forked from KellerJordan/modded-nanogpt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
2358dd3a-8ce4-4b8a-a367-fca6dcd38343.txt
2165 lines (2092 loc) · 134 KB
/
2358dd3a-8ce4-4b8a-a367-fca6dcd38343.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import os
import sys
with open(sys.argv[0]) as f:
code = f.read() # read the code of this file ASAP, for logging
import uuid
import glob
import time
import contextlib
from dataclasses import dataclass
import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
import torch.distributed as dist
import torch._inductor.config as config
from torch.nn.parallel import DistributedDataParallel as DDP
# Use of FlexAttention contributed by @KoszarskyB
from torch.nn.attention.flex_attention import flex_attention, create_block_mask
flex_attention = torch.compile(flex_attention, dynamic=False)
create_block_mask = torch.compile(create_block_mask, dynamic=False)
# -----------------------------------------------------------------------------
# Muon optimizer
def zeropower_via_svd(G, steps=None):
U, S, V = G.svd()
return U @ V.T
@torch.compile
def zeropower_via_newtonschulz5(G, steps=10, eps=1e-7):
"""
Newton-Schulz iteration to compute the zeroth power / orthogonalization of G. We opt to use a
quintic iteration whose coefficients are selected to maximize the slope at zero. For the purpose
of minimizing steps, it turns out to be empirically effective to keep increasing the slope at
zero even beyond the point where the iteration no longer converges all the way to one everywhere
on the interval. This iteration therefore does not produce UV^T but rather something like US'V^T
where S' is diagonal with S_{ii}' ~ Uniform(0.5, 1.5), which turns out not to hurt model
performance at all relative to UV^T, where USV^T = G is the SVD.
"""
assert len(G.shape) == 2
a, b, c = (3.4445, -4.7750, 2.0315)
X = G.bfloat16()
X /= (X.norm() + eps) # ensure top singular value <= 1
if G.size(0) > G.size(1):
X = X.T
for _ in range(steps):
A = X @ X.T
B = b * A + c * A @ A # adapted from suggestion by @jxbz, @leloykun, and @YouJiacheng
X = a * X + B @ X
if G.size(0) > G.size(1):
X = X.T
return X
zeropower_backends = dict(svd=zeropower_via_svd, newtonschulz5=zeropower_via_newtonschulz5)
class Muon(torch.optim.Optimizer):
"""
Muon - MomentUm Orthogonalized by Newton-schulz
Muon internally runs standard SGD-momentum, and then performs an orthogonalization post-
processing step, in which each 2D parameter's update is replaced with the nearest orthogonal
matrix. To efficiently orthogonalize each update, we use a Newton-Schulz iteration, which has
the advantage that it can be stably run in bfloat16 on the GPU.
Some warnings:
- This optimizer assumes that all parameters passed in are 2D.
- It should not be used for the embedding layer, the final fully connected layer, or any {0,1}-D
parameters; those should all be optimized by a standard method (e.g., AdamW).
- To use it with 4D convolutional filters, it works well to just flatten their last 3 dimensions.
- We believe it is unlikely to work well for training with small batch size.
- We believe it may not work well for finetuning pretrained models, but we haven't tested this.
- We have not yet tried this optimizer for training scenarios larger than NanoGPT (124M).
Arguments:
lr: The learning rate used by the internal SGD.
momentum: The momentum used by the internal SGD.
nesterov: Whether to use Nesterov-style momentum in the internal SGD. (recommended)
backend: The chosen backend for the orthogonalization step. (recommended: 'newtonschulz5')
backend_steps: The number of iteration steps to use in the backend, if it is iterative.
"""
def __init__(self, params, lr=0.02, momentum=0.95, nesterov=True,
backend='newtonschulz5', backend_steps=5):
defaults = dict(lr=lr, momentum=momentum, nesterov=nesterov, backend=backend, backend_steps=backend_steps)
super().__init__(params, defaults)
def step(self):
for group in self.param_groups:
lr = group['lr']
momentum = group['momentum']
zeropower_backend = zeropower_backends[group['backend']]
# generate weight updates in distributed fashion
total_params = sum(p.numel() for p in group['params'])
updates_flat = torch.zeros(total_params, device='cuda', dtype=torch.bfloat16)
curr_idx = 0
for i, p in enumerate(group['params']):
# luckily this will perfectly distribute a transformer with multiple of 4 layers to 8 GPUs
if i % int(os.environ['WORLD_SIZE']) == int(os.environ['RANK']):
g = p.grad
assert g is not None
state = self.state[p]
if 'momentum_buffer' not in state:
state['momentum_buffer'] = torch.zeros_like(g)
buf = state['momentum_buffer']
buf.mul_(momentum).add_(g)
g = g.add(buf, alpha=momentum) if group['nesterov'] else buf
g = zeropower_backend(g, steps=group['backend_steps'])
g *= max(1, g.size(0)/g.size(1))**0.5
updates_flat[curr_idx:curr_idx+p.numel()] = g.flatten()
curr_idx += p.numel()
# sync updates across devices. we are not memory-constrained so can do this simple deserialization
dist.all_reduce(updates_flat, op=dist.ReduceOp.SUM)
# deserialize and apply updates
curr_idx = 0
for p in group['params']:
g = updates_flat[curr_idx:curr_idx+p.numel()].view_as(p.data).type_as(p.data)
p.data.add_(g, alpha=-lr)
curr_idx += p.numel()
# -----------------------------------------------------------------------------
# PyTorch nn.Module definitions for the GPT-2 model
def norm(x):
return F.rms_norm(x, (x.size(-1),))
class CastedLinear(nn.Linear):
def __init__(self, in_features, out_features):
super().__init__(in_features, out_features, bias=False)
def forward(self, x):
return F.linear(x, self.weight.to(x.dtype))
class Rotary(torch.nn.Module):
def __init__(self, dim, base=10000):
super().__init__()
self.register_buffer('inv_freq', (1 / base) ** (torch.arange(0, dim, 2) / dim))
self.seq_len_cached = None
self.cos_cached = None
self.sin_cached = None
def forward(self, x):
seq_len = x.shape[1]
if seq_len != self.seq_len_cached:
t = torch.arange(seq_len, device=x.device)
freqs = torch.outer(t, self.inv_freq)
self.seq_len_cached = seq_len
self.cos_cached = freqs.cos()
self.sin_cached = freqs.sin()
cos, sin = self.cos_cached[None, :, None, :], self.sin_cached[None, :, None, :]
# apply_rotary_emb(x, cos, sin)
x1, x2 = x.chunk(2, dim=3)
y1 = x1 * cos + x2 * sin
y2 = x1 * (-sin) + x2 * cos
return torch.cat((y1, y2), 3).type_as(x)
class CausalSelfAttention(nn.Module):
def __init__(self, dim, n_head):
super().__init__()
assert dim % n_head == 0
self.n_head = n_head
self.c_q = CastedLinear(dim, dim)
self.c_k = CastedLinear(dim, dim)
self.c_v = CastedLinear(dim, dim)
# value residual lambda
self.lamb = nn.Parameter(torch.tensor(0.5)) # @Grad62304977
# rotary embeddings
self.rotary = Rotary(dim // n_head) # dim // n_head = head_dim
# output projection
self.c_proj = CastedLinear(dim, dim)
self.c_proj.weight.data.zero_() # zero init suggested by @Grad62304977
def forward(self, x, vi, block_mask):
B, T = x.size(0), x.size(1) # batch size, sequence length
assert B == 1, "Must use batch size = 1 for FlexAttention"
q = self.c_q(x).view(B, T, self.n_head, -1)
k = self.c_k(x).view(B, T, self.n_head, -1)
v = self.c_v(x).view(B, T, self.n_head, -1)
v = (1 - self.lamb) * v + self.lamb * vi.view_as(v) # @Grad62304977
q, k = norm(q), norm(k) # QK norm suggested by @Grad62304977
q, k = self.rotary(q), self.rotary(k)
y = flex_attention(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), block_mask=block_mask)
y = y.transpose(1, 2).contiguous().view_as(x) # re-assemble all head outputs side by side
y = self.c_proj(y)
return y
class MLP(nn.Module):
def __init__(self, dim):
super().__init__()
self.c_fc = CastedLinear(dim, 4 * dim)
self.c_proj = CastedLinear(4 * dim, dim)
self.c_proj.weight.data.zero_() # zero init suggested by @Grad62304977
def forward(self, x):
x = self.c_fc(x)
x = F.relu(x).square() # https://arxiv.org/abs/2109.08668v2; ~1-2% better than GELU; suggested by @SKYLINEZ007 and @Grad62304977
x = self.c_proj(x)
return x
class Block(nn.Module):
def __init__(self, config):
super().__init__()
self.attn = CausalSelfAttention(config.n_embd, config.n_head)
self.mlp = MLP(config.n_embd)
self.lambdas = nn.Parameter(torch.tensor([1., 0.]))
def forward(self, x, vi, x0, block_mask):
x = self.lambdas[0] * x + self.lambdas[1] * x0
x = x + self.attn(norm(x), vi, block_mask)
x = x + self.mlp(norm(x))
return x
# -----------------------------------------------------------------------------
# The main GPT-2 model
@dataclass
class GPTConfig:
vocab_size : int = 50304
n_layer : int = 12
n_head : int = 6 # head dim 128 suggested by @Grad62304977
n_embd : int = 768
class GPT(nn.Module):
def __init__(self, config):
super().__init__()
# U-net design by @brendanh0gan
self.num_encoder_layers = config.n_layer // 2 # Half of the layers for encoder
self.num_decoder_layers = config.n_layer - self.num_encoder_layers # Remaining for decoder
# Add learnable skip connection weights for decoder layers
self.skip_weights = nn.Parameter(torch.ones(self.num_decoder_layers))
self.transformer = nn.ModuleDict(dict(
wte = nn.Embedding(config.vocab_size, config.n_embd),
# token value embeddings by @KoszarskyB - inspired by @Grad62304977's value residual learning
vte = nn.Embedding(config.vocab_size, config.n_embd*12),
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
))
self.lm_head = CastedLinear(config.n_embd, config.vocab_size)
self.lm_head.weight.data.zero_() # @Grad62304977
def forward(self, idx, target, attn_blocksize):
docs = (idx == 50256).cumsum(0)
def document_causal_mask(b, h, q_idx, kv_idx):
causal_mask = q_idx >= kv_idx
document_mask = docs[q_idx] == docs[kv_idx]
window_mask = q_idx - kv_idx < attn_blocksize
return causal_mask & document_mask & window_mask
S = len(idx)
block_mask = create_block_mask(document_causal_mask, None, None, S, S, device="cuda", _compile=True)
# forward the GPT model itself
x = self.transformer.wte(idx[None]) # token embeddings of shape (b, t, n_embd)
x = norm(x) # @Grad62304977
x0 = x
vi = self.transformer.vte(idx[None]).chunk(12, dim=-1)
# Store outputs for U-Net skip connections
skip_connections = []
# Encoder pass - process only the first half of the blocks
for i in range(self.num_encoder_layers):
x = self.transformer.h[i](x, vi[i], x0, block_mask)
skip_connections.append(x)
# Decoder pass - process the remaining blocks with weighted skip connections
for i in range(self.num_decoder_layers):
x = x + self.skip_weights[i] * skip_connections.pop()
x = self.transformer.h[self.num_encoder_layers + i](x, vi[self.num_encoder_layers+i], x0, block_mask)
x = norm(x)
logits = self.lm_head(x)
logits = 30 * torch.tanh(logits / 30) # @Grad62304977
logits = logits.float()
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), target.view(-1))
return loss
# -----------------------------------------------------------------------------
# Our own simple Distributed Data Loader
def _peek_data_shard(filename):
# only reads the header, returns header data
with open(filename, "rb") as f:
# first read the header, which is 256 int32 integers (4 bytes each)
header = np.frombuffer(f.read(256*4), dtype=np.int32)
if header[0] != 20240520:
print("ERROR: magic number mismatch in the data .bin file!")
print("---> HINT: Are you passing in a correct file with --input_bin?")
print("---> HINT: Dataset encoding changed recently, re-run data prepro or refer again to README")
print("---> HINT: For example re-run: `python dev/data/tinyshakespeare.py`, then re-try")
exit(1)
assert header[1] == 1, "unsupported version"
ntok = header[2] # number of tokens (claimed)
return ntok # for now just return the number of tokens
def _load_data_shard(filename):
with open(filename, "rb") as f:
# first read the header, which is 256 int32 integers (4 bytes each)
header = np.frombuffer(f.read(256*4), dtype=np.int32)
assert header[0] == 20240520, "magic number mismatch in the data .bin file"
assert header[1] == 1, "unsupported version"
ntok = header[2] # number of tokens (claimed)
# the rest of it are tokens, stored as uint16
tokens = np.frombuffer(f.read(), dtype=np.uint16)
assert len(tokens) == ntok, "number of tokens read does not match header?"
return tokens
class DistributedDataLoader:
def __init__(self, filename_pattern, T, process_rank, num_processes):
self.process_rank = process_rank
self.num_processes = num_processes
self.T = T
# glob files that match the pattern
self.files = sorted(glob.glob(filename_pattern))
assert len(self.files) > 0, f"did not find any files that match the pattern {filename_pattern}"
# load and validate all data shards, count number of tokens in total
ntok_total = 0
for fname in self.files:
shard_ntok = _peek_data_shard(fname)
assert shard_ntok >= num_processes * T + 1
ntok_total += int(shard_ntok)
self.ntok_total = ntok_total
self.reset()
def reset(self):
self.current_shard = -1
self.advance()
def advance(self): # advance to next data shard
self.current_shard = (self.current_shard + 1) % len(self.files)
self.current_position = self.process_rank * self.T
self.tokens = _load_data_shard(self.files[self.current_shard])
def next_batch(self):
batch_size = self.T * self.num_processes
buf = self.tokens[self.current_position:self.current_position+self.T+1]
buf = torch.tensor(buf.astype(np.int32), dtype=torch.long)
x = buf[:-1] # inputs
y = buf[1:] # targets
# advance current position and load next shard if necessary
self.current_position += batch_size
if self.current_position + batch_size >= len(self.tokens):
self.advance()
return x.cuda(), y.cuda()
# -----------------------------------------------------------------------------
# int main
@dataclass
class Hyperparameters:
# data hyperparams
input_bin : str = 'data/fineweb10B/fineweb_train_*.bin' # input .bin to train on
input_val_bin : str = 'data/fineweb10B/fineweb_val_*.bin' # input .bin to eval validation loss on
# optimization hyperparams
batch_size : int = 8 # batch size, in sequences, across all devices
sequence_length : int = 64*1024 # sequence length, in tokens
num_iterations : int = 1530 # number of iterations to run
warmup_iters : int = 0
cooldown_iters : int = 600 # number of iterations of linear warmup/cooldown for triangular or trapezoidal schedule
weight_decay : float = 0
# evaluation and logging hyperparams
val_loss_every : int = 125 # every how many steps to evaluate val loss? 0 for only at the end
val_tokens : int = 10485760 # how many tokens of validation data? it's important to keep this fixed for consistent comparisons
save_every : int = 0 # every how many steps to save the checkpoint? 0 for only at the end
args = Hyperparameters()
# set up DDP (distributed data parallel). torchrun sets this env variable
assert torch.cuda.is_available()
dist.init_process_group(backend='nccl')
ddp_rank = int(os.environ['RANK'])
ddp_local_rank = int(os.environ['LOCAL_RANK'])
ddp_world_size = int(os.environ['WORLD_SIZE'])
device = f'cuda:{ddp_local_rank}'
torch.cuda.set_device(device)
print(f"using device: {device}")
master_process = (ddp_rank == 0) # this process will do logging, checkpointing etc.
# begin logging
logfile = None
if master_process:
run_id = str(uuid.uuid4())
logdir = 'logs/%s/' % run_id
os.makedirs(logdir, exist_ok=True)
logfile = 'logs/%s.txt' % run_id
# create the log file
with open(logfile, "w") as f:
# begin the log by printing this file (the Python code)
f.write(code)
f.write('='*100 + '\n')
def print0(s, logonly=False):
if master_process:
with open(logfile, "a") as f:
if not logonly:
print(s)
f.write(s+'\n')
# log information about the hardware/software environment this is running on
# and print the full `nvidia-smi` to file
print0(f"Running pytorch {torch.version.__version__} compiled for CUDA {torch.version.cuda}\nnvidia-smi:")
import subprocess
result = subprocess.run(['nvidia-smi'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
print0(f'{result.stdout}', logonly=True)
print0('='*100, logonly=True)
# convenience variables
T = args.sequence_length
# calculate the number of steps to take in the val loop.
assert args.val_tokens % (T * ddp_world_size) == 0
val_steps = args.val_tokens // (T * ddp_world_size)
# calculate the steps of gradient accumulation required to attain the desired global batch size.
assert args.batch_size % (ddp_world_size) == 0
train_accumulation_steps = args.batch_size // ddp_world_size
# load tokens
train_loader = DistributedDataLoader(args.input_bin, T, ddp_rank, ddp_world_size)
val_loader = DistributedDataLoader(args.input_val_bin, T, ddp_rank, ddp_world_size)
print0(f"Training DataLoader: total number of tokens: {train_loader.ntok_total} across {len(train_loader.files)} files")
print0(f"Validation DataLoader: total number of tokens: {val_loader.ntok_total} across {len(val_loader.files)} files")
print0('='*100, logonly=True)
x, y = train_loader.next_batch()
# there are only 50257 unique GPT-2 tokens; we extend to nearest multiple of 128 for efficiency. suggested to me by @Grad62304977.
# this originates from Karpathy's experiments.
num_vocab = 50304
model = GPT(GPTConfig(vocab_size=num_vocab, n_layer=12, n_head=6, n_embd=768))
model = model.cuda().bfloat16()
for m in model.modules():
if isinstance(m, CastedLinear):
m.float()
if hasattr(config, "coordinate_descent_tuning"):
config.coordinate_descent_tuning = True # suggested by @Chillee
model = torch.compile(model)
# here we wrap model into DDP container
model = DDP(model, device_ids=[ddp_local_rank])
raw_model = model.module # always contains the "raw" unwrapped model
# init the optimizer(s)
optimizer1 = torch.optim.Adam([raw_model.transformer.wte.weight, raw_model.transformer.vte.weight], lr=0.6, betas=(0.8, 0.95), fused=True)
optimizer2 = torch.optim.Adam([raw_model.lm_head.weight], lr=0.008, betas=(0.8, 0.95), fused=True)
params = list(raw_model.transformer.h.parameters())
matrix_params = [p for p in params if p.ndim == 2]
scalar_params = [p for p in params if p.ndim < 2] + [raw_model.skip_weights]
optimizer3 = Muon(matrix_params, lr=0.05, momentum=0.95)
optimizer4 = torch.optim.Adam(scalar_params, lr=0.04, betas=(0.8, 0.95), fused=True) # note that this learning rate is neither sensitive nor tuned
optimizers = [optimizer1, optimizer2, optimizer3, optimizer4]
# learning rate decay scheduler (linear warmup and cooldown)
def get_lr(it):
assert it <= args.num_iterations
# 1) linear warmup for warmup_iters steps
if it < args.warmup_iters:
return (it+1) / args.warmup_iters
# 2) constant lr for a while
elif it < args.num_iterations - args.cooldown_iters:
return 1.0
# 3) linear cooldown
else:
decay_ratio = (args.num_iterations - it) / args.cooldown_iters
return decay_ratio
schedulers = [torch.optim.lr_scheduler.LambdaLR(opt, get_lr) for opt in optimizers]
# Start training loop
training_time_ms = 0
# start the clock
torch.cuda.synchronize()
t0 = time.time()
# begin training
for step in range(args.num_iterations + 1):
last_step = (step == args.num_iterations)
# This effectively ignores timing first 10 steps, which are slower for weird reasons.
# Alternately, and slightly more correctly in terms of benchmarking, we could do 10
# steps with dummy data first, and then re-initialize the model and reset the loader.
if step == 10:
training_time_ms = 0
t0 = time.time()
timed_steps = float('nan') if step <= 11 else (step - 10) + 1 # <= 11 to avoid bug in val
# Set the attention blocksize for the current step, in chunks of 64. By @fernbear.bsky.social
attn_blocksize = torch.tensor(64*((step/args.num_iterations * (1792 - 64) + 64)//64), dtype=torch.int, device='cuda')
# once in a while evaluate the validation dataset
if (last_step or (args.val_loss_every > 0 and step % args.val_loss_every == 0)):
# stop the clock
torch.cuda.synchronize()
training_time_ms += 1000 * (time.time() - t0)
# run validation batches
model.eval()
val_loader.reset()
val_loss = 0.0
for _ in range(val_steps):
with torch.no_grad():
x_val, y_val = val_loader.next_batch()
val_loss += model(x_val, y_val, attn_blocksize=attn_blocksize)
dist.all_reduce(val_loss, op=dist.ReduceOp.AVG)
val_loss /= val_steps
# log val loss to console and to logfile
print0(f'step:{step}/{args.num_iterations} val_loss:{val_loss:.4f} train_time:{training_time_ms:.0f}ms step_avg:{training_time_ms/(timed_steps-1):.2f}ms')
# start the clock again
torch.cuda.synchronize()
t0 = time.time()
if master_process and (last_step or (args.save_every > 0 and step % args.save_every == 0)):
# stop the clock
torch.cuda.synchronize()
training_time_ms += 1000 * (time.time() - t0)
# save the state of the training process
log = dict(step=step, code=code, model=raw_model.state_dict(), optimizers=[opt.state_dict() for opt in optimizers])
torch.save(log, 'logs/%s/state_step%06d.pt' % (run_id, step))
# start the clock again
torch.cuda.synchronize()
t0 = time.time()
# bit confusing: we want to make sure to eval on 0th iteration
# but also after the very last iteration. so we loop for step <= num_iterations
# instead of just < num_iterations (one extra due to <=), only to do
# the validation/sampling one last time, and then we break right here as we're done.
if last_step:
break
# --------------- TRAINING SECTION BEGIN -----------------
model.train()
for i in range(1, train_accumulation_steps+1):
ctx = model.no_sync() if i < train_accumulation_steps else contextlib.nullcontext()
with ctx: # there's no need to sync gradients every accumulation step
# forward pass
loss = model(x, y, attn_blocksize=attn_blocksize)
# advance the dataset for the next batch
x, y = train_loader.next_batch()
# backward pass
loss.backward()
train_loss = loss.detach()
for p in model.parameters():
p.grad /= train_accumulation_steps
# momentum warmup for Muon
frac = min(step/300, 1)
optimizer3.param_groups[0]['momentum'] = (1 - frac) * 0.85 + frac * 0.95
# step the optimizers and schedulers
for opt, sched in zip(optimizers, schedulers):
opt.step()
sched.step()
# null the gradients
model.zero_grad(set_to_none=True)
# --------------- TRAINING SECTION END -------------------
# everything that follows now is just diagnostics, prints, logging, etc.
#dist.all_reduce(train_loss, op=dist.ReduceOp.AVG) # all-reducing the training loss would be more correct in terms of logging, but slower
approx_time = training_time_ms + 1000 * (time.time() - t0)
print0(f"step:{step+1}/{args.num_iterations} train_loss:{train_loss.item():.4f} train_time:{approx_time:.0f}ms step_avg:{approx_time/timed_steps:.2f}ms")
if master_process:
print(f"peak memory consumption: {torch.cuda.max_memory_allocated() // 1024 // 1024} MiB")
# -------------------------------------------------------------------------
# clean up nice
dist.destroy_process_group()
====================================================================================================
Running pytorch 2.6.0.dev20241203+cu124 compiled for CUDA 12.4
nvidia-smi:
Thu Dec 5 04:06:35 2024
+---------------------------------------------------------------------------------------+
| NVIDIA-SMI 535.183.06 Driver Version: 535.183.06 CUDA Version: 12.2 |
|-----------------------------------------+----------------------+----------------------+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+======================+======================|
| 0 NVIDIA H100 80GB HBM3 On | 00000000:19:00.0 Off | 0 |
| N/A 39C P0 76W / 700W | 3MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 1 NVIDIA H100 80GB HBM3 On | 00000000:3B:00.0 Off | 0 |
| N/A 30C P0 73W / 700W | 3MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 2 NVIDIA H100 80GB HBM3 On | 00000000:4C:00.0 Off | 0 |
| N/A 30C P0 75W / 700W | 3MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 3 NVIDIA H100 80GB HBM3 On | 00000000:5D:00.0 Off | 0 |
| N/A 38C P0 119W / 700W | 22MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 4 NVIDIA H100 80GB HBM3 On | 00000000:9B:00.0 Off | 0 |
| N/A 38C P0 78W / 700W | 3MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 5 NVIDIA H100 80GB HBM3 On | 00000000:BB:00.0 Off | 0 |
| N/A 30C P0 110W / 700W | 22MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 6 NVIDIA H100 80GB HBM3 On | 00000000:CB:00.0 Off | 0 |
| N/A 39C P0 128W / 700W | 22MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 7 NVIDIA H100 80GB HBM3 On | 00000000:DB:00.0 Off | 0 |
| N/A 29C P0 74W / 700W | 3MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
+---------------------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=======================================================================================|
+---------------------------------------------------------------------------------------+
====================================================================================================
Training DataLoader: total number of tokens: 1100000000 across 11 files
Validation DataLoader: total number of tokens: 100000000 across 1 files
====================================================================================================
step:0/1530 val_loss:10.8258 train_time:0ms step_avg:nanms
step:1/1530 train_loss:10.8258 train_time:31601ms step_avg:nanms
step:2/1530 train_loss:10.0628 train_time:31711ms step_avg:nanms
step:3/1530 train_loss:8.3496 train_time:31871ms step_avg:nanms
step:4/1530 train_loss:7.5975 train_time:32031ms step_avg:nanms
step:5/1530 train_loss:7.4987 train_time:32191ms step_avg:nanms
step:6/1530 train_loss:6.9777 train_time:32351ms step_avg:nanms
step:7/1530 train_loss:7.2162 train_time:32511ms step_avg:nanms
step:8/1530 train_loss:6.7504 train_time:32671ms step_avg:nanms
step:9/1530 train_loss:6.6187 train_time:32832ms step_avg:nanms
step:10/1530 train_loss:6.5017 train_time:32991ms step_avg:nanms
step:11/1530 train_loss:6.4576 train_time:115ms step_avg:nanms
step:12/1530 train_loss:6.3985 train_time:274ms step_avg:nanms
step:13/1530 train_loss:6.2508 train_time:436ms step_avg:145.25ms
step:14/1530 train_loss:6.2569 train_time:598ms step_avg:149.61ms
step:15/1530 train_loss:6.1900 train_time:758ms step_avg:151.64ms
step:16/1530 train_loss:6.1314 train_time:919ms step_avg:153.23ms
step:17/1530 train_loss:6.1676 train_time:1080ms step_avg:154.27ms
step:18/1530 train_loss:5.9834 train_time:1243ms step_avg:155.39ms
step:19/1530 train_loss:5.9757 train_time:1406ms step_avg:156.19ms
step:20/1530 train_loss:5.6984 train_time:1566ms step_avg:156.65ms
step:21/1530 train_loss:5.9574 train_time:1729ms step_avg:157.15ms
step:22/1530 train_loss:6.1768 train_time:1889ms step_avg:157.39ms
step:23/1530 train_loss:5.8593 train_time:2050ms step_avg:157.65ms
step:24/1530 train_loss:6.0097 train_time:2210ms step_avg:157.89ms
step:25/1530 train_loss:5.6776 train_time:2371ms step_avg:158.06ms
step:26/1530 train_loss:5.6042 train_time:2532ms step_avg:158.24ms
step:27/1530 train_loss:5.7653 train_time:2691ms step_avg:158.28ms
step:28/1530 train_loss:5.4250 train_time:2852ms step_avg:158.47ms
step:29/1530 train_loss:5.6758 train_time:3013ms step_avg:158.59ms
step:30/1530 train_loss:5.4700 train_time:3174ms step_avg:158.68ms
step:31/1530 train_loss:5.4304 train_time:3334ms step_avg:158.75ms
step:32/1530 train_loss:5.2927 train_time:3494ms step_avg:158.82ms
step:33/1530 train_loss:5.5853 train_time:3654ms step_avg:158.88ms
step:34/1530 train_loss:5.5117 train_time:3815ms step_avg:158.95ms
step:35/1530 train_loss:5.6095 train_time:3974ms step_avg:158.96ms
step:36/1530 train_loss:5.5469 train_time:4135ms step_avg:159.03ms
step:37/1530 train_loss:5.4532 train_time:4295ms step_avg:159.06ms
step:38/1530 train_loss:5.3152 train_time:4454ms step_avg:159.08ms
step:39/1530 train_loss:5.3170 train_time:4616ms step_avg:159.17ms
step:40/1530 train_loss:5.2522 train_time:4776ms step_avg:159.20ms
step:41/1530 train_loss:5.2390 train_time:4937ms step_avg:159.27ms
step:42/1530 train_loss:5.1900 train_time:5096ms step_avg:159.26ms
step:43/1530 train_loss:5.2810 train_time:5258ms step_avg:159.32ms
step:44/1530 train_loss:5.2595 train_time:5419ms step_avg:159.37ms
step:45/1530 train_loss:5.3965 train_time:5580ms step_avg:159.44ms
step:46/1530 train_loss:5.1702 train_time:5741ms step_avg:159.48ms
step:47/1530 train_loss:5.0558 train_time:5901ms step_avg:159.50ms
step:48/1530 train_loss:5.2174 train_time:6062ms step_avg:159.53ms
step:49/1530 train_loss:5.1498 train_time:6222ms step_avg:159.54ms
step:50/1530 train_loss:5.2476 train_time:6383ms step_avg:159.59ms
step:51/1530 train_loss:5.1298 train_time:6545ms step_avg:159.63ms
step:52/1530 train_loss:5.0162 train_time:6708ms step_avg:159.71ms
step:53/1530 train_loss:5.1779 train_time:6868ms step_avg:159.72ms
step:54/1530 train_loss:5.0387 train_time:7029ms step_avg:159.74ms
step:55/1530 train_loss:5.4288 train_time:7188ms step_avg:159.74ms
step:56/1530 train_loss:5.0446 train_time:7349ms step_avg:159.77ms
step:57/1530 train_loss:4.8975 train_time:7510ms step_avg:159.78ms
step:58/1530 train_loss:5.0438 train_time:7670ms step_avg:159.79ms
step:59/1530 train_loss:5.0128 train_time:7830ms step_avg:159.80ms
step:60/1530 train_loss:5.1474 train_time:7990ms step_avg:159.79ms
step:61/1530 train_loss:4.8461 train_time:8151ms step_avg:159.82ms
step:62/1530 train_loss:4.9755 train_time:8311ms step_avg:159.83ms
step:63/1530 train_loss:4.9759 train_time:8471ms step_avg:159.83ms
step:64/1530 train_loss:4.8874 train_time:8632ms step_avg:159.85ms
step:65/1530 train_loss:4.8082 train_time:8792ms step_avg:159.86ms
step:66/1530 train_loss:4.9379 train_time:8953ms step_avg:159.88ms
step:67/1530 train_loss:4.8216 train_time:9114ms step_avg:159.89ms
step:68/1530 train_loss:5.0990 train_time:9274ms step_avg:159.89ms
step:69/1530 train_loss:4.7313 train_time:9434ms step_avg:159.90ms
step:70/1530 train_loss:4.8380 train_time:9595ms step_avg:159.91ms
step:71/1530 train_loss:4.9667 train_time:9755ms step_avg:159.92ms
step:72/1530 train_loss:4.8854 train_time:9915ms step_avg:159.92ms
step:73/1530 train_loss:4.7715 train_time:10076ms step_avg:159.93ms
step:74/1530 train_loss:4.9153 train_time:10237ms step_avg:159.95ms
step:75/1530 train_loss:4.8623 train_time:10397ms step_avg:159.96ms
step:76/1530 train_loss:4.8159 train_time:10557ms step_avg:159.96ms
step:77/1530 train_loss:4.9272 train_time:10718ms step_avg:159.97ms
step:78/1530 train_loss:5.1154 train_time:10878ms step_avg:159.98ms
step:79/1530 train_loss:4.8000 train_time:11039ms step_avg:159.99ms
step:80/1530 train_loss:4.8699 train_time:11200ms step_avg:159.99ms
step:81/1530 train_loss:4.6618 train_time:11360ms step_avg:160.01ms
step:82/1530 train_loss:4.8341 train_time:11521ms step_avg:160.01ms
step:83/1530 train_loss:4.7830 train_time:11681ms step_avg:160.01ms
step:84/1530 train_loss:4.7849 train_time:11843ms step_avg:160.04ms
step:85/1530 train_loss:4.6315 train_time:12004ms step_avg:160.05ms
step:86/1530 train_loss:4.8544 train_time:12164ms step_avg:160.06ms
step:87/1530 train_loss:4.7572 train_time:12326ms step_avg:160.08ms
step:88/1530 train_loss:4.7722 train_time:12487ms step_avg:160.08ms
step:89/1530 train_loss:4.7007 train_time:12648ms step_avg:160.10ms
step:90/1530 train_loss:4.6360 train_time:12808ms step_avg:160.10ms
step:91/1530 train_loss:4.6312 train_time:12969ms step_avg:160.11ms
step:92/1530 train_loss:4.7954 train_time:13129ms step_avg:160.11ms
step:93/1530 train_loss:4.6073 train_time:13289ms step_avg:160.10ms
step:94/1530 train_loss:4.6529 train_time:13450ms step_avg:160.12ms
step:95/1530 train_loss:4.6952 train_time:13610ms step_avg:160.12ms
step:96/1530 train_loss:4.5997 train_time:13770ms step_avg:160.12ms
step:97/1530 train_loss:4.6532 train_time:13930ms step_avg:160.11ms
step:98/1530 train_loss:4.5984 train_time:14089ms step_avg:160.11ms
step:99/1530 train_loss:4.6833 train_time:14250ms step_avg:160.11ms
step:100/1530 train_loss:4.6780 train_time:14411ms step_avg:160.12ms
step:101/1530 train_loss:4.5289 train_time:14571ms step_avg:160.12ms
step:102/1530 train_loss:4.6989 train_time:14731ms step_avg:160.12ms
step:103/1530 train_loss:4.5738 train_time:14891ms step_avg:160.12ms
step:104/1530 train_loss:4.5432 train_time:15052ms step_avg:160.12ms
step:105/1530 train_loss:4.5555 train_time:15212ms step_avg:160.12ms
step:106/1530 train_loss:4.6313 train_time:15373ms step_avg:160.13ms
step:107/1530 train_loss:4.5046 train_time:15534ms step_avg:160.14ms
step:108/1530 train_loss:4.3660 train_time:15693ms step_avg:160.13ms
step:109/1530 train_loss:4.4997 train_time:15854ms step_avg:160.14ms
step:110/1530 train_loss:4.5023 train_time:16014ms step_avg:160.14ms
step:111/1530 train_loss:4.4259 train_time:16175ms step_avg:160.14ms
step:112/1530 train_loss:4.5892 train_time:16335ms step_avg:160.15ms
step:113/1530 train_loss:4.4943 train_time:16495ms step_avg:160.14ms
step:114/1530 train_loss:4.3535 train_time:16655ms step_avg:160.15ms
step:115/1530 train_loss:4.5110 train_time:16818ms step_avg:160.17ms
step:116/1530 train_loss:4.4802 train_time:16983ms step_avg:160.22ms
step:117/1530 train_loss:4.3857 train_time:17147ms step_avg:160.25ms
step:118/1530 train_loss:4.5997 train_time:17311ms step_avg:160.29ms
step:119/1530 train_loss:4.4591 train_time:17474ms step_avg:160.31ms
step:120/1530 train_loss:4.3371 train_time:17638ms step_avg:160.35ms
step:121/1530 train_loss:4.3003 train_time:17803ms step_avg:160.39ms
step:122/1530 train_loss:4.4476 train_time:17967ms step_avg:160.42ms
step:123/1530 train_loss:4.2818 train_time:18131ms step_avg:160.45ms
step:124/1530 train_loss:4.5825 train_time:18293ms step_avg:160.47ms
step:125/1530 train_loss:4.4657 train_time:18457ms step_avg:160.49ms
step:125/1530 val_loss:4.4075 train_time:18504ms step_avg:160.91ms
step:126/1530 train_loss:4.4172 train_time:18626ms step_avg:160.57ms
step:127/1530 train_loss:4.4394 train_time:18792ms step_avg:160.62ms
step:128/1530 train_loss:4.3742 train_time:18955ms step_avg:160.64ms
step:129/1530 train_loss:4.6838 train_time:19120ms step_avg:160.67ms
step:130/1530 train_loss:4.3617 train_time:19283ms step_avg:160.69ms
step:131/1530 train_loss:4.4007 train_time:19447ms step_avg:160.72ms
step:132/1530 train_loss:4.3556 train_time:19611ms step_avg:160.74ms
step:133/1530 train_loss:4.4433 train_time:19775ms step_avg:160.77ms
step:134/1530 train_loss:4.2548 train_time:19938ms step_avg:160.79ms
step:135/1530 train_loss:4.4380 train_time:20102ms step_avg:160.82ms
step:136/1530 train_loss:4.2116 train_time:20265ms step_avg:160.84ms
step:137/1530 train_loss:4.3813 train_time:20430ms step_avg:160.86ms
step:138/1530 train_loss:4.2927 train_time:20593ms step_avg:160.88ms
step:139/1530 train_loss:4.3707 train_time:20757ms step_avg:160.91ms
step:140/1530 train_loss:4.4745 train_time:20922ms step_avg:160.94ms
step:141/1530 train_loss:4.3143 train_time:21085ms step_avg:160.96ms
step:142/1530 train_loss:4.3059 train_time:21249ms step_avg:160.98ms
step:143/1530 train_loss:4.2524 train_time:21413ms step_avg:161.00ms
step:144/1530 train_loss:4.3430 train_time:21576ms step_avg:161.02ms
step:145/1530 train_loss:4.3047 train_time:21740ms step_avg:161.04ms
step:146/1530 train_loss:4.1663 train_time:21905ms step_avg:161.07ms
step:147/1530 train_loss:4.3334 train_time:22068ms step_avg:161.08ms
step:148/1530 train_loss:4.3637 train_time:22231ms step_avg:161.10ms
step:149/1530 train_loss:4.2990 train_time:22396ms step_avg:161.12ms
step:150/1530 train_loss:4.4327 train_time:22559ms step_avg:161.14ms
step:151/1530 train_loss:4.2670 train_time:22725ms step_avg:161.17ms
step:152/1530 train_loss:4.2744 train_time:22888ms step_avg:161.18ms
step:153/1530 train_loss:4.3590 train_time:23052ms step_avg:161.21ms
step:154/1530 train_loss:4.3602 train_time:23216ms step_avg:161.22ms
step:155/1530 train_loss:4.2601 train_time:23379ms step_avg:161.24ms
step:156/1530 train_loss:4.3401 train_time:23543ms step_avg:161.25ms
step:157/1530 train_loss:4.4025 train_time:23708ms step_avg:161.28ms
step:158/1530 train_loss:4.2403 train_time:23871ms step_avg:161.29ms
step:159/1530 train_loss:4.3032 train_time:24034ms step_avg:161.30ms
step:160/1530 train_loss:4.1260 train_time:24198ms step_avg:161.32ms
step:161/1530 train_loss:4.3388 train_time:24362ms step_avg:161.34ms
step:162/1530 train_loss:4.3514 train_time:24526ms step_avg:161.36ms
step:163/1530 train_loss:4.3342 train_time:24690ms step_avg:161.37ms
step:164/1530 train_loss:4.1920 train_time:24853ms step_avg:161.38ms
step:165/1530 train_loss:4.2920 train_time:25016ms step_avg:161.40ms
step:166/1530 train_loss:4.3442 train_time:25180ms step_avg:161.41ms
step:167/1530 train_loss:4.2000 train_time:25345ms step_avg:161.43ms
step:168/1530 train_loss:4.2866 train_time:25508ms step_avg:161.45ms
step:169/1530 train_loss:4.1561 train_time:25671ms step_avg:161.45ms
step:170/1530 train_loss:4.0184 train_time:25834ms step_avg:161.46ms
step:171/1530 train_loss:4.1887 train_time:25997ms step_avg:161.47ms
step:172/1530 train_loss:4.2014 train_time:26161ms step_avg:161.49ms
step:173/1530 train_loss:4.2643 train_time:26325ms step_avg:161.50ms
step:174/1530 train_loss:4.4205 train_time:26487ms step_avg:161.51ms
step:175/1530 train_loss:4.2530 train_time:26650ms step_avg:161.52ms
step:176/1530 train_loss:4.0981 train_time:26813ms step_avg:161.52ms
step:177/1530 train_loss:4.0733 train_time:26975ms step_avg:161.53ms
step:178/1530 train_loss:4.1720 train_time:27139ms step_avg:161.54ms
step:179/1530 train_loss:4.1179 train_time:27303ms step_avg:161.56ms
step:180/1530 train_loss:4.1013 train_time:27465ms step_avg:161.56ms
step:181/1530 train_loss:4.2816 train_time:27628ms step_avg:161.57ms
step:182/1530 train_loss:4.1394 train_time:27790ms step_avg:161.57ms
step:183/1530 train_loss:4.1236 train_time:27953ms step_avg:161.58ms
step:184/1530 train_loss:4.1126 train_time:28117ms step_avg:161.59ms
step:185/1530 train_loss:4.2029 train_time:28281ms step_avg:161.61ms
step:186/1530 train_loss:4.1683 train_time:28444ms step_avg:161.62ms
step:187/1530 train_loss:4.2225 train_time:28607ms step_avg:161.62ms
step:188/1530 train_loss:4.1533 train_time:28900ms step_avg:162.36ms
step:189/1530 train_loss:4.0971 train_time:29227ms step_avg:163.28ms
step:190/1530 train_loss:4.1967 train_time:29392ms step_avg:163.29ms
step:191/1530 train_loss:4.0664 train_time:29554ms step_avg:163.28ms
step:192/1530 train_loss:4.0150 train_time:29718ms step_avg:163.28ms
step:193/1530 train_loss:4.2423 train_time:29881ms step_avg:163.28ms
step:194/1530 train_loss:4.1613 train_time:30044ms step_avg:163.28ms
step:195/1530 train_loss:4.3472 train_time:30208ms step_avg:163.28ms
step:196/1530 train_loss:4.1675 train_time:30369ms step_avg:163.28ms
step:197/1530 train_loss:4.0398 train_time:30532ms step_avg:163.28ms
step:198/1530 train_loss:4.1774 train_time:30696ms step_avg:163.28ms
step:199/1530 train_loss:4.0366 train_time:30859ms step_avg:163.28ms
step:200/1530 train_loss:4.1025 train_time:31024ms step_avg:163.29ms
step:201/1530 train_loss:3.9872 train_time:31187ms step_avg:163.28ms
step:202/1530 train_loss:4.2427 train_time:31351ms step_avg:163.29ms
step:203/1530 train_loss:4.0630 train_time:31514ms step_avg:163.29ms
step:204/1530 train_loss:4.1829 train_time:31677ms step_avg:163.28ms
step:205/1530 train_loss:4.2466 train_time:31840ms step_avg:163.28ms
step:206/1530 train_loss:3.9380 train_time:32005ms step_avg:163.29ms
step:207/1530 train_loss:4.0770 train_time:32167ms step_avg:163.28ms
step:208/1530 train_loss:4.0875 train_time:32330ms step_avg:163.28ms
step:209/1530 train_loss:4.2313 train_time:32493ms step_avg:163.28ms
step:210/1530 train_loss:4.1729 train_time:32655ms step_avg:163.28ms
step:211/1530 train_loss:4.0516 train_time:32819ms step_avg:163.28ms
step:212/1530 train_loss:4.1135 train_time:32984ms step_avg:163.29ms
step:213/1530 train_loss:4.0493 train_time:33147ms step_avg:163.28ms
step:214/1530 train_loss:4.1121 train_time:33309ms step_avg:163.28ms
step:215/1530 train_loss:3.9473 train_time:33472ms step_avg:163.28ms
step:216/1530 train_loss:3.9968 train_time:33635ms step_avg:163.27ms
step:217/1530 train_loss:4.0104 train_time:33798ms step_avg:163.28ms
step:218/1530 train_loss:4.0843 train_time:33962ms step_avg:163.28ms
step:219/1530 train_loss:4.0696 train_time:34126ms step_avg:163.28ms
step:220/1530 train_loss:4.0809 train_time:34289ms step_avg:163.28ms
step:221/1530 train_loss:4.0937 train_time:34452ms step_avg:163.28ms
step:222/1530 train_loss:3.9906 train_time:34617ms step_avg:163.29ms
step:223/1530 train_loss:3.9837 train_time:34781ms step_avg:163.29ms
step:224/1530 train_loss:4.3008 train_time:34943ms step_avg:163.29ms
step:225/1530 train_loss:3.9029 train_time:35106ms step_avg:163.28ms
step:226/1530 train_loss:3.9806 train_time:35268ms step_avg:163.28ms
step:227/1530 train_loss:3.9625 train_time:35431ms step_avg:163.28ms
step:228/1530 train_loss:4.1389 train_time:35595ms step_avg:163.28ms
step:229/1530 train_loss:3.9175 train_time:35762ms step_avg:163.30ms
step:230/1530 train_loss:4.0392 train_time:35929ms step_avg:163.31ms
step:231/1530 train_loss:3.8972 train_time:36095ms step_avg:163.32ms
step:232/1530 train_loss:3.9577 train_time:36260ms step_avg:163.34ms
step:233/1530 train_loss:4.0783 train_time:36427ms step_avg:163.35ms
step:234/1530 train_loss:4.0176 train_time:36593ms step_avg:163.36ms
step:235/1530 train_loss:3.8919 train_time:36761ms step_avg:163.38ms
step:236/1530 train_loss:4.0787 train_time:36928ms step_avg:163.40ms
step:237/1530 train_loss:4.0705 train_time:37093ms step_avg:163.41ms
step:238/1530 train_loss:3.9371 train_time:37259ms step_avg:163.42ms
step:239/1530 train_loss:4.0754 train_time:37426ms step_avg:163.43ms
step:240/1530 train_loss:4.1052 train_time:37591ms step_avg:163.44ms
step:241/1530 train_loss:3.9571 train_time:37757ms step_avg:163.45ms
step:242/1530 train_loss:4.1434 train_time:37926ms step_avg:163.47ms
step:243/1530 train_loss:3.9974 train_time:38092ms step_avg:163.48ms
step:244/1530 train_loss:4.0765 train_time:38257ms step_avg:163.49ms
step:245/1530 train_loss:4.1370 train_time:38425ms step_avg:163.51ms
step:246/1530 train_loss:4.0525 train_time:38590ms step_avg:163.52ms
step:247/1530 train_loss:3.9989 train_time:38756ms step_avg:163.53ms
step:248/1530 train_loss:4.0962 train_time:38922ms step_avg:163.54ms
step:249/1530 train_loss:3.9132 train_time:39088ms step_avg:163.55ms
step:250/1530 train_loss:3.9662 train_time:39254ms step_avg:163.56ms
step:250/1530 val_loss:4.0019 train_time:39301ms step_avg:163.76ms
step:251/1530 train_loss:4.0710 train_time:39422ms step_avg:163.58ms
step:252/1530 train_loss:4.1608 train_time:39592ms step_avg:163.60ms
step:253/1530 train_loss:3.9215 train_time:39758ms step_avg:163.61ms
step:254/1530 train_loss:3.8860 train_time:39923ms step_avg:163.62ms
step:255/1530 train_loss:4.0724 train_time:40092ms step_avg:163.64ms
step:256/1530 train_loss:3.9775 train_time:40258ms step_avg:163.65ms
step:257/1530 train_loss:3.9852 train_time:40423ms step_avg:163.65ms
step:258/1530 train_loss:3.9794 train_time:40589ms step_avg:163.66ms
step:259/1530 train_loss:4.0205 train_time:40755ms step_avg:163.67ms
step:260/1530 train_loss:4.0478 train_time:40921ms step_avg:163.68ms
step:261/1530 train_loss:4.0181 train_time:41089ms step_avg:163.70ms
step:262/1530 train_loss:3.9926 train_time:41255ms step_avg:163.71ms
step:263/1530 train_loss:3.8842 train_time:41421ms step_avg:163.72ms
step:264/1530 train_loss:3.9753 train_time:41589ms step_avg:163.73ms
step:265/1530 train_loss:3.8606 train_time:41755ms step_avg:163.74ms
step:266/1530 train_loss:3.9123 train_time:41919ms step_avg:163.75ms
step:267/1530 train_loss:3.9198 train_time:42087ms step_avg:163.76ms
step:268/1530 train_loss:3.9537 train_time:42253ms step_avg:163.77ms
step:269/1530 train_loss:3.8483 train_time:42418ms step_avg:163.78ms
step:270/1530 train_loss:4.0942 train_time:42584ms step_avg:163.79ms
step:271/1530 train_loss:3.9594 train_time:42752ms step_avg:163.80ms
step:272/1530 train_loss:3.9213 train_time:42918ms step_avg:163.81ms
step:273/1530 train_loss:3.9332 train_time:43084ms step_avg:163.82ms
step:274/1530 train_loss:4.0351 train_time:43250ms step_avg:163.82ms
step:275/1530 train_loss:4.0583 train_time:43416ms step_avg:163.83ms
step:276/1530 train_loss:4.2218 train_time:43581ms step_avg:163.84ms
step:277/1530 train_loss:4.0399 train_time:43747ms step_avg:163.85ms
step:278/1530 train_loss:4.0837 train_time:43914ms step_avg:163.86ms
step:279/1530 train_loss:4.0027 train_time:44079ms step_avg:163.86ms
step:280/1530 train_loss:4.2139 train_time:44247ms step_avg:163.88ms
step:281/1530 train_loss:3.9697 train_time:44414ms step_avg:163.89ms
step:282/1530 train_loss:3.9393 train_time:44580ms step_avg:163.90ms
step:283/1530 train_loss:3.9049 train_time:44746ms step_avg:163.91ms
step:284/1530 train_loss:4.0386 train_time:44914ms step_avg:163.92ms
step:285/1530 train_loss:4.0520 train_time:45079ms step_avg:163.92ms
step:286/1530 train_loss:4.0839 train_time:45244ms step_avg:163.93ms
step:287/1530 train_loss:3.8985 train_time:45410ms step_avg:163.94ms
step:288/1530 train_loss:4.0061 train_time:45576ms step_avg:163.94ms
step:289/1530 train_loss:3.8681 train_time:45740ms step_avg:163.94ms
step:290/1530 train_loss:3.8511 train_time:45906ms step_avg:163.95ms
step:291/1530 train_loss:3.8948 train_time:46072ms step_avg:163.96ms
step:292/1530 train_loss:3.8518 train_time:46237ms step_avg:163.96ms
step:293/1530 train_loss:3.8994 train_time:46402ms step_avg:163.97ms
step:294/1530 train_loss:3.9276 train_time:46568ms step_avg:163.97ms
step:295/1530 train_loss:3.8306 train_time:46733ms step_avg:163.97ms
step:296/1530 train_loss:3.8527 train_time:46898ms step_avg:163.98ms
step:297/1530 train_loss:3.8632 train_time:47064ms step_avg:163.99ms
step:298/1530 train_loss:3.9648 train_time:47229ms step_avg:163.99ms
step:299/1530 train_loss:3.8224 train_time:47394ms step_avg:163.99ms
step:300/1530 train_loss:3.9660 train_time:47559ms step_avg:164.00ms
step:301/1530 train_loss:3.9565 train_time:47723ms step_avg:164.00ms
step:302/1530 train_loss:3.9220 train_time:47891ms step_avg:164.01ms
step:303/1530 train_loss:3.9657 train_time:48055ms step_avg:164.01ms
step:304/1530 train_loss:3.9589 train_time:48220ms step_avg:164.01ms
step:305/1530 train_loss:4.4531 train_time:48386ms step_avg:164.02ms
step:306/1530 train_loss:3.9305 train_time:48552ms step_avg:164.03ms
step:307/1530 train_loss:3.8297 train_time:48717ms step_avg:164.03ms
step:308/1530 train_loss:3.9742 train_time:48882ms step_avg:164.03ms
step:309/1530 train_loss:3.8771 train_time:49047ms step_avg:164.04ms
step:310/1530 train_loss:4.0805 train_time:49213ms step_avg:164.04ms
step:311/1530 train_loss:3.9190 train_time:49379ms step_avg:164.05ms
step:312/1530 train_loss:3.8491 train_time:49543ms step_avg:164.05ms
step:313/1530 train_loss:3.9257 train_time:49709ms step_avg:164.06ms
step:314/1530 train_loss:4.0547 train_time:49874ms step_avg:164.06ms
step:315/1530 train_loss:3.9394 train_time:50038ms step_avg:164.06ms
step:316/1530 train_loss:3.7928 train_time:50205ms step_avg:164.07ms
step:317/1530 train_loss:3.8634 train_time:50372ms step_avg:164.08ms
step:318/1530 train_loss:3.9114 train_time:50536ms step_avg:164.08ms
step:319/1530 train_loss:3.8790 train_time:50701ms step_avg:164.08ms
step:320/1530 train_loss:4.0140 train_time:50866ms step_avg:164.08ms
step:321/1530 train_loss:3.9463 train_time:51031ms step_avg:164.09ms
step:322/1530 train_loss:3.9235 train_time:51196ms step_avg:164.09ms
step:323/1530 train_loss:4.0020 train_time:51361ms step_avg:164.09ms
step:324/1530 train_loss:3.9360 train_time:51527ms step_avg:164.10ms
step:325/1530 train_loss:4.0088 train_time:51693ms step_avg:164.11ms
step:326/1530 train_loss:3.8907 train_time:51859ms step_avg:164.11ms
step:327/1530 train_loss:4.3896 train_time:52024ms step_avg:164.11ms
step:328/1530 train_loss:4.0702 train_time:52190ms step_avg:164.12ms
step:329/1530 train_loss:3.7854 train_time:52355ms step_avg:164.12ms
step:330/1530 train_loss:3.7525 train_time:52520ms step_avg:164.13ms
step:331/1530 train_loss:3.9667 train_time:52686ms step_avg:164.13ms
step:332/1530 train_loss:3.9033 train_time:52852ms step_avg:164.14ms
step:333/1530 train_loss:3.8781 train_time:53018ms step_avg:164.14ms
step:334/1530 train_loss:3.8350 train_time:53182ms step_avg:164.14ms
step:335/1530 train_loss:4.0058 train_time:53349ms step_avg:164.15ms
step:336/1530 train_loss:3.9563 train_time:53515ms step_avg:164.15ms
step:337/1530 train_loss:4.4280 train_time:53680ms step_avg:164.16ms
step:338/1530 train_loss:3.9371 train_time:53844ms step_avg:164.16ms
step:339/1530 train_loss:3.8632 train_time:54010ms step_avg:164.16ms
step:340/1530 train_loss:3.9279 train_time:54175ms step_avg:164.17ms
step:341/1530 train_loss:3.8524 train_time:54340ms step_avg:164.17ms
step:342/1530 train_loss:3.8039 train_time:54508ms step_avg:164.18ms
step:343/1530 train_loss:3.8359 train_time:54678ms step_avg:164.20ms
step:344/1530 train_loss:3.9917 train_time:54845ms step_avg:164.21ms
step:345/1530 train_loss:3.8198 train_time:55016ms step_avg:164.23ms
step:346/1530 train_loss:3.7544 train_time:55184ms step_avg:164.24ms
step:347/1530 train_loss:3.7925 train_time:55353ms step_avg:164.25ms
step:348/1530 train_loss:3.8509 train_time:55521ms step_avg:164.26ms
step:349/1530 train_loss:3.8195 train_time:55690ms step_avg:164.28ms
step:350/1530 train_loss:3.5628 train_time:55859ms step_avg:164.29ms
step:351/1530 train_loss:3.8184 train_time:56026ms step_avg:164.30ms
step:352/1530 train_loss:4.1716 train_time:56195ms step_avg:164.31ms
step:353/1530 train_loss:3.6560 train_time:56363ms step_avg:164.32ms
step:354/1530 train_loss:3.9231 train_time:56530ms step_avg:164.33ms
step:355/1530 train_loss:3.7800 train_time:56700ms step_avg:164.35ms
step:356/1530 train_loss:3.8749 train_time:56868ms step_avg:164.36ms
step:357/1530 train_loss:3.7549 train_time:57035ms step_avg:164.37ms
step:358/1530 train_loss:3.8687 train_time:57203ms step_avg:164.38ms
step:359/1530 train_loss:3.7943 train_time:57374ms step_avg:164.40ms
step:360/1530 train_loss:3.4285 train_time:57543ms step_avg:164.41ms
step:361/1530 train_loss:4.0183 train_time:57712ms step_avg:164.42ms
step:362/1530 train_loss:3.9134 train_time:57880ms step_avg:164.43ms
step:363/1530 train_loss:3.8407 train_time:58048ms step_avg:164.44ms
step:364/1530 train_loss:3.7422 train_time:58216ms step_avg:164.45ms
step:365/1530 train_loss:3.9122 train_time:58385ms step_avg:164.47ms
step:366/1530 train_loss:3.8514 train_time:58553ms step_avg:164.48ms
step:367/1530 train_loss:3.8553 train_time:58720ms step_avg:164.48ms
step:368/1530 train_loss:3.8452 train_time:58890ms step_avg:164.50ms
step:369/1530 train_loss:3.7362 train_time:59057ms step_avg:164.50ms
step:370/1530 train_loss:3.8748 train_time:59225ms step_avg:164.51ms
step:371/1530 train_loss:3.7253 train_time:59394ms step_avg:164.53ms
step:372/1530 train_loss:3.6879 train_time:59562ms step_avg:164.53ms
step:373/1530 train_loss:3.9109 train_time:59729ms step_avg:164.54ms
step:374/1530 train_loss:3.8237 train_time:59897ms step_avg:164.55ms
step:375/1530 train_loss:3.7956 train_time:60065ms step_avg:164.56ms
step:375/1530 val_loss:3.8245 train_time:60114ms step_avg:164.70ms