-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
66 lines (49 loc) · 3.69 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import argparse
from trainer import Trainer
from utils import init_logger, load_tokenizer, MODEL_CLASSES, MODEL_PATH_MAP
from data_loader import load_and_cache_examples
def main(args):
init_logger()
tokenizer = load_tokenizer(args)
train_dataset = load_and_cache_examples(args, tokenizer, mode="train")
test_dataset = load_and_cache_examples(args, tokenizer, mode="test")
trainer = Trainer(args, train_dataset=train_dataset, test_dataset=test_dataset)
if args.do_train:
trainer.train()
if args.do_eval:
trainer.load_model()
trainer.evaluate('test')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--task", default="patent", type=str, help="The name of the task to train")
parser.add_argument("--data_dir", default="./data", type=str,
help="The input data dir. Should contain the .tsv files for the task")
parser.add_argument("--model_dir", default="./model", type=str, help="Path to model")
parser.add_argument("--eval_dir", default="./eval", type=str, help="Evaluation script, result directory")
parser.add_argument("--train_file", default="train.tsv", type=str, help="Train file")
parser.add_argument("--test_file", default="test.tsv", type=str, help="Test file")
parser.add_argument("--label_file", default="label.txt", type=str, help="Label file")
parser.add_argument("--model_type", default="bert", type=str, help="Model type selected in the list:" + ", ".join(MODEL_CLASSES.keys()))
parser.add_argument("--seed", type=int, default=66, help="random seed for initializaion")
parser.add_argument("--train_batch_size", default=16, type=int, help="Batch size for training")
parser.add_argument("--eval_batch_size", default=16, type=int, help="Batch size for evaluation")
parser.add_argument("--max_seq_len", default=500, type=int, help="The maximum total input sequence length after tokenization")
parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam")
parser.add_argument("--num_train_epochs", default=10.0, type=float, help="Total number of training epoch to perform")
parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some")
parser.add_argument("--gradient_accumulation_steps",default=1, type=int,
help="Number of updates steps to accumulate before performing a backward/updata pass")
parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer")
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm")
parser.add_argument("--max_steps", default=-1, type=int, help="If > 0: set total number of training steps to perform, Override num_train_epochs")
parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps")
parser.add_argument("--dropout_rate", default=0.3, type=float, help="Dropout for fully-connected layers")
parser.add_argument("--logging_steps", default=50, type=int, help="Log every X updates steps")
parser.add_argument("--save_steps", default=50, type=int, help="Save checkpoint every X updates steps")
parser.add_argument("--do_train", action="store_true", help="Whether to run training")
parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the test set")
parser.add_argument("--no_cuda", action="store_true", help="Avoid using CUDA when available")
parser.add_argument("--add_sep_token", action="store_true", help="Add [SEP] token at the end of sentence")
args = parser.parse_args()
args.model_name_or_path = MODEL_PATH_MAP[args.model_type]
main(args)