-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathproc.c
executable file
·952 lines (828 loc) · 22.4 KB
/
proc.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
#include "types.h"
#include "defs.h"
#include "param.h"
#include "memlayout.h"
#include "mmu.h"
#include "x86.h"
#include "proc.h"
#include "spinlock.h"
struct {
struct spinlock lock;
struct proc proc[NPROC];
} ptable;
static struct proc *initproc;
int nextpid = 1;
extern void forkret(void);
extern void trapret(void);
static void wakeup1(void *chan);
int
waitx(int* wtime, int* rtime){
struct proc *p;
int havekids, pid;
struct proc *curproc = myproc();
acquire(&ptable.lock);
for(;;){
// Scan through table looking for exited children.
havekids = 0;
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){
if(p->parent != curproc)
continue;
havekids = 1;
if(p->state == ZOMBIE){
// Found one.
pid = p->pid;
kfree(p->kstack);
p->kstack = 0;
freevm(p->pgdir);
p->pid = 0;
p->parent = 0;
p->name[0] = 0;
p->killed = 0;
p->state = UNUSED;
*wtime = p->etime - (p->ctime + p->rtime + p->sleep_time);
*rtime = p->rtime;
// cprintf("creation time:%d end time:%d run time:%d sleep time:%d\n ",p->ctime,p->etime,p->rtime,p->sleep_time);
p->etime = 0;
p->ctime = 0;
p->rtime = 0;
release(&ptable.lock);
return pid;
}
}
// No point waiting if we don't have any children.
if(!havekids || curproc->killed){
release(&ptable.lock);
return -1;
}
// Wait for children to exit. (See wakeup1 call in proc_exit.)
sleep(curproc, &ptable.lock); //DOC: wait-sleep
}
}
int
ps(void){
struct proc *p;
acquire(&ptable.lock);
cprintf("PID\tPriority\tState\t\tr_time\tw_time\tn_run\tcur_q\tq0\tq1\tq2\tq3\tq4\t\n");
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){
if(p->state==EMBRYO){
cprintf("%d\t%d\t\tEmbryo\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t\n",p->pid,p->priority,p->rtime,ticks-p->last_inserted,p->picked_by_scheduler,p->queue_number,p->ran_in_queue[0],p->ran_in_queue[1],p->ran_in_queue[2],p->ran_in_queue[3],p->ran_in_queue[4]);
}
else if(p->state==SLEEPING){
cprintf("%d\t%d\t\tsleeping\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t\n",p->pid,p->priority,p->rtime,ticks-ticks,p->picked_by_scheduler,p->queue_number,p->ran_in_queue[0],p->ran_in_queue[1],p->ran_in_queue[2],p->ran_in_queue[3],p->ran_in_queue[4]);
}
else if(p->state==RUNNABLE){
cprintf("%d\t%d\t\trunnable\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t\n",p->pid,p->priority,p->rtime,ticks-p->last_inserted,p->picked_by_scheduler,p->queue_number,p->ran_in_queue[0],p->ran_in_queue[1],p->ran_in_queue[2],p->ran_in_queue[3],p->ran_in_queue[4]);
}
else if(p->state==RUNNING){
cprintf("%d\t%d\t\trunning\t\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t\n",p->pid,p->priority,p->rtime,ticks-ticks,p->picked_by_scheduler,p->queue_number,p->ran_in_queue[0],p->ran_in_queue[1],p->ran_in_queue[2],p->ran_in_queue[3],p->ran_in_queue[4]);
}
else if(p->state==ZOMBIE){
cprintf("%d\t%d\t\tzombie\t\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t\n",p->pid,p->priority,p->rtime,ticks-ticks,p->picked_by_scheduler,p->queue_number,p->ran_in_queue[0],p->ran_in_queue[1],p->ran_in_queue[2],p->ran_in_queue[3],p->ran_in_queue[4]);
}
}
release(&ptable.lock);
return 0;
}
void
pinit(void)
{
initlock(&ptable.lock, "ptable");
}
// Must be called with interrupts disabled
int
cpuid() {
return mycpu()-cpus;
}
// Must be called with interrupts disabled to avoid the caller being
// rescheduled between reading lapicid and running through the loop.
struct cpu*
mycpu(void)
{
int apicid, i;
if(readeflags()&FL_IF)
panic("mycpu called with interrupts enabled\n");
apicid = lapicid();
// APIC IDs are not guaranteed to be contiguous. Maybe we should have
// a reverse map, or reserve a register to store &cpus[i].
for (i = 0; i < ncpu; ++i) {
if (cpus[i].apicid == apicid)
return &cpus[i];
}
panic("unknown apicid\n");
}
// Disable interrupts so that we are not rescheduled
// while reading proc from the cpu structure
struct proc*
myproc(void) {
struct cpu *c;
struct proc *p;
pushcli();
c = mycpu();
p = c->proc;
popcli();
return p;
}
//PAGEBREAK: 32
// Look in the process table for an UNUSED proc.
// If found, change state to EMBRYO and initialize
// state required to run in the kernel.
// Otherwise return 0.
static struct proc*
allocproc(void)
{
struct proc *p;
char *sp;
acquire(&ptable.lock);
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++)
if(p->state == UNUSED)
goto found;
release(&ptable.lock);
return 0;
found:
// set vaiables
p->state = EMBRYO;
p->ctime = ticks;
p->rtime = 0;
p->pid = nextpid++;
p->sleep_time = 0;
p->last_slept=-1;
p->queue_number = 0;
p->picked_by_scheduler=0;
p->last_inserted=ticks;
p->FCFS_flag=0;
p->priority=60;
for(int i=0;i<5;i++){
p->ran_in_queue[i]=0;
p->ran_recently[i]=0;
}
// cprintf("Process:%d started at: %d\n",p->pid,p->ctime);
release(&ptable.lock);
// Allocate kernel stack.
if((p->kstack = kalloc()) == 0){
p->state = UNUSED;
return 0;
}
sp = p->kstack + KSTACKSIZE;
// Leave room for trap frame.
sp -= sizeof *p->tf;
p->tf = (struct trapframe*)sp;
// Set up new context to start executing at forkret,
// which returns to trapret.
sp -= 4;
*(uint*)sp = (uint)trapret;
sp -= sizeof *p->context;
p->context = (struct context*)sp;
memset(p->context, 0, sizeof *p->context);
p->context->eip = (uint)forkret;
return p;
}
//PAGEBREAK: 32
// Set up first user process.
void
userinit(void)
{
struct proc *p;
extern char _binary_initcode_start[], _binary_initcode_size[];
p = allocproc();
initproc = p;
if((p->pgdir = setupkvm()) == 0)
panic("userinit: out of memory?");
inituvm(p->pgdir, _binary_initcode_start, (int)_binary_initcode_size);
p->sz = PGSIZE;
memset(p->tf, 0, sizeof(*p->tf));
p->tf->cs = (SEG_UCODE << 3) | DPL_USER;
p->tf->ds = (SEG_UDATA << 3) | DPL_USER;
p->tf->es = p->tf->ds;
p->tf->ss = p->tf->ds;
p->tf->eflags = FL_IF;
p->tf->esp = PGSIZE;
p->tf->eip = 0; // beginning of initcode.S
safestrcpy(p->name, "initcode", sizeof(p->name));
p->cwd = namei("/");
// this assignment to p->state lets other cores
// run this process. the acquire forces the above
// writes to be visible, and the lock is also needed
// because the assignment might not be atomic.
acquire(&ptable.lock);
p->state = RUNNABLE;
release(&ptable.lock);
}
// Grow current process's memory by n bytes.
// Return 0 on success, -1 on failure.
int
growproc(int n)
{
uint sz;
struct proc *curproc = myproc();
sz = curproc->sz;
if(n > 0){
if((sz = allocuvm(curproc->pgdir, sz, sz + n)) == 0)
return -1;
} else if(n < 0){
if((sz = deallocuvm(curproc->pgdir, sz, sz + n)) == 0)
return -1;
}
curproc->sz = sz;
switchuvm(curproc);
return 0;
}
// Create a new process copying p as the parent.
// Sets up stack to return as if from system call.
// Caller must set state of returned proc to RUNNABLE.
int
fork(void)
{
int i, pid;
struct proc *np;
struct proc *curproc = myproc();
// Allocate process.
if((np = allocproc()) == 0){
return -1;
}
// Copy process state from proc.
if((np->pgdir = copyuvm(curproc->pgdir, curproc->sz)) == 0){
kfree(np->kstack);
np->kstack = 0;
np->state = UNUSED;
return -1;
}
np->sz = curproc->sz;
np->parent = curproc;
*np->tf = *curproc->tf;
// Clear %eax so that fork returns 0 in the child.
np->tf->eax = 0;
for(i = 0; i < NOFILE; i++)
if(curproc->ofile[i])
np->ofile[i] = filedup(curproc->ofile[i]);
np->cwd = idup(curproc->cwd);
safestrcpy(np->name, curproc->name, sizeof(curproc->name));
pid = np->pid;
acquire(&ptable.lock);
np->state = RUNNABLE;
release(&ptable.lock);
return pid;
}
// Exit the current process. Does not return.
// An exited process remains in the zombie state
// until its parent calls wait() to find out it exited.
void
exit(void)
{
struct proc *curproc = myproc();
struct proc *p;
int fd;
if(curproc == initproc)
panic("init exiting");
// Close all open files.
for(fd = 0; fd < NOFILE; fd++){
if(curproc->ofile[fd]){
fileclose(curproc->ofile[fd]);
curproc->ofile[fd] = 0;
}
}
begin_op();
iput(curproc->cwd);
end_op();
curproc->cwd = 0;
acquire(&ptable.lock);
// Parent might be sleeping in wait().
wakeup1(curproc->parent);
// Pass abandoned children to init.
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){
if(p->parent == curproc){
p->parent = initproc;
if(p->state == ZOMBIE)
wakeup1(initproc);
}
}
// Jump into the scheduler, never to return.
curproc->state = ZOMBIE;
curproc->etime = ticks;
sched();
panic("zombie exit");
}
// Wait for a child process to exit and return its pid.
// Return -1 if this process has no children.
int
wait(void)
{
struct proc *p;
int havekids, pid;
struct proc *curproc = myproc();
acquire(&ptable.lock);
for(;;){
// Scan through table looking for exited children.
havekids = 0;
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){
if(p->parent != curproc)
continue;
havekids = 1;
if(p->state == ZOMBIE){
// Found one.
pid = p->pid;
kfree(p->kstack);
p->kstack = 0;
freevm(p->pgdir);
p->pid = 0;
p->parent = 0;
p->name[0] = 0;
p->killed = 0;
p->state = UNUSED;
release(&ptable.lock);
return pid;
}
}
// No point waiting if we don't have any children.
if(!havekids || curproc->killed){
release(&ptable.lock);
return -1;
}
// Wait for children to exit. (See wakeup1 call in proc_exit.)
sleep(curproc, &ptable.lock); //DOC: wait-sleep
}
}
//PAGEBREAK: 42
// Per-CPU process scheduler.
// Each CPU calls scheduler() after setting itself up.
// Scheduler never returns. It loops, doing:
// - choose a process to run
// - swtch to start running that process
// - eventually that process transfers control
// via swtch back to the scheduler.
/////////////// Multi-level feedback
#ifdef MLFQ
void
ageing(void){
struct proc *p;
// we decide that if the time waited is more than 4times the allotted cpu cycle then it should be moved up
int index = 4;
int time_max_wait[5];
for(int i=0;i<5;i++){
time_max_wait[i] = index;
index*=2;
}
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){
if(p->state != RUNNABLE)
continue;
int time = ticks - p->last_inserted;
if(p->ran_recently[p->queue_number]==0 && p->queue_number>0){
if(time>=time_max_wait[p->queue_number]){
p->queue_number--;
}
}
}
}
void
scheduler(void)
{
struct proc *p;
struct proc *min_proc[5];
struct cpu *c = mycpu();
c->proc = 0;
for(;;){
// Enable interrupts on this processor.
sti();
int flag[5];
for(int i=0;i<5;i++){
flag[i]=0;
}
// this stores the value of the number of cpu cycles for each processor
acquire(&ptable.lock);
// we do ageing after we get the lock
ageing();
// before this we need to do updation of ran_recently and after that ageing
// we doo updation of ran_recently in yeild
// Loop over process table looking for process to run.
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){
if(p->state != RUNNABLE)
continue;
// flag =1;
int queue = p->queue_number;
if(flag[queue]==0){
min_proc[queue] = p;
flag[queue]=1;
}
else{
// select process first added to the particular queue
if(min_proc[queue]->last_inserted > p->last_inserted){
min_proc[queue]=p;
}
// if both processes were added in the same clock cycle, then choose the one with a higher ran_recently as it would be the one that was already running
else if(min_proc[queue]->last_inserted == p->last_inserted){
if(min_proc[queue]->ran_recently[queue] < p->ran_recently[queue]){
min_proc[queue]=p;
}
}
}
}
int final_flag = -1;
for(int i=0;i<5;i++){
if(flag[i]){
final_flag=i;
break;
}
}
if(final_flag!=-1){
// we check if any processes in queues below have a non zero cpu burst (i.e. they were runninig before this)
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){
if(p->state != RUNNABLE)
continue;
int queue = p->queue_number;
if(queue>final_flag){
if(p->ran_recently[queue]>0){
p->ran_recently[queue]=0;
p->last_inserted = ticks;
}
}
}
p = min_proc[final_flag];
if(p->ran_recently[p->queue_number]==0){
p->picked_by_scheduler++;
}
p->ran_recently[p->queue_number]++;
p->ran_in_queue[p->queue_number]++;
// Switch to chosen process. It is the process's job
// to release ptable.lock and then reacquire it
// before jumping back to us.
c->proc = p;
switchuvm(p);
p->state = RUNNING;
swtch(&(c->scheduler), p->context);
switchkvm();
// Process is done running for now.
// It should have changed its p->state before coming back.
c->proc = 0;
}
release(&ptable.lock);
}
}
#endif
/////////////// Multi-level feedback
/////////////// priority
int
set_priority(int new_priority, int pid){
struct proc *p;
int old_priority=-1;
if(new_priority<0 || new_priority>100 ){
return -1;
}
acquire(&ptable.lock);
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){
if(p->pid==pid){
old_priority = p->priority;
p->priority = new_priority;
}
}
release(&ptable.lock);
return old_priority;
}
#ifdef PBS
void
scheduler(void)
{
struct proc *p;
struct proc *min_proc;
struct cpu *c = mycpu();
c->proc = 0;
for(;;){
// Enable interrupts on this processor.
sti();
// Loop over process table looking for process to run.
acquire(&ptable.lock);
int index = 0;
int flag = 0;
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){
if(p->state != RUNNABLE)
continue;
flag =1;
if(index==0){
min_proc =p;
index =1;
}
if(p->priority < min_proc->priority){
min_proc = p;
}
// if(p->priority == min_proc->priority){
// if(p->ctime < min_proc->ctime){
// min_proc = p;
// }
// }
}
if(flag){
p = min_proc;
p->picked_by_scheduler++;
p->ran_in_queue[p->queue_number]++;
p->ran_recently[p->queue_number]++;
// Switch to chosen process. It is the process's job
// to release ptable.lock and then reacquire it
// before jumping back to us.
c->proc = p;
switchuvm(p);
p->state = RUNNING;
swtch(&(c->scheduler), p->context);
switchkvm();
// Process is done running for now.
// It should have changed its p->state before coming back.
c->proc = 0;
}
release(&ptable.lock);
}
}
#endif
/////////////// priority
////////// fcfs
#ifdef FCFS
void
scheduler(void)
{
struct proc *p;
struct proc *min_proc;
struct cpu *c = mycpu();
c->proc = 0;
for(;;){
// Enable interrupts on this processor.
sti();
// Loop over process table looking for process to run.
acquire(&ptable.lock);
int index = 0;
int flag = 0;
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){
if(p->state != RUNNABLE)
continue;
flag =1;
if(index==0){
min_proc =p;
index =1;
}
if(p->ctime < min_proc->ctime){
min_proc = p;
}
if(p->ctime == min_proc->ctime){
if(p->FCFS_flag==1){
min_proc = p;
}
}
}
if(flag){
p = min_proc;
if(p->FCFS_flag==0){
p->picked_by_scheduler++;
p->FCFS_flag=1;
}
p->ran_in_queue[p->queue_number]++;
p->ran_recently[p->queue_number]++;
// Switch to chosen process. It is the process's job
// to release ptable.lock and then reacquire it
// before jumping back to us.
c->proc = p;
switchuvm(p);
p->state = RUNNING;
swtch(&(c->scheduler), p->context);
switchkvm();
// Process is done running for now.
// It should have changed its p->state before coming back.
c->proc = 0;
}
release(&ptable.lock);
}
}
#endif
////////// fcfs
//////////// orginal
#ifdef RR
void
scheduler(void)
{
struct proc *p;
struct cpu *c = mycpu();
c->proc = 0;
for(;;){
// Enable interrupts on this processor.
sti();
// Loop over process table looking for process to run.
acquire(&ptable.lock);
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){
if(p->state != RUNNABLE)
continue;
// Switch to chosen process. It is the process's job
// to release ptable.lock and then reacquire it
// before jumping back to us.
c->proc = p;
p->ran_in_queue[p->queue_number]++;
p->ran_recently[p->queue_number]++;
p->picked_by_scheduler++;
switchuvm(p);
p->state = RUNNING;
swtch(&(c->scheduler), p->context);
switchkvm();
// Process is done running for now.
// It should have changed its p->state before coming back.
c->proc = 0;
}
release(&ptable.lock);
}
}
#endif
//////////// orginal
// Enter scheduler. Must hold only ptable.lock
// and have changed proc->state. Saves and restores
// intena because intena is a property of this
// kernel thread, not this CPU. It should
// be proc->intena and proc->ncli, but that would
// break in the few places where a lock is held but
// there's no process.
void
sched(void)
{
int intena;
struct proc *p = myproc();
if(!holding(&ptable.lock))
panic("sched ptable.lock");
if(mycpu()->ncli != 1)
panic("sched locks");
if(p->state == RUNNING)
panic("sched running");
if(readeflags()&FL_IF)
panic("sched interruptible");
intena = mycpu()->intena;
swtch(&p->context, mycpu()->scheduler);
mycpu()->intena = intena;
}
// Give up the CPU for one scheduling round.
void
yield(void)
{
acquire(&ptable.lock); //DOC: yieldlock
myproc()->state = RUNNABLE;
sched();
release(&ptable.lock);
}
int
update_ticks(void){
/////////////// Multi-level feedback
int index =1;
int wait[5];
for(int i=0;i<5;i++){
wait[i]=index;
index*=2;
}
/////////////// Multi-level feedback
struct proc* p;
acquire(&ptable.lock); //DOC: yieldlock
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){
if(p->state!=RUNNING){
continue;
}
p->rtime++;
/////////////// Multi-level feedback
// p->ran_recently[p->queue_number]++;
if(p->ran_recently[p->queue_number] >= wait[p->queue_number]){
// set it to zero, and then update last_inserted to say that it has been newly inserted
p->ran_recently[p->queue_number]=0;
#ifdef MLFQ
if(p->queue_number<4){
p->queue_number++;
}
#endif
p->ran_recently[p->queue_number]=0;
p->last_inserted = ticks;
}
/////////////// Multi-level feedback
}
release(&ptable.lock);
return 0;
}
// A fork child's very first scheduling by scheduler()
// will swtch here. "Return" to user space.
void
forkret(void)
{
static int first = 1;
// Still holding ptable.lock from scheduler.
release(&ptable.lock);
if (first) {
// Some initialization functions must be run in the context
// of a regular process (e.g., they call sleep), and thus cannot
// be run from main().
first = 0;
iinit(ROOTDEV);
initlog(ROOTDEV);
}
// Return to "caller", actually trapret (see allocproc).
}
// Atomically release lock and sleep on chan.
// Reacquires lock when awakened.
void
sleep(void *chan, struct spinlock *lk)
{
struct proc *p = myproc();
if(p == 0)
panic("sleep");
if(lk == 0)
panic("sleep without lk");
// Must acquire ptable.lock in order to
// change p->state and then call sched.
// Once we hold ptable.lock, we can be
// guaranteed that we won't miss any wakeup
// (wakeup runs with ptable.lock locked),
// so it's okay to release lk.
if(lk != &ptable.lock){ //DOC: sleeplock0
acquire(&ptable.lock); //DOC: sleeplock1
release(lk);
}
// Go to sleep.
p->chan = chan;
p->state = SLEEPING;
p->last_slept = ticks;
p->FCFS_flag=0;
sched();
// Tidy up.
p->chan = 0;
// Reacquire original lock.
if(lk != &ptable.lock){ //DOC: sleeplock2
release(&ptable.lock);
acquire(lk);
}
}
//PAGEBREAK!
// Wake up all processes sleeping on chan.
// The ptable lock must be held.
static void
wakeup1(void *chan)
{
struct proc *p;
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++)
if(p->state == SLEEPING && p->chan == chan){
p->state = RUNNABLE;
p->sleep_time += ticks - p->last_slept;
// set it to zero, and then update last_inserted to say that it has been newly inserted
/////////////// Multi-level feedback
p->ran_recently[p->queue_number]=0;
p->last_inserted = ticks;
/////////////// Multi-level feedback
}
}
// Wake up all processes sleeping on chan.
void
wakeup(void *chan)
{
acquire(&ptable.lock);
wakeup1(chan);
release(&ptable.lock);
}
// Kill the process with the given pid.
// Process won't exit until it returns
// to user space (see trap in trap.c).
int
kill(int pid)
{
struct proc *p;
acquire(&ptable.lock);
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){
if(p->pid == pid){
p->killed = 1;
// Wake process from sleep if necessary.
if(p->state == SLEEPING)
p->state = RUNNABLE;
release(&ptable.lock);
return 0;
}
}
release(&ptable.lock);
return -1;
}
//PAGEBREAK: 36
// Print a process listing to console. For debugging.
// Runs when user types ^P on console.
// No lock to avoid wedging a stuck machine further.
void
procdump(void)
{
static char *states[] = {
[UNUSED] "unused",
[EMBRYO] "embryo",
[SLEEPING] "sleep ",
[RUNNABLE] "runble",
[RUNNING] "run ",
[ZOMBIE] "zombie"
};
int i;
struct proc *p;
char *state;
uint pc[10];
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){
if(p->state == UNUSED)
continue;
if(p->state >= 0 && p->state < NELEM(states) && states[p->state])
state = states[p->state];
else
state = "???";
cprintf("%d %s %s", p->pid, state, p->name);
if(p->state == SLEEPING){
getcallerpcs((uint*)p->context->ebp+2, pc);
for(i=0; i<10 && pc[i] != 0; i++)
cprintf(" %p", pc[i]);
}
cprintf("\n");
}
}