avg:163.76ms
step:303/1530 train_loss:3.9730 train_time:47983ms step_avg:163.77ms
step:304/1530 train_loss:3.9709 train_time:48149ms step_avg:163.77ms
step:305/1530 train_loss:4.4595 train_time:48313ms step_avg:163.77ms
step:306/1530 train_loss:3.9456 train_time:48477ms step_avg:163.77ms
step:307/1530 train_loss:3.8491 train_time:48644ms step_avg:163.79ms
step:308/1530 train_loss:3.9831 train_time:48809ms step_avg:163.79ms
step:309/1530 train_loss:3.8682 train_time:48974ms step_avg:163.79ms
step:310/1530 train_loss:4.0895 train_time:49139ms step_avg:163.80ms
step:311/1530 train_loss:3.9264 train_time:49305ms step_avg:163.80ms
step:312/1530 train_loss:3.8685 train_time:49470ms step_avg:163.81ms
step:313/1530 train_loss:3.9501 train_time:49636ms step_avg:163.82ms
step:314/1530 train_loss:4.0663 train_time:49802ms step_avg:163.82ms
step:315/1530 train_loss:3.9514 train_time:49967ms step_avg:163.83ms
step:316/1530 train_loss:3.7992 train_time:50132ms step_avg:163.83ms
step:317/1530 train_loss:3.8877 train_time:50296ms step_avg:163.83ms
step:318/1530 train_loss:3.9318 train_time:50461ms step_avg:163.83ms
step:319/1530 train_loss:3.8945 train_time:50627ms step_avg:163.84ms
step:320/1530 train_loss:4.0151 train_time:50792ms step_avg:163.84ms
step:321/1530 train_loss:3.9632 train_time:50956ms step_avg:163.85ms
step:322/1530 train_loss:3.9340 train_time:51122ms step_avg:163.85ms
step:323/1530 train_loss:4.0106 train_time:51287ms step_avg:163.86ms
step:324/1530 train_loss:3.9527 train_time:51453ms step_avg:163.86ms
step:325/1530 train_loss:4.0288 train_time:51619ms step_avg:163.87ms
step:326/1530 train_loss:3.8978 train_time:51785ms step_avg:163.88ms
step:327/1530 train_loss:4.4010 train_time:51950ms step_avg:163.88ms
step:328/1530 train_loss:4.0828 train_time:52115ms step_avg:163.88ms
step:329/1530 train_loss:3.8053 train_time:52280ms step_avg:163.89ms
step:330/1530 train_loss:3.7559 train_time:52446ms step_avg:163.89ms
step:331/1530 train_loss:3.9785 train_time:52611ms step_avg:163.90ms
step:332/1530 train_loss:3.9118 train_time:52776ms step_avg:163.90ms
step:333/1530 train_loss:3.8921 train_time:52941ms step_avg:163.90ms
step:334/1530 train_loss:3.8476 train_time:53106ms step_avg:163.91ms
step:335/1530 train_loss:4.0204 train_time:53271ms step_avg:163.91ms
step:336/1530 train_loss:3.9684 train_time:53437ms step_avg:163.92ms
step:337/1530 train_loss:4.4251 train_time:53602ms step_avg:163.92ms
step:338/1530 train_loss:3.9385 train_time:53767ms step_avg:163.92ms
step:339/1530 train_loss:3.8776 train_time:53933ms step_avg:163.93ms
step:340/1530 train_loss:3.9376 train_time:54098ms step_avg:163.93ms
step:341/1530 train_loss:3.8600 train_time:54265ms step_avg:163.94ms
step:342/1530 train_loss:3.8162 train_time:54432ms step_avg:163.95ms
step:343/1530 train_loss:3.8488 train_time:54601ms step_avg:163.97ms
step:344/1530 train_loss:3.9999 train_time:54769ms step_avg:163.98ms
step:345/1530 train_loss:3.8242 train_time:54939ms step_avg:164.00ms
step:346/1530 train_loss:3.7671 train_time:55108ms step_avg:164.01ms
step:347/1530 train_loss:3.8052 train_time:55274ms step_avg:164.02ms
step:348/1530 train_loss:3.8635 train_time:55443ms step_avg:164.03ms
step:349/1530 train_loss:3.8307 train_time:55611ms step_avg:164.04ms
step:350/1530 train_loss:3.5677 train_time:55780ms step_avg:164.06ms
step:351/1530 train_loss:3.8358 train_time:55949ms step_avg:164.07ms
step:352/1530 train_loss:4.1967 train_time:56117ms step_avg:164.08ms
step:353/1530 train_loss:3.6688 train_time:56285ms step_avg:164.10ms
step:354/1530 train_loss:3.9254 train_time:56452ms step_avg:164.10ms
step:355/1530 train_loss:3.7937 train_time:56622ms step_avg:164.12ms
step:356/1530 train_loss:3.8886 train_time:56790ms step_avg:164.13ms
step:357/1530 train_loss:3.7664 train_time:56958ms step_avg:164.14ms
step:358/1530 train_loss:3.8738 train_time:57127ms step_avg:164.16ms
step:359/1530 train_loss:3.7775 train_time:57295ms step_avg:164.17ms
step:360/1530 train_loss:3.4451 train_time:57465ms step_avg:164.19ms
step:361/1530 train_loss:4.0209 train_time:57633ms step_avg:164.20ms
step:362/1530 train_loss:3.9262 train_time:57801ms step_avg:164.21ms
step:363/1530 train_loss:3.8459 train_time:57968ms step_avg:164.22ms
step:364/1530 train_loss:3.7522 train_time:58136ms step_avg:164.23ms
step:365/1530 train_loss:3.9203 train_time:58305ms step_avg:164.24ms
step:366/1530 train_loss:3.8710 train_time:58473ms step_avg:164.25ms
step:367/1530 train_loss:3.8603 train_time:58641ms step_avg:164.26ms
step:368/1530 train_loss:3.8532 train_time:58808ms step_avg:164.27ms
step:369/1530 train_loss:3.7557 train_time:58976ms step_avg:164.28ms
step:370/1530 train_loss:3.8828 train_time:59145ms step_avg:164.29ms
step:371/1530 train_loss:3.7322 train_time:59312ms step_avg:164.30ms
step:372/1530 train_loss:3.6998 train_time:59481ms step_avg:164.31ms
step:373/1530 train_loss:3.9182 train_time:59650ms step_avg:164.32ms
step:374/1530 train_loss:3.8326 train_time:59816ms step_avg:164.33ms
step:375/1530 train_loss:3.8083 train_time:59985ms step_avg:164.34ms
step:375/1530 val_loss:3.8302 train_time:60034ms step_avg:164.48ms