forked from KellerJordan/modded-nanogpt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
1b4db08c-46d9-4e1b-a8e6-872a685061c3.txt
2165 lines (2092 loc) · 134 KB
/
1b4db08c-46d9-4e1b-a8e6-872a685061c3.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import os
import sys
with open(sys.argv[0]) as f:
code = f.read() # read the code of this file ASAP, for logging
import uuid
import glob
import time
import contextlib
from dataclasses import dataclass
import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
import torch.distributed as dist
import torch._inductor.config as config
from torch.nn.parallel import DistributedDataParallel as DDP
# Use of FlexAttention contributed by @KoszarskyB
from torch.nn.attention.flex_attention import flex_attention, create_block_mask
flex_attention = torch.compile(flex_attention, dynamic=False)
create_block_mask = torch.compile(create_block_mask, dynamic=False)
# -----------------------------------------------------------------------------
# Muon optimizer
def zeropower_via_svd(G, steps=None):
U, S, V = G.svd()
return U @ V.T
@torch.compile
def zeropower_via_newtonschulz5(G, steps=10, eps=1e-7):
"""
Newton-Schulz iteration to compute the zeroth power / orthogonalization of G. We opt to use a
quintic iteration whose coefficients are selected to maximize the slope at zero. For the purpose
of minimizing steps, it turns out to be empirically effective to keep increasing the slope at
zero even beyond the point where the iteration no longer converges all the way to one everywhere
on the interval. This iteration therefore does not produce UV^T but rather something like US'V^T
where S' is diagonal with S_{ii}' ~ Uniform(0.5, 1.5), which turns out not to hurt model
performance at all relative to UV^T, where USV^T = G is the SVD.
"""
assert len(G.shape) == 2
a, b, c = (3.4445, -4.7750, 2.0315)
X = G.bfloat16()
X /= (X.norm() + eps) # ensure top singular value <= 1
if G.size(0) > G.size(1):
X = X.T
for _ in range(steps):
A = X @ X.T
B = b * A + c * A @ A # adapted from suggestion by @jxbz, @leloykun, and @YouJiacheng
X = a * X + B @ X
if G.size(0) > G.size(1):
X = X.T
return X
zeropower_backends = dict(svd=zeropower_via_svd, newtonschulz5=zeropower_via_newtonschulz5)
class Muon(torch.optim.Optimizer):
"""
Muon - MomentUm Orthogonalized by Newton-schulz
Muon internally runs standard SGD-momentum, and then performs an orthogonalization post-
processing step, in which each 2D parameter's update is replaced with the nearest orthogonal
matrix. To efficiently orthogonalize each update, we use a Newton-Schulz iteration, which has
the advantage that it can be stably run in bfloat16 on the GPU.
Some warnings:
- This optimizer assumes that all parameters passed in are 2D.
- It should not be used for the embedding layer, the final fully connected layer, or any {0,1}-D
parameters; those should all be optimized by a standard method (e.g., AdamW).
- To use it with 4D convolutional filters, it works well to just flatten their last 3 dimensions.
- We believe it is unlikely to work well for training with small batch size.
- We believe it may not work well for finetuning pretrained models, but we haven't tested this.
- We have not yet tried this optimizer for training scenarios larger than NanoGPT (124M).
Arguments:
lr: The learning rate used by the internal SGD.
momentum: The momentum used by the internal SGD.
nesterov: Whether to use Nesterov-style momentum in the internal SGD. (recommended)
backend: The chosen backend for the orthogonalization step. (recommended: 'newtonschulz5')
backend_steps: The number of iteration steps to use in the backend, if it is iterative.
"""
def __init__(self, params, lr=0.02, momentum=0.95, nesterov=True,
backend='newtonschulz5', backend_steps=5):
defaults = dict(lr=lr, momentum=momentum, nesterov=nesterov, backend=backend, backend_steps=backend_steps)
super().__init__(params, defaults)
def step(self):
for group in self.param_groups:
lr = group['lr']
momentum = group['momentum']
zeropower_backend = zeropower_backends[group['backend']]
# generate weight updates in distributed fashion
total_params = sum(p.numel() for p in group['params'])
updates_flat = torch.zeros(total_params, device='cuda', dtype=torch.bfloat16)
curr_idx = 0
for i, p in enumerate(group['params']):
# luckily this will perfectly distribute a transformer with multiple of 4 layers to 8 GPUs
if i % int(os.environ['WORLD_SIZE']) == int(os.environ['RANK']):
g = p.grad
assert g is not None
state = self.state[p]
if 'momentum_buffer' not in state:
state['momentum_buffer'] = torch.zeros_like(g)
buf = state['momentum_buffer']
buf.mul_(momentum).add_(g)
g = g.add(buf, alpha=momentum) if group['nesterov'] else buf
g = zeropower_backend(g, steps=group['backend_steps'])
g *= max(1, g.size(0)/g.size(1))**0.5
updates_flat[curr_idx:curr_idx+p.numel()] = g.flatten()
curr_idx += p.numel()
# sync updates across devices. we are not memory-constrained so can do this simple deserialization
dist.all_reduce(updates_flat, op=dist.ReduceOp.SUM)
# deserialize and apply updates
curr_idx = 0
for p in group['params']:
g = updates_flat[curr_idx:curr_idx+p.numel()].view_as(p.data).type_as(p.data)
p.data.add_(g, alpha=-lr)
curr_idx += p.numel()
# -----------------------------------------------------------------------------
# PyTorch nn.Module definitions for the GPT-2 model
def norm(x):
return F.rms_norm(x, (x.size(-1),))
class CastedLinear(nn.Linear):
def __init__(self, in_features, out_features):
super().__init__(in_features, out_features, bias=False)
def forward(self, x):
return F.linear(x, self.weight.to(x.dtype))
class Rotary(torch.nn.Module):
def __init__(self, dim, base=10000):
super().__init__()
self.register_buffer('inv_freq', (1 / base) ** (torch.arange(0, dim, 2) / dim))
self.seq_len_cached = None
self.cos_cached = None
self.sin_cached = None
def forward(self, x):
seq_len = x.shape[1]
if seq_len != self.seq_len_cached:
t = torch.arange(seq_len, device=x.device)
freqs = torch.outer(t, self.inv_freq)
self.seq_len_cached = seq_len
self.cos_cached = freqs.cos()
self.sin_cached = freqs.sin()
cos, sin = self.cos_cached[None, :, None, :], self.sin_cached[None, :, None, :]
# apply_rotary_emb(x, cos, sin)
x1, x2 = x.chunk(2, dim=3)
y1 = x1 * cos + x2 * sin
y2 = x1 * (-sin) + x2 * cos
return torch.cat((y1, y2), 3).type_as(x)
class CausalSelfAttention(nn.Module):
def __init__(self, dim, n_head):
super().__init__()
assert dim % n_head == 0
self.n_head = n_head
self.c_q = CastedLinear(dim, dim)
self.c_k = CastedLinear(dim, dim)
self.c_v = CastedLinear(dim, dim)
# value residual lambda
self.lamb = nn.Parameter(torch.tensor(0.5)) # @Grad62304977
# rotary embeddings
self.rotary = Rotary(dim // n_head) # dim // n_head = head_dim
# output projection
self.c_proj = CastedLinear(dim, dim)
self.c_proj.weight.data.zero_() # zero init suggested by @Grad62304977
def forward(self, x, vi, block_mask):
B, T = x.size(0), x.size(1) # batch size, sequence length
assert B == 1, "Must use batch size = 1 for FlexAttention"
q = self.c_q(x).view(B, T, self.n_head, -1)
k = self.c_k(x).view(B, T, self.n_head, -1)
v = self.c_v(x).view(B, T, self.n_head, -1)
v = (1 - self.lamb) * v + self.lamb * vi.view_as(v) # @Grad62304977
q, k = norm(q), norm(k) # QK norm suggested by @Grad62304977
q, k = self.rotary(q), self.rotary(k)
y = flex_attention(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), block_mask=block_mask)
y = y.transpose(1, 2).contiguous().view_as(x) # re-assemble all head outputs side by side
y = self.c_proj(y)
return y
class MLP(nn.Module):
def __init__(self, dim):
super().__init__()
self.c_fc = CastedLinear(dim, 4 * dim)
self.c_proj = CastedLinear(4 * dim, dim)
self.c_proj.weight.data.zero_() # zero init suggested by @Grad62304977
def forward(self, x):
x = self.c_fc(x)
x = F.relu(x).square() # https://arxiv.org/abs/2109.08668v2; ~1-2% better than GELU; suggested by @SKYLINEZ007 and @Grad62304977
x = self.c_proj(x)
return x
class Block(nn.Module):
def __init__(self, config):
super().__init__()
self.attn = CausalSelfAttention(config.n_embd, config.n_head)
self.mlp = MLP(config.n_embd)
self.lambdas = nn.Parameter(torch.tensor([1., 0.]))
def forward(self, x, vi, x0, block_mask):
x = self.lambdas[0] * x + self.lambdas[1] * x0
x = x + self.attn(norm(x), vi, block_mask)
x = x + self.mlp(norm(x))
return x
# -----------------------------------------------------------------------------
# The main GPT-2 model
@dataclass
class GPTConfig:
vocab_size : int = 50304
n_layer : int = 12
n_head : int = 6 # head dim 128 suggested by @Grad62304977
n_embd : int = 768
class GPT(nn.Module):
def __init__(self, config):
super().__init__()
# U-net design by @brendanh0gan
self.num_encoder_layers = config.n_layer // 2 # Half of the layers for encoder
self.num_decoder_layers = config.n_layer - self.num_encoder_layers # Remaining for decoder
# Add learnable skip connection weights for decoder layers
self.skip_weights = nn.Parameter(torch.ones(self.num_decoder_layers))
self.transformer = nn.ModuleDict(dict(
wte = nn.Embedding(config.vocab_size, config.n_embd),
# token value embeddings by @KoszarskyB - inspired by @Grad62304977's value residual learning
vte = nn.Embedding(config.vocab_size, config.n_embd*12),
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
))
self.lm_head = CastedLinear(config.n_embd, config.vocab_size)
self.lm_head.weight.data.zero_() # @Grad62304977
def forward(self, idx, target, attn_blocksize):
docs = (idx == 50256).cumsum(0)
def document_causal_mask(b, h, q_idx, kv_idx):
causal_mask = q_idx >= kv_idx
document_mask = docs[q_idx] == docs[kv_idx]
window_mask = q_idx - kv_idx < attn_blocksize
return causal_mask & document_mask & window_mask
S = len(idx)
block_mask = create_block_mask(document_causal_mask, None, None, S, S, device="cuda", _compile=True)
# forward the GPT model itself
x = self.transformer.wte(idx[None]) # token embeddings of shape (b, t, n_embd)
x = norm(x) # @Grad62304977
x0 = x
vi = self.transformer.vte(idx[None]).chunk(12, dim=-1)
# Store outputs for U-Net skip connections
skip_connections = []
# Encoder pass - process only the first half of the blocks
for i in range(self.num_encoder_layers):
x = self.transformer.h[i](x, vi[i], x0, block_mask)
skip_connections.append(x)
# Decoder pass - process the remaining blocks with weighted skip connections
for i in range(self.num_decoder_layers):
x = x + self.skip_weights[i] * skip_connections.pop()
x = self.transformer.h[self.num_encoder_layers + i](x, vi[self.num_encoder_layers+i], x0, block_mask)
x = norm(x)
logits = self.lm_head(x)
logits = 30 * torch.tanh(logits / 30) # @Grad62304977
logits = logits.float()
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), target.view(-1))
return loss
# -----------------------------------------------------------------------------
# Our own simple Distributed Data Loader
def _peek_data_shard(filename):
# only reads the header, returns header data
with open(filename, "rb") as f:
# first read the header, which is 256 int32 integers (4 bytes each)
header = np.frombuffer(f.read(256*4), dtype=np.int32)
if header[0] != 20240520:
print("ERROR: magic number mismatch in the data .bin file!")
print("---> HINT: Are you passing in a correct file with --input_bin?")
print("---> HINT: Dataset encoding changed recently, re-run data prepro or refer again to README")
print("---> HINT: For example re-run: `python dev/data/tinyshakespeare.py`, then re-try")
exit(1)
assert header[1] == 1, "unsupported version"
ntok = header[2] # number of tokens (claimed)
return ntok # for now just return the number of tokens
def _load_data_shard(filename):
with open(filename, "rb") as f:
# first read the header, which is 256 int32 integers (4 bytes each)
header = np.frombuffer(f.read(256*4), dtype=np.int32)
assert header[0] == 20240520, "magic number mismatch in the data .bin file"
assert header[1] == 1, "unsupported version"
ntok = header[2] # number of tokens (claimed)
# the rest of it are tokens, stored as uint16
tokens = np.frombuffer(f.read(), dtype=np.uint16)
assert len(tokens) == ntok, "number of tokens read does not match header?"
return tokens
class DistributedDataLoader:
def __init__(self, filename_pattern, T, process_rank, num_processes):
self.process_rank = process_rank
self.num_processes = num_processes
self.T = T
# glob files that match the pattern
self.files = sorted(glob.glob(filename_pattern))
assert len(self.files) > 0, f"did not find any files that match the pattern {filename_pattern}"
# load and validate all data shards, count number of tokens in total
ntok_total = 0
for fname in self.files:
shard_ntok = _peek_data_shard(fname)
assert shard_ntok >= num_processes * T + 1
ntok_total += int(shard_ntok)
self.ntok_total = ntok_total
self.reset()
def reset(self):
self.current_shard = -1
self.advance()
def advance(self): # advance to next data shard
self.current_shard = (self.current_shard + 1) % len(self.files)
self.current_position = self.process_rank * self.T
self.tokens = _load_data_shard(self.files[self.current_shard])
def next_batch(self):
batch_size = self.T * self.num_processes
buf = self.tokens[self.current_position:self.current_position+self.T+1]
buf = torch.tensor(buf.astype(np.int32), dtype=torch.long)
x = buf[:-1] # inputs
y = buf[1:] # targets
# advance current position and load next shard if necessary
self.current_position += batch_size
if self.current_position + batch_size >= len(self.tokens):
self.advance()
return x.cuda(), y.cuda()
# -----------------------------------------------------------------------------
# int main
@dataclass
class Hyperparameters:
# data hyperparams
input_bin : str = 'data/fineweb10B/fineweb_train_*.bin' # input .bin to train on
input_val_bin : str = 'data/fineweb10B/fineweb_val_*.bin' # input .bin to eval validation loss on
# optimization hyperparams
batch_size : int = 8 # batch size, in sequences, across all devices
sequence_length : int = 64*1024 # sequence length, in tokens
num_iterations : int = 1530 # number of iterations to run
warmup_iters : int = 0
cooldown_iters : int = 600 # number of iterations of linear warmup/cooldown for triangular or trapezoidal schedule
weight_decay : float = 0
# evaluation and logging hyperparams
val_loss_every : int = 125 # every how many steps to evaluate val loss? 0 for only at the end
val_tokens : int = 10485760 # how many tokens of validation data? it's important to keep this fixed for consistent comparisons
save_every : int = 0 # every how many steps to save the checkpoint? 0 for only at the end
args = Hyperparameters()
# set up DDP (distributed data parallel). torchrun sets this env variable
assert torch.cuda.is_available()
dist.init_process_group(backend='nccl')
ddp_rank = int(os.environ['RANK'])
ddp_local_rank = int(os.environ['LOCAL_RANK'])
ddp_world_size = int(os.environ['WORLD_SIZE'])
device = f'cuda:{ddp_local_rank}'
torch.cuda.set_device(device)
print(f"using device: {device}")
master_process = (ddp_rank == 0) # this process will do logging, checkpointing etc.
# begin logging
logfile = None
if master_process:
run_id = str(uuid.uuid4())
logdir = 'logs/%s/' % run_id
os.makedirs(logdir, exist_ok=True)
logfile = 'logs/%s.txt' % run_id
# create the log file
with open(logfile, "w") as f:
# begin the log by printing this file (the Python code)
f.write(code)
f.write('='*100 + '\n')
def print0(s, logonly=False):
if master_process:
with open(logfile, "a") as f:
if not logonly:
print(s)
f.write(s+'\n')
# log information about the hardware/software environment this is running on
# and print the full `nvidia-smi` to file
print0(f"Running pytorch {torch.version.__version__} compiled for CUDA {torch.version.cuda}\nnvidia-smi:")
import subprocess
result = subprocess.run(['nvidia-smi'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
print0(f'{result.stdout}', logonly=True)
print0('='*100, logonly=True)
# convenience variables
T = args.sequence_length
# calculate the number of steps to take in the val loop.
assert args.val_tokens % (T * ddp_world_size) == 0
val_steps = args.val_tokens // (T * ddp_world_size)
# calculate the steps of gradient accumulation required to attain the desired global batch size.
assert args.batch_size % (ddp_world_size) == 0
train_accumulation_steps = args.batch_size // ddp_world_size
# load tokens
train_loader = DistributedDataLoader(args.input_bin, T, ddp_rank, ddp_world_size)
val_loader = DistributedDataLoader(args.input_val_bin, T, ddp_rank, ddp_world_size)
print0(f"Training DataLoader: total number of tokens: {train_loader.ntok_total} across {len(train_loader.files)} files")
print0(f"Validation DataLoader: total number of tokens: {val_loader.ntok_total} across {len(val_loader.files)} files")
print0('='*100, logonly=True)
x, y = train_loader.next_batch()
# there are only 50257 unique GPT-2 tokens; we extend to nearest multiple of 128 for efficiency. suggested to me by @Grad62304977.
# this originates from Karpathy's experiments.
num_vocab = 50304
model = GPT(GPTConfig(vocab_size=num_vocab, n_layer=12, n_head=6, n_embd=768))
model = model.cuda().bfloat16()
for m in model.modules():
if isinstance(m, CastedLinear):
m.float()
if hasattr(config, "coordinate_descent_tuning"):
config.coordinate_descent_tuning = True # suggested by @Chillee
model = torch.compile(model)
# here we wrap model into DDP container
model = DDP(model, device_ids=[ddp_local_rank])
raw_model = model.module # always contains the "raw" unwrapped model
# init the optimizer(s)
optimizer1 = torch.optim.Adam([raw_model.transformer.wte.weight, raw_model.transformer.vte.weight], lr=0.6, betas=(0.8, 0.95), fused=True)
optimizer2 = torch.optim.Adam([raw_model.lm_head.weight], lr=0.008, betas=(0.8, 0.95), fused=True)
params = list(raw_model.transformer.h.parameters())
matrix_params = [p for p in params if p.ndim == 2]
scalar_params = [p for p in params if p.ndim < 2] + [raw_model.skip_weights]
optimizer3 = Muon(matrix_params, lr=0.05, momentum=0.95)
optimizer4 = torch.optim.Adam(scalar_params, lr=0.04, betas=(0.8, 0.95), fused=True) # note that this learning rate is neither sensitive nor tuned
optimizers = [optimizer1, optimizer2, optimizer3, optimizer4]
# learning rate decay scheduler (linear warmup and cooldown)
def get_lr(it):
assert it <= args.num_iterations
# 1) linear warmup for warmup_iters steps
if it < args.warmup_iters:
return (it+1) / args.warmup_iters
# 2) constant lr for a while
elif it < args.num_iterations - args.cooldown_iters:
return 1.0
# 3) linear cooldown
else:
decay_ratio = (args.num_iterations - it) / args.cooldown_iters
return decay_ratio
schedulers = [torch.optim.lr_scheduler.LambdaLR(opt, get_lr) for opt in optimizers]
# Start training loop
training_time_ms = 0
# start the clock
torch.cuda.synchronize()
t0 = time.time()
# begin training
for step in range(args.num_iterations + 1):
last_step = (step == args.num_iterations)
# This effectively ignores timing first 10 steps, which are slower for weird reasons.
# Alternately, and slightly more correctly in terms of benchmarking, we could do 10
# steps with dummy data first, and then re-initialize the model and reset the loader.
if step == 10:
training_time_ms = 0
t0 = time.time()
timed_steps = float('nan') if step <= 11 else (step - 10) + 1 # <= 11 to avoid bug in val
# Set the attention blocksize for the current step, in chunks of 64. By @fernbear.bsky.social
attn_blocksize = torch.tensor(64*((step/args.num_iterations * (1792 - 64) + 64)//64), dtype=torch.int, device='cuda')
# once in a while evaluate the validation dataset
if (last_step or (args.val_loss_every > 0 and step % args.val_loss_every == 0)):
# stop the clock
torch.cuda.synchronize()
training_time_ms += 1000 * (time.time() - t0)
# run validation batches
model.eval()
val_loader.reset()
val_loss = 0.0
for _ in range(val_steps):
with torch.no_grad():
x_val, y_val = val_loader.next_batch()
val_loss += model(x_val, y_val, attn_blocksize=attn_blocksize)
dist.all_reduce(val_loss, op=dist.ReduceOp.AVG)
val_loss /= val_steps
# log val loss to console and to logfile
print0(f'step:{step}/{args.num_iterations} val_loss:{val_loss:.4f} train_time:{training_time_ms:.0f}ms step_avg:{training_time_ms/(timed_steps-1):.2f}ms')
# start the clock again
torch.cuda.synchronize()
t0 = time.time()
if master_process and (last_step or (args.save_every > 0 and step % args.save_every == 0)):
# stop the clock
torch.cuda.synchronize()
training_time_ms += 1000 * (time.time() - t0)
# save the state of the training process
log = dict(step=step, code=code, model=raw_model.state_dict(), optimizers=[opt.state_dict() for opt in optimizers])
torch.save(log, 'logs/%s/state_step%06d.pt' % (run_id, step))
# start the clock again
torch.cuda.synchronize()
t0 = time.time()
# bit confusing: we want to make sure to eval on 0th iteration
# but also after the very last iteration. so we loop for step <= num_iterations
# instead of just < num_iterations (one extra due to <=), only to do
# the validation/sampling one last time, and then we break right here as we're done.
if last_step:
break
# --------------- TRAINING SECTION BEGIN -----------------
model.train()
for i in range(1, train_accumulation_steps+1):
ctx = model.no_sync() if i < train_accumulation_steps else contextlib.nullcontext()
with ctx: # there's no need to sync gradients every accumulation step
# forward pass
loss = model(x, y, attn_blocksize=attn_blocksize)
# advance the dataset for the next batch
x, y = train_loader.next_batch()
# backward pass
loss.backward()
train_loss = loss.detach()
for p in model.parameters():
p.grad /= train_accumulation_steps
# momentum warmup for Muon
frac = min(step/300, 1)
optimizer3.param_groups[0]['momentum'] = (1 - frac) * 0.85 + frac * 0.95
# step the optimizers and schedulers
for opt, sched in zip(optimizers, schedulers):
opt.step()
sched.step()
# null the gradients
model.zero_grad(set_to_none=True)
# --------------- TRAINING SECTION END -------------------
# everything that follows now is just diagnostics, prints, logging, etc.
#dist.all_reduce(train_loss, op=dist.ReduceOp.AVG) # all-reducing the training loss would be more correct in terms of logging, but slower
approx_time = training_time_ms + 1000 * (time.time() - t0)
print0(f"step:{step+1}/{args.num_iterations} train_loss:{train_loss.item():.4f} train_time:{approx_time:.0f}ms step_avg:{approx_time/timed_steps:.2f}ms")
if master_process:
print(f"peak memory consumption: {torch.cuda.max_memory_allocated() // 1024 // 1024} MiB")
# -------------------------------------------------------------------------
# clean up nice
dist.destroy_process_group()
====================================================================================================
Running pytorch 2.6.0.dev20241203+cu124 compiled for CUDA 12.4
nvidia-smi:
Thu Dec 5 01:48:07 2024
+---------------------------------------------------------------------------------------+
| NVIDIA-SMI 535.183.06 Driver Version: 535.183.06 CUDA Version: 12.2 |
|-----------------------------------------+----------------------+----------------------+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+======================+======================|
| 0 NVIDIA H100 80GB HBM3 On | 00000000:19:00.0 Off | 0 |
| N/A 39C P0 76W / 700W | 3MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 1 NVIDIA H100 80GB HBM3 On | 00000000:3B:00.0 Off | 0 |
| N/A 31C P0 115W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 2 NVIDIA H100 80GB HBM3 On | 00000000:4C:00.0 Off | 0 |
| N/A 31C P0 118W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 3 NVIDIA H100 80GB HBM3 On | 00000000:5D:00.0 Off | 0 |
| N/A 38C P0 119W / 700W | 529MiB / 81559MiB | 1% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 4 NVIDIA H100 80GB HBM3 On | 00000000:9B:00.0 Off | 0 |
| N/A 39C P0 123W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 5 NVIDIA H100 80GB HBM3 On | 00000000:BB:00.0 Off | 0 |
| N/A 30C P0 110W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 6 NVIDIA H100 80GB HBM3 On | 00000000:CB:00.0 Off | 0 |
| N/A 39C P0 128W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 7 NVIDIA H100 80GB HBM3 On | 00000000:DB:00.0 Off | 0 |
| N/A 30C P0 119W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
+---------------------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=======================================================================================|
+---------------------------------------------------------------------------------------+
====================================================================================================
Training DataLoader: total number of tokens: 1100000000 across 11 files
Validation DataLoader: total number of tokens: 100000000 across 1 files
====================================================================================================
step:0/1530 val_loss:10.8258 train_time:0ms step_avg:nanms
step:1/1530 train_loss:10.8258 train_time:31578ms step_avg:nanms
step:2/1530 train_loss:10.0783 train_time:31690ms step_avg:nanms
step:3/1530 train_loss:8.4190 train_time:31847ms step_avg:nanms
step:4/1530 train_loss:7.5594 train_time:32008ms step_avg:nanms
step:5/1530 train_loss:7.4027 train_time:32167ms step_avg:nanms
step:6/1530 train_loss:6.9492 train_time:32327ms step_avg:nanms
step:7/1530 train_loss:7.1731 train_time:32486ms step_avg:nanms
step:8/1530 train_loss:6.7285 train_time:32647ms step_avg:nanms
step:9/1530 train_loss:6.6165 train_time:32808ms step_avg:nanms
step:10/1530 train_loss:6.4975 train_time:32967ms step_avg:nanms
step:11/1530 train_loss:6.4643 train_time:114ms step_avg:nanms
step:12/1530 train_loss:6.3779 train_time:274ms step_avg:nanms
step:13/1530 train_loss:6.2153 train_time:433ms step_avg:144.50ms
step:14/1530 train_loss:6.2083 train_time:594ms step_avg:148.53ms
step:15/1530 train_loss:6.1718 train_time:754ms step_avg:150.74ms
step:16/1530 train_loss:6.1098 train_time:914ms step_avg:152.33ms
step:17/1530 train_loss:6.1530 train_time:1073ms step_avg:153.31ms
step:18/1530 train_loss:5.9847 train_time:1234ms step_avg:154.23ms
step:19/1530 train_loss:5.9773 train_time:1394ms step_avg:154.94ms
step:20/1530 train_loss:5.6740 train_time:1554ms step_avg:155.37ms
step:21/1530 train_loss:5.9336 train_time:1714ms step_avg:155.83ms
step:22/1530 train_loss:6.1639 train_time:1875ms step_avg:156.22ms
step:23/1530 train_loss:5.8417 train_time:2035ms step_avg:156.54ms
step:24/1530 train_loss:5.9978 train_time:2195ms step_avg:156.76ms
step:25/1530 train_loss:5.6720 train_time:2355ms step_avg:156.97ms
step:26/1530 train_loss:5.5848 train_time:2516ms step_avg:157.24ms
step:27/1530 train_loss:5.7606 train_time:2675ms step_avg:157.38ms
step:28/1530 train_loss:5.4180 train_time:2838ms step_avg:157.65ms
step:29/1530 train_loss:5.6797 train_time:2998ms step_avg:157.80ms
step:30/1530 train_loss:5.4683 train_time:3159ms step_avg:157.93ms
step:31/1530 train_loss:5.4235 train_time:3318ms step_avg:158.00ms
step:32/1530 train_loss:5.2956 train_time:3479ms step_avg:158.12ms
step:33/1530 train_loss:5.5658 train_time:3640ms step_avg:158.25ms
step:34/1530 train_loss:5.5028 train_time:3801ms step_avg:158.37ms
step:35/1530 train_loss:5.6094 train_time:3962ms step_avg:158.48ms
step:36/1530 train_loss:5.5309 train_time:4123ms step_avg:158.58ms
step:37/1530 train_loss:5.4436 train_time:4283ms step_avg:158.63ms
step:38/1530 train_loss:5.3034 train_time:4444ms step_avg:158.72ms
step:39/1530 train_loss:5.3103 train_time:4605ms step_avg:158.79ms
step:40/1530 train_loss:5.2652 train_time:4766ms step_avg:158.85ms
step:41/1530 train_loss:5.2451 train_time:4926ms step_avg:158.90ms
step:42/1530 train_loss:5.1806 train_time:5086ms step_avg:158.94ms
step:43/1530 train_loss:5.2625 train_time:5247ms step_avg:159.00ms
step:44/1530 train_loss:5.2575 train_time:5407ms step_avg:159.04ms
step:45/1530 train_loss:5.4022 train_time:5567ms step_avg:159.06ms
step:46/1530 train_loss:5.1702 train_time:5728ms step_avg:159.12ms
step:47/1530 train_loss:5.0462 train_time:5888ms step_avg:159.14ms
step:48/1530 train_loss:5.2122 train_time:6048ms step_avg:159.17ms
step:49/1530 train_loss:5.1527 train_time:6209ms step_avg:159.20ms
step:50/1530 train_loss:5.2473 train_time:6369ms step_avg:159.21ms
step:51/1530 train_loss:5.1330 train_time:6530ms step_avg:159.26ms
step:52/1530 train_loss:5.0226 train_time:6690ms step_avg:159.28ms
step:53/1530 train_loss:5.1635 train_time:6850ms step_avg:159.30ms
step:54/1530 train_loss:5.0090 train_time:7010ms step_avg:159.31ms
step:55/1530 train_loss:5.4073 train_time:7169ms step_avg:159.30ms
step:56/1530 train_loss:5.0195 train_time:7330ms step_avg:159.35ms
step:57/1530 train_loss:4.8762 train_time:7490ms step_avg:159.36ms
step:58/1530 train_loss:5.0395 train_time:7650ms step_avg:159.37ms
step:59/1530 train_loss:5.0325 train_time:7810ms step_avg:159.38ms
step:60/1530 train_loss:5.1755 train_time:7969ms step_avg:159.39ms
step:61/1530 train_loss:4.8914 train_time:8130ms step_avg:159.41ms
step:62/1530 train_loss:4.9883 train_time:8290ms step_avg:159.42ms
step:63/1530 train_loss:4.9841 train_time:8450ms step_avg:159.42ms
step:64/1530 train_loss:4.9932 train_time:8611ms step_avg:159.46ms
step:65/1530 train_loss:4.8109 train_time:8770ms step_avg:159.45ms
step:66/1530 train_loss:4.9080 train_time:8931ms step_avg:159.48ms
step:67/1530 train_loss:4.8111 train_time:9091ms step_avg:159.49ms
step:68/1530 train_loss:5.0817 train_time:9251ms step_avg:159.49ms
step:69/1530 train_loss:4.7293 train_time:9410ms step_avg:159.49ms
step:70/1530 train_loss:4.8319 train_time:9570ms step_avg:159.51ms
step:71/1530 train_loss:4.9771 train_time:9732ms step_avg:159.54ms
step:72/1530 train_loss:4.8779 train_time:9891ms step_avg:159.53ms
step:73/1530 train_loss:4.7706 train_time:10052ms step_avg:159.55ms
step:74/1530 train_loss:4.9098 train_time:10212ms step_avg:159.56ms
step:75/1530 train_loss:4.8701 train_time:10372ms step_avg:159.57ms
step:76/1530 train_loss:4.7926 train_time:10533ms step_avg:159.58ms
step:77/1530 train_loss:4.9152 train_time:10692ms step_avg:159.59ms
step:78/1530 train_loss:5.1425 train_time:10852ms step_avg:159.59ms
step:79/1530 train_loss:4.8377 train_time:11011ms step_avg:159.58ms
step:80/1530 train_loss:4.8597 train_time:11171ms step_avg:159.59ms
step:81/1530 train_loss:4.6441 train_time:11331ms step_avg:159.59ms
step:82/1530 train_loss:4.8157 train_time:11491ms step_avg:159.60ms
step:83/1530 train_loss:4.7682 train_time:11651ms step_avg:159.60ms
step:84/1530 train_loss:4.7713 train_time:11811ms step_avg:159.61ms
step:85/1530 train_loss:4.6279 train_time:11971ms step_avg:159.62ms
step:86/1530 train_loss:4.8265 train_time:12131ms step_avg:159.61ms
step:87/1530 train_loss:4.7573 train_time:12292ms step_avg:159.64ms
step:88/1530 train_loss:4.7456 train_time:12451ms step_avg:159.63ms
step:89/1530 train_loss:4.6972 train_time:12611ms step_avg:159.63ms
step:90/1530 train_loss:4.6345 train_time:12771ms step_avg:159.64ms
step:91/1530 train_loss:4.6343 train_time:12931ms step_avg:159.64ms
step:92/1530 train_loss:4.7935 train_time:13091ms step_avg:159.64ms
step:93/1530 train_loss:4.6174 train_time:13250ms step_avg:159.64ms
step:94/1530 train_loss:4.6389 train_time:13411ms step_avg:159.66ms
step:95/1530 train_loss:4.6693 train_time:13572ms step_avg:159.67ms
step:96/1530 train_loss:4.5806 train_time:13732ms step_avg:159.68ms
step:97/1530 train_loss:4.6538 train_time:13891ms step_avg:159.67ms
step:98/1530 train_loss:4.5914 train_time:14051ms step_avg:159.67ms
step:99/1530 train_loss:4.6767 train_time:14212ms step_avg:159.68ms
step:100/1530 train_loss:4.6817 train_time:14371ms step_avg:159.68ms
step:101/1530 train_loss:4.5536 train_time:14533ms step_avg:159.70ms
step:102/1530 train_loss:4.7099 train_time:14694ms step_avg:159.71ms
step:103/1530 train_loss:4.5926 train_time:14854ms step_avg:159.72ms
step:104/1530 train_loss:4.5431 train_time:15015ms step_avg:159.73ms
step:105/1530 train_loss:4.5597 train_time:15175ms step_avg:159.74ms
step:106/1530 train_loss:4.6296 train_time:15336ms step_avg:159.75ms
step:107/1530 train_loss:4.5122 train_time:15495ms step_avg:159.75ms
step:108/1530 train_loss:4.3675 train_time:15656ms step_avg:159.75ms
step:109/1530 train_loss:4.4882 train_time:15816ms step_avg:159.76ms
step:110/1530 train_loss:4.4874 train_time:15976ms step_avg:159.76ms
step:111/1530 train_loss:4.4247 train_time:16138ms step_avg:159.78ms
step:112/1530 train_loss:4.6019 train_time:16299ms step_avg:159.79ms
step:113/1530 train_loss:4.4997 train_time:16460ms step_avg:159.80ms
step:114/1530 train_loss:4.3623 train_time:16619ms step_avg:159.80ms
step:115/1530 train_loss:4.5054 train_time:16782ms step_avg:159.83ms
step:116/1530 train_loss:4.4670 train_time:16946ms step_avg:159.87ms
step:117/1530 train_loss:4.3681 train_time:17110ms step_avg:159.91ms
step:118/1530 train_loss:4.5927 train_time:17274ms step_avg:159.94ms
step:119/1530 train_loss:4.4727 train_time:17438ms step_avg:159.98ms
step:120/1530 train_loss:4.3481 train_time:17601ms step_avg:160.01ms
step:121/1530 train_loss:4.3076 train_time:17765ms step_avg:160.04ms
step:122/1530 train_loss:4.4433 train_time:17928ms step_avg:160.07ms
step:123/1530 train_loss:4.2888 train_time:18091ms step_avg:160.10ms
step:124/1530 train_loss:4.5913 train_time:18255ms step_avg:160.13ms
step:125/1530 train_loss:4.4587 train_time:18419ms step_avg:160.17ms
step:125/1530 val_loss:4.4025 train_time:18466ms step_avg:160.58ms
step:126/1530 train_loss:4.4221 train_time:18584ms step_avg:160.21ms
step:127/1530 train_loss:4.4330 train_time:18749ms step_avg:160.25ms
step:128/1530 train_loss:4.3813 train_time:18914ms step_avg:160.29ms
step:129/1530 train_loss:4.6868 train_time:19078ms step_avg:160.32ms
step:130/1530 train_loss:4.3698 train_time:19242ms step_avg:160.35ms
step:131/1530 train_loss:4.3908 train_time:19406ms step_avg:160.38ms
step:132/1530 train_loss:4.3487 train_time:19571ms step_avg:160.41ms
step:133/1530 train_loss:4.4440 train_time:19734ms step_avg:160.44ms
step:134/1530 train_loss:4.2663 train_time:19899ms step_avg:160.47ms
step:135/1530 train_loss:4.4449 train_time:20062ms step_avg:160.49ms
step:136/1530 train_loss:4.2231 train_time:20226ms step_avg:160.52ms
step:137/1530 train_loss:4.3785 train_time:20390ms step_avg:160.55ms
step:138/1530 train_loss:4.2934 train_time:20555ms step_avg:160.58ms
step:139/1530 train_loss:4.3943 train_time:20719ms step_avg:160.62ms
step:140/1530 train_loss:4.4720 train_time:20883ms step_avg:160.64ms
step:141/1530 train_loss:4.3208 train_time:21047ms step_avg:160.67ms
step:142/1530 train_loss:4.3001 train_time:21212ms step_avg:160.70ms
step:143/1530 train_loss:4.2648 train_time:21377ms step_avg:160.73ms
step:144/1530 train_loss:4.3641 train_time:21541ms step_avg:160.75ms
step:145/1530 train_loss:4.3132 train_time:21705ms step_avg:160.78ms
step:146/1530 train_loss:4.1730 train_time:21868ms step_avg:160.80ms
step:147/1530 train_loss:4.3322 train_time:22031ms step_avg:160.81ms
step:148/1530 train_loss:4.3743 train_time:22197ms step_avg:160.85ms
step:149/1530 train_loss:4.3191 train_time:22360ms step_avg:160.86ms
step:150/1530 train_loss:4.4503 train_time:22524ms step_avg:160.89ms
step:151/1530 train_loss:4.2766 train_time:22688ms step_avg:160.91ms
step:152/1530 train_loss:4.2829 train_time:22852ms step_avg:160.93ms
step:153/1530 train_loss:4.3729 train_time:23016ms step_avg:160.95ms
step:154/1530 train_loss:4.3766 train_time:23180ms step_avg:160.97ms
step:155/1530 train_loss:4.2718 train_time:23344ms step_avg:160.99ms
step:156/1530 train_loss:4.3512 train_time:23507ms step_avg:161.01ms
step:157/1530 train_loss:4.4125 train_time:23672ms step_avg:161.04ms
step:158/1530 train_loss:4.2441 train_time:23838ms step_avg:161.06ms
step:159/1530 train_loss:4.3115 train_time:24001ms step_avg:161.08ms
step:160/1530 train_loss:4.1523 train_time:24164ms step_avg:161.10ms
step:161/1530 train_loss:4.3589 train_time:24328ms step_avg:161.11ms
step:162/1530 train_loss:4.3567 train_time:24491ms step_avg:161.13ms
step:163/1530 train_loss:4.3479 train_time:24654ms step_avg:161.14ms
step:164/1530 train_loss:4.2011 train_time:24818ms step_avg:161.16ms
step:165/1530 train_loss:4.2976 train_time:24982ms step_avg:161.17ms
step:166/1530 train_loss:4.3525 train_time:25145ms step_avg:161.19ms
step:167/1530 train_loss:4.2195 train_time:25309ms step_avg:161.20ms
step:168/1530 train_loss:4.2943 train_time:25472ms step_avg:161.21ms
step:169/1530 train_loss:4.1631 train_time:25636ms step_avg:161.23ms
step:170/1530 train_loss:4.0347 train_time:25800ms step_avg:161.25ms
step:171/1530 train_loss:4.2150 train_time:25963ms step_avg:161.26ms
step:172/1530 train_loss:4.2236 train_time:26126ms step_avg:161.27ms
step:173/1530 train_loss:4.2722 train_time:26289ms step_avg:161.28ms
step:174/1530 train_loss:4.4346 train_time:26450ms step_avg:161.28ms
step:175/1530 train_loss:4.2508 train_time:26614ms step_avg:161.30ms
step:176/1530 train_loss:4.1034 train_time:26777ms step_avg:161.31ms
step:177/1530 train_loss:4.0682 train_time:26939ms step_avg:161.31ms
step:178/1530 train_loss:4.1890 train_time:27102ms step_avg:161.32ms
step:179/1530 train_loss:4.1306 train_time:27265ms step_avg:161.33ms
step:180/1530 train_loss:4.1253 train_time:27426ms step_avg:161.33ms
step:181/1530 train_loss:4.3076 train_time:27589ms step_avg:161.34ms
step:182/1530 train_loss:4.1659 train_time:27752ms step_avg:161.35ms
step:183/1530 train_loss:4.1345 train_time:27915ms step_avg:161.36ms
step:184/1530 train_loss:4.1271 train_time:28078ms step_avg:161.37ms
step:185/1530 train_loss:4.2210 train_time:28240ms step_avg:161.37ms
step:186/1530 train_loss:4.1789 train_time:28403ms step_avg:161.38ms
step:187/1530 train_loss:4.2468 train_time:28566ms step_avg:161.39ms
step:188/1530 train_loss:4.1729 train_time:28861ms step_avg:162.14ms
step:189/1530 train_loss:4.1244 train_time:29192ms step_avg:163.08ms
step:190/1530 train_loss:4.2172 train_time:29354ms step_avg:163.08ms
step:191/1530 train_loss:4.0823 train_time:29518ms step_avg:163.08ms
step:192/1530 train_loss:4.0384 train_time:29681ms step_avg:163.08ms
step:193/1530 train_loss:4.2633 train_time:29843ms step_avg:163.08ms
step:194/1530 train_loss:4.1826 train_time:30006ms step_avg:163.08ms
step:195/1530 train_loss:4.3667 train_time:30170ms step_avg:163.08ms
step:196/1530 train_loss:4.1882 train_time:30332ms step_avg:163.07ms
step:197/1530 train_loss:4.0451 train_time:30496ms step_avg:163.08ms
step:198/1530 train_loss:4.1800 train_time:30658ms step_avg:163.07ms
step:199/1530 train_loss:4.0437 train_time:30822ms step_avg:163.08ms
step:200/1530 train_loss:4.1212 train_time:30985ms step_avg:163.08ms
step:201/1530 train_loss:4.0264 train_time:31145ms step_avg:163.07ms
step:202/1530 train_loss:4.2698 train_time:31310ms step_avg:163.07ms
step:203/1530 train_loss:4.0742 train_time:31474ms step_avg:163.08ms
step:204/1530 train_loss:4.2060 train_time:31638ms step_avg:163.08ms
step:205/1530 train_loss:4.2568 train_time:31801ms step_avg:163.08ms
step:206/1530 train_loss:3.9508 train_time:31964ms step_avg:163.08ms
step:207/1530 train_loss:4.0889 train_time:32126ms step_avg:163.08ms
step:208/1530 train_loss:4.1185 train_time:32290ms step_avg:163.08ms
step:209/1530 train_loss:4.2559 train_time:32453ms step_avg:163.08ms
step:210/1530 train_loss:4.1899 train_time:32616ms step_avg:163.08ms
step:211/1530 train_loss:4.0648 train_time:32779ms step_avg:163.08ms
step:212/1530 train_loss:4.1296 train_time:32943ms step_avg:163.08ms
step:213/1530 train_loss:4.0528 train_time:33106ms step_avg:163.09ms
step:214/1530 train_loss:4.1294 train_time:33270ms step_avg:163.09ms
step:215/1530 train_loss:3.9653 train_time:33433ms step_avg:163.09ms
step:216/1530 train_loss:4.0192 train_time:33595ms step_avg:163.08ms
step:217/1530 train_loss:4.0264 train_time:33758ms step_avg:163.08ms
step:218/1530 train_loss:4.0926 train_time:33922ms step_avg:163.09ms
step:219/1530 train_loss:4.0825 train_time:34085ms step_avg:163.09ms
step:220/1530 train_loss:4.0996 train_time:34248ms step_avg:163.09ms
step:221/1530 train_loss:4.1067 train_time:34411ms step_avg:163.09ms
step:222/1530 train_loss:4.0170 train_time:34574ms step_avg:163.08ms
step:223/1530 train_loss:4.0064 train_time:34737ms step_avg:163.08ms
step:224/1530 train_loss:4.3109 train_time:34899ms step_avg:163.08ms
step:225/1530 train_loss:3.9422 train_time:35062ms step_avg:163.08ms
step:226/1530 train_loss:4.0074 train_time:35225ms step_avg:163.08ms
step:227/1530 train_loss:3.9808 train_time:35388ms step_avg:163.08ms
step:228/1530 train_loss:4.1573 train_time:35552ms step_avg:163.08ms
step:229/1530 train_loss:3.9393 train_time:35719ms step_avg:163.10ms
step:230/1530 train_loss:4.0476 train_time:35885ms step_avg:163.11ms
step:231/1530 train_loss:3.9179 train_time:36050ms step_avg:163.12ms
step:232/1530 train_loss:3.9801 train_time:36217ms step_avg:163.14ms
step:233/1530 train_loss:4.0953 train_time:36383ms step_avg:163.15ms
step:234/1530 train_loss:4.0359 train_time:36549ms step_avg:163.17ms
step:235/1530 train_loss:3.9129 train_time:36717ms step_avg:163.19ms
step:236/1530 train_loss:4.0954 train_time:36883ms step_avg:163.20ms
step:237/1530 train_loss:4.0975 train_time:37049ms step_avg:163.21ms
step:238/1530 train_loss:3.9601 train_time:37217ms step_avg:163.23ms
step:239/1530 train_loss:4.0960 train_time:37382ms step_avg:163.24ms
step:240/1530 train_loss:4.1244 train_time:37549ms step_avg:163.26ms
step:241/1530 train_loss:3.9720 train_time:37716ms step_avg:163.27ms
step:242/1530 train_loss:4.1631 train_time:37882ms step_avg:163.28ms
step:243/1530 train_loss:4.0292 train_time:38047ms step_avg:163.29ms
step:244/1530 train_loss:4.0910 train_time:38213ms step_avg:163.30ms
step:245/1530 train_loss:4.1513 train_time:38379ms step_avg:163.31ms
step:246/1530 train_loss:4.0655 train_time:38545ms step_avg:163.32ms
step:247/1530 train_loss:4.0124 train_time:38713ms step_avg:163.34ms
step:248/1530 train_loss:4.1150 train_time:38879ms step_avg:163.36ms
step:249/1530 train_loss:3.9328 train_time:39044ms step_avg:163.36ms
step:250/1530 train_loss:3.9881 train_time:39211ms step_avg:163.38ms
step:250/1530 val_loss:4.0198 train_time:39258ms step_avg:163.58ms
step:251/1530 train_loss:4.0830 train_time:39380ms step_avg:163.40ms
step:252/1530 train_loss:4.1738 train_time:39545ms step_avg:163.41ms
step:253/1530 train_loss:3.9360 train_time:39713ms step_avg:163.43ms
step:254/1530 train_loss:3.8863 train_time:39879ms step_avg:163.44ms
step:255/1530 train_loss:4.0897 train_time:40044ms step_avg:163.44ms
step:256/1530 train_loss:4.0069 train_time:40210ms step_avg:163.45ms
step:257/1530 train_loss:4.0073 train_time:40377ms step_avg:163.47ms
step:258/1530 train_loss:4.0029 train_time:40543ms step_avg:163.48ms
step:259/1530 train_loss:4.0399 train_time:40709ms step_avg:163.49ms
step:260/1530 train_loss:4.0707 train_time:40877ms step_avg:163.51ms
step:261/1530 train_loss:4.0360 train_time:41043ms step_avg:163.52ms
step:262/1530 train_loss:4.0128 train_time:41208ms step_avg:163.52ms
step:263/1530 train_loss:3.9059 train_time:41375ms step_avg:163.54ms
step:264/1530 train_loss:3.9975 train_time:41541ms step_avg:163.55ms
step:265/1530 train_loss:3.8903 train_time:41707ms step_avg:163.56ms
step:266/1530 train_loss:3.9403 train_time:41872ms step_avg:163.56ms
step:267/1530 train_loss:3.9478 train_time:42039ms step_avg:163.57ms
step:268/1530 train_loss:3.9710 train_time:42204ms step_avg:163.58ms
step:269/1530 train_loss:3.8628 train_time:42370ms step_avg:163.59ms
step:270/1530 train_loss:4.1183 train_time:42536ms step_avg:163.60ms
step:271/1530 train_loss:3.9837 train_time:42702ms step_avg:163.61ms
step:272/1530 train_loss:3.9376 train_time:42868ms step_avg:163.62ms
step:273/1530 train_loss:3.9562 train_time:43033ms step_avg:163.63ms
step:274/1530 train_loss:4.0564 train_time:43199ms step_avg:163.63ms
step:275/1530 train_loss:4.0749 train_time:43365ms step_avg:163.64ms
step:276/1530 train_loss:4.2445 train_time:43531ms step_avg:163.65ms
step:277/1530 train_loss:4.0538 train_time:43698ms step_avg:163.66ms
step:278/1530 train_loss:4.1030 train_time:43863ms step_avg:163.67ms
step:279/1530 train_loss:4.0123 train_time:44029ms step_avg:163.68ms
step:280/1530 train_loss:4.1840 train_time:44197ms step_avg:163.69ms
step:281/1530 train_loss:3.9843 train_time:44363ms step_avg:163.70ms
step:282/1530 train_loss:3.9596 train_time:44530ms step_avg:163.71ms
step:283/1530 train_loss:3.9279 train_time:44695ms step_avg:163.72ms
step:284/1530 train_loss:4.0629 train_time:44862ms step_avg:163.73ms
step:285/1530 train_loss:4.0720 train_time:45026ms step_avg:163.73ms
step:286/1530 train_loss:4.1017 train_time:45192ms step_avg:163.74ms
step:287/1530 train_loss:3.9267 train_time:45357ms step_avg:163.74ms
step:288/1530 train_loss:4.0256 train_time:45521ms step_avg:163.75ms
step:289/1530 train_loss:3.8826 train_time:45687ms step_avg:163.75ms
step:290/1530 train_loss:3.8705 train_time:45853ms step_avg:163.76ms
step:291/1530 train_loss:3.9308 train_time:46019ms step_avg:163.77ms
step:292/1530 train_loss:3.8779 train_time:46183ms step_avg:163.77ms
step:293/1530 train_loss:3.9154 train_time:46348ms step_avg:163.77ms
step:294/1530 train_loss:3.9439 train_time:46513ms step_avg:163.78ms
step:295/1530 train_loss:3.8619 train_time:46679ms step_avg:163.79ms
step:296/1530 train_loss:3.8804 train_time:46844ms step_avg:163.79ms
step:297/1530 train_loss:3.8773 train_time:47008ms step_avg:163.79ms
step:298/1530 train_loss:3.9844 train_time:47174ms step_avg:163.80ms
step:299/1530 train_loss:3.8344 train_time:47339ms step_avg:163.80ms
step:300/1530 train_loss:3.9781 train_time:47504ms step_avg:163.81ms
step:301/1530 train_loss:3.9691 train_time:47670ms step_avg:163.81ms
step:302/1530 train_loss:3.9453 train_time:47835ms step_avg:163.82ms
step:303/1530 train_loss:3.9941 train_time:48000ms step_avg:163.82ms
step:304/1530 train_loss:3.9805 train_time:48165ms step_avg:163.82ms
step:305/1530 train_loss:4.4614 train_time:48330ms step_avg:163.83ms
step:306/1530 train_loss:3.9543 train_time:48495ms step_avg:163.83ms
step:307/1530 train_loss:3.8541 train_time:48660ms step_avg:163.84ms
step:308/1530 train_loss:3.9953 train_time:48824ms step_avg:163.84ms
step:309/1530 train_loss:3.8800 train_time:48988ms step_avg:163.84ms
step:310/1530 train_loss:4.0922 train_time:49154ms step_avg:163.85ms
step:311/1530 train_loss:3.9373 train_time:49319ms step_avg:163.85ms
step:312/1530 train_loss:3.8761 train_time:49484ms step_avg:163.85ms
step:313/1530 train_loss:3.9565 train_time:49650ms step_avg:163.86ms
step:314/1530 train_loss:4.0754 train_time:49816ms step_avg:163.87ms
step:315/1530 train_loss:3.9538 train_time:49981ms step_avg:163.87ms
step:316/1530 train_loss:3.8025 train_time:50145ms step_avg:163.87ms
step:317/1530 train_loss:3.8953 train_time:50311ms step_avg:163.88ms
step:318/1530 train_loss:3.9366 train_time:50477ms step_avg:163.89ms
step:319/1530 train_loss:3.9056 train_time:50642ms step_avg:163.89ms
step:320/1530 train_loss:4.0258 train_time:50807ms step_avg:163.89ms
step:321/1530 train_loss:3.9677 train_time:50974ms step_avg:163.90ms
step:322/1530 train_loss:3.9463 train_time:51139ms step_avg:163.91ms
step:323/1530 train_loss:4.0192 train_time:51304ms step_avg:163.91ms
step:324/1530 train_loss:3.9597 train_time:51470ms step_avg:163.92ms
step:325/1530 train_loss:4.0400 train_time:51636ms step_avg:163.92ms
step:326/1530 train_loss:3.9079 train_time:51801ms step_avg:163.93ms
step:327/1530 train_loss:4.4192 train_time:51967ms step_avg:163.93ms
step:328/1530 train_loss:4.0888 train_time:52133ms step_avg:163.94ms
step:329/1530 train_loss:3.8131 train_time:52298ms step_avg:163.94ms
step:330/1530 train_loss:3.7665 train_time:52463ms step_avg:163.95ms
step:331/1530 train_loss:3.9925 train_time:52629ms step_avg:163.95ms
step:332/1530 train_loss:3.9255 train_time:52793ms step_avg:163.95ms
step:333/1530 train_loss:3.9079 train_time:52959ms step_avg:163.96ms
step:334/1530 train_loss:3.8552 train_time:53123ms step_avg:163.96ms
step:335/1530 train_loss:4.0222 train_time:53287ms step_avg:163.96ms
step:336/1530 train_loss:3.9784 train_time:53454ms step_avg:163.97ms
step:337/1530 train_loss:4.4408 train_time:53620ms step_avg:163.97ms
step:338/1530 train_loss:3.9531 train_time:53786ms step_avg:163.98ms
step:339/1530 train_loss:3.8816 train_time:53951ms step_avg:163.98ms
step:340/1530 train_loss:3.9497 train_time:54116ms step_avg:163.99ms
step:341/1530 train_loss:3.8730 train_time:54283ms step_avg:164.00ms
step:342/1530 train_loss:3.8199 train_time:54451ms step_avg:164.01ms
step:343/1530 train_loss:3.8561 train_time:54619ms step_avg:164.02ms
step:344/1530 train_loss:4.0054 train_time:54787ms step_avg:164.03ms
step:345/1530 train_loss:3.8360 train_time:54956ms step_avg:164.05ms
step:346/1530 train_loss:3.7822 train_time:55124ms step_avg:164.06ms
step:347/1530 train_loss:3.8171 train_time:55292ms step_avg:164.07ms
step:348/1530 train_loss:3.8785 train_time:55460ms step_avg:164.08ms
step:349/1530 train_loss:3.8479 train_time:55627ms step_avg:164.09ms
step:350/1530 train_loss:3.5810 train_time:55796ms step_avg:164.11ms
step:351/1530 train_loss:3.8437 train_time:55964ms step_avg:164.12ms
step:352/1530 train_loss:4.1902 train_time:56132ms step_avg:164.13ms
step:353/1530 train_loss:3.6753 train_time:56300ms step_avg:164.14ms
step:354/1530 train_loss:3.9366 train_time:56467ms step_avg:164.15ms
step:355/1530 train_loss:3.8023 train_time:56636ms step_avg:164.16ms
step:356/1530 train_loss:3.8965 train_time:56803ms step_avg:164.17ms
step:357/1530 train_loss:3.7813 train_time:56973ms step_avg:164.19ms
step:358/1530 train_loss:3.8745 train_time:57141ms step_avg:164.20ms
step:359/1530 train_loss:3.8068 train_time:57309ms step_avg:164.21ms
step:360/1530 train_loss:3.4480 train_time:57481ms step_avg:164.23ms
step:361/1530 train_loss:4.0344 train_time:57649ms step_avg:164.24ms
step:362/1530 train_loss:3.9351 train_time:57818ms step_avg:164.26ms
step:363/1530 train_loss:3.8580 train_time:57985ms step_avg:164.26ms
step:364/1530 train_loss:3.7661 train_time:58154ms step_avg:164.28ms
step:365/1530 train_loss:3.9320 train_time:58322ms step_avg:164.29ms
step:366/1530 train_loss:3.8780 train_time:58490ms step_avg:164.30ms
step:367/1530 train_loss:3.8674 train_time:58660ms step_avg:164.31ms
step:368/1530 train_loss:3.8628 train_time:58826ms step_avg:164.32ms
step:369/1530 train_loss:3.7632 train_time:58994ms step_avg:164.33ms
step:370/1530 train_loss:3.8934 train_time:59161ms step_avg:164.34ms
step:371/1530 train_loss:3.7495 train_time:59329ms step_avg:164.35ms
step:372/1530 train_loss:3.7018 train_time:59499ms step_avg:164.36ms
step:373/1530 train_loss:3.9215 train_time:59666ms step_avg:164.37ms
step:374/1530 train_loss:3.8433 train_time:59834ms step_avg:164.38ms
step:375/1530 train_loss:3.8196 train_time:60001ms step_avg:164.39ms
step:375/1530 val_loss:3.8467 train_time:60048ms step_avg:164.52ms