Skip to content

Latest commit

 

History

History
193 lines (166 loc) · 6.91 KB

NEWS.md

File metadata and controls

193 lines (166 loc) · 6.91 KB

News for Mocha Development

v0.1.3 2016.12.16

  • Infrastructure
    • Fix compatibility issues

v0.1.2 2016.03.23

  • Infrastructure
    • Fix compatability with Julia v0.5
    • Fix compatability with cuDNN v4
  • Network
    • Faster neurons (@uschmidt83)

v0.1.1 2016.02.29

  • Infrastructure
    • Fix compatability with Julia v0.5 nightly
    • Fix blasfunc compatibility (@elehcim)
    • Improved computation performance for neurons on CPU backend (@uschmidt83)

v0.1.0 2015.10.10

To celebrate the release of Julia v0.4 and increased involvement from the community of the development of Mocha.jl, we decided to have a v0.1.0 release.

  • Infrastructure
    • Backward compatibility with Julia v0.3, and Julia v0.4 compatability
    • Solver refactoring (@benmoran, @CarloLucibello)
    • Adam Solver (@benmoran)
    • Improved compatibility on Windows (@droidicus)
  • Network
    • Leaky ReLU (@stjanovitz)
    • Shuffling support for memory-data layer
    • DecayOnValidation now support square-loss like criterions
    • Variational Auto-Encoder and related layers: RandomNormal, BinaryCrossEntropyLossLayer, GaussianKLLoss, and Exponential neuron type (@benmoran)
    • SVM related layers: HingeLossLayer and BinaryAccuracyLayer (@nstiurca)
    • OrthogonalInitializer (@benmoran)
  • Documentation
    • Various typos and improvements from the community
    • MNIST Variational Auto-Encoder example (@benmoran)

v0.0.9 2015.07.20

  • Infrastructure
    • Add JLD.jl in REQUIREMENT as it becomes an independent package
    • Fix a Julia v0.4-dev compatability
  • Interface
    • GraphViz visualization for network architecture

v0.0.8 2015.05.27

  • Interface
    • Option to display other information for training summary (@bisraelsen)
  • Infrastructure
    • Improved gradient check (@steven-varga)
    • Fix temp file issue for unit-test on Windows
    • Fix XavierInitializer scale (@adambrewster)
    • Option to specify GPU device
  • Network
    • Index2Onehot layer, MemoryOutputLayer
    • SoftmaxLayer now can do backward

v0.0.7 2015.02.27

  • Infrastructure
    • Boltzmann.jl now supports DBN pre-training for Mocha.jl
    • Clearer Nesterov solver (@the-moliver)
    • Staged momentum policy
    • Learning rate policy to decay dynamically based on performance on validation set
  • Network
    • Async HDF5 data layer: faster and with chunking to support fast data shuffling
    • Softlabel-softmax-loss layer allows training with posterior (instead of hard labels) as labels
    • Weight loss layers to combine multiple loss functions in one network
    • Square loss layer is now capable of propagating gradients to both sides

v0.0.6 2014.12.31

  • Infrastructure
    • Numerical gradient checking in unit-tests (@pcmoritz)
    • Simple ref-counting for shared parameters
  • Network
    • RandomMaskLayer, TiedInnerProductLayer, IdentityLayer
    • Freezing / unfreezing some layers of a network to allow layer-wise pre-training
  • Documentation
    • A new tutorial on MNIST that compares unsupervised pre-training via stacked denoising auto-encoders and random initialization

v0.0.5 2014.12.20

  • Infrastructure
    • {Breaking Changes} cuDNN 6.5 R2 (Release Candidate) (@JobJob)
      • cuDNN 6.5 R2 is NOT backward compatible with 6.5 R1
      • Forward convolution speed up
      • Pooling with padding is supported
      • Mac OS X is supported
    • 4D-tensor -> ND-tensor
      • Mocha is now capable of handling general ND-tensor
      • Except that (for now) ConvolutionLayer and PoolingLayer still requires the inputs to be 4D
      • The generalization is almost backward compatible, except
        • The interface for ReshapeLayer changed b/c the target shape needs to be ND, instead of 4D now
        • Parameters added for some layers to allow the user to specify which dimension to operate on
        • The output of InnerProductLayer is now 2D-tensor instead of 4D
      • Unit-tests are expanded to cover test cases for ND-tensor when applicable
  • Interface
    • print a constructed Net to get a brief overview of the geometry of input/output blobs in each layers
  • Documentation
    • Setup the Roadmap Ticket, duscussions/suggestions are welcome
    • Update everything to reflect 4D -> ND tensor changes
    • Document for parameter norm constraints
    • Developer's Guide for blob and layer API

v0.0.4 2014.12.09

  • Network
    • Parameter (l2-norm) constraints (@stokasto)
    • Random shuffling for HDF5 data layer
    • ConcatLayer
  • Infrastructure
    • Momentum policy (@stokasto)
    • Save training statistics to file and plot tools (@stokasto)
    • Coffee breaks now have a coffee lounge
    • Auto detect whether CUDA kernel needs update
    • Stochastic Nesterov Accelerated Gradient Solver
    • Solver refactoring:
      • Behaviors for coffee breaks are simplified
      • Solver state variables like iteration now has clearer semantics
      • Support loading external pre-trained models for fine-tuning
    • Support explicit weight-sharing layers
    • Behaviors of layers taking multiple inputs made clear and unit-tested
    • Refactoring:
      • Removed the confusing System type
      • CuDNNBackend renamed to GPUBackend
      • Cleaned up cuBLAS API (@stokasto)
    • Layers are now organized by characterization properties
    • Robustness
      • Various explicit topology verifiecations for Net and unit tests
      • Increased unit test coverage for rare cases
    • Updated dependency to HDF5.jl 0.4.7
  • Documentation
    • A new MNIST example using fully connected and dropout layers (@stokasto)
    • Reproducible MNIST results with fixed random seed (@stokasto)
    • Tweaked IJulia Notebook image classification example
    • Document for solvers and coffee breaks

v0.0.3 2014.11.27

  • Interface
    • IJulia-notebook example
    • Image classifier wrapper
  • Network
    • Data transformers for data layers
    • Argmax, Crop, Reshape, HDF5 Output, Weighted Softmax-loss Layers
  • Infrastructure
    • Unit tests are extended to cover all layers in both Float32 and Float64
    • Compatibility with Julia v0.3.3 and v0.4 nightly build
  • Documentation
    • Complete User's Guide
    • Tutorial on image classification with pre-trained imagenet model

v0.0.2 2014.11.20

  • Infrastructure
    • Ability to import caffe trained model
    • Properly release all the allocated resources upon backend shutdown
  • Network
    • Sigmoid activation function
    • Power, Split, Element-wise layers
    • Local Response Normalization layer
    • Channel Pooling layer
    • Dropout Layer
  • Documentation
    • Complete MNIST demo
    • Complete CIFAR-10 demo
    • Major part of User's Guide

v0.0.1 2014.11.13

  • Backend
    • Pure Julia CPU
    • Julia + C++ Extension CPU
    • CUDA + cuDNN GPU
  • Infrastructure
    • Evaluate on validation set during training
    • Automaticly saving and recovering from snapshots
  • Network
    • Convolution layer, mean and max pooling layer, fully connected layer, softmax loss layer
    • ReLU activation function
    • L2 Regularization
  • Solver
    • SGD with momentum
  • Documentation
    • Demo code of LeNet on MNIST
    • Tutorial document on the MNIST demo (half finished)