-
-
Notifications
You must be signed in to change notification settings - Fork 293
/
Copy pathtest_inference.py
617 lines (470 loc) · 23.1 KB
/
test_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
from exllamav2 import(
ExLlamaV2,
ExLlamaV2Config,
ExLlamaV2Cache,
ExLlamaV2Cache_8bit,
ExLlamaV2Cache_Q4,
ExLlamaV2Cache_Q6,
ExLlamaV2Cache_Q8,
ExLlamaV2Cache_TP,
ExLlamaV2Tokenizer,
model_init,
)
from exllamav2.generator import (
ExLlamaV2BaseGenerator,
ExLlamaV2Sampler
)
from exllamav2.attn import ExLlamaV2Attention
from exllamav2.mlp import ExLlamaV2MLP
from exllamav2.moe_mlp import ExLlamaV2MoEMLP
from exllamav2.parallel_decoder import ExLlamaV2ParallelDecoder
import argparse, os, math, time
import torch
import torch.nn.functional as F
from exllamav2.conversion.tokenize import get_tokens
from exllamav2.conversion.quantize import list_live_tensors
import gc
# from exllamav2.mlp import set_catch
import sys
import json
torch.cuda._lazy_init()
torch.set_printoptions(precision = 5, sci_mode = False, linewidth = 150)
# torch.backends.cuda.matmul.allow_tf32 = True
# torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = True
# torch.set_float32_matmul_precision("medium")
# (!!!) NOTE: These go on top of the engine arguments that can be found in `model_init.py` (!!!)
parser = argparse.ArgumentParser(description = "Test inference on ExLlamaV2 model")
parser.add_argument("-ed", "--eval_dataset", type = str, help = "Perplexity evaluation dataset (.parquet file)")
parser.add_argument("-er", "--eval_rows", type = int, default = 128, help = "Number of rows to apply from dataset")
parser.add_argument("-el", "--eval_length", type = int, default = 2048, help = "Max no. tokens per sample")
parser.add_argument("-et", "--eval_token", action = "store_true", help = "Evaluate perplexity on token-by-token inference using cache")
parser.add_argument("-e8", "--eval_token_8bit", action = "store_true", help = "Evaluate perplexity on token-by-token inference using 8-bit (FP8) cache")
parser.add_argument("-eq4", "--eval_token_q4", action = "store_true", help = "Evaluate perplexity on token-by-token inference using Q4 cache")
parser.add_argument("-eq6", "--eval_token_q6", action = "store_true", help = "Evaluate perplexity on token-by-token inference using Q6 cache")
parser.add_argument("-eq8", "--eval_token_q8", action = "store_true", help = "Evaluate perplexity on token-by-token inference using Q8 cache")
parser.add_argument("-ecl", "--eval_context_lens", action = "store_true", help = "Evaluate perplexity at range of context lengths")
# parser.add_argument("-eb", "--eval_bos", action = "store_true", help = "Add BOS token to every row in perplexity test (required by Gemma and maybe other models.)")
parser.add_argument("-p", "--prompt", type = str, help = "Generate from prompt (basic sampling settings)")
parser.add_argument("-pnb", "--prompt_no_bos", action = "store_true", help = "Don't add BOS token to prompt")
parser.add_argument("-t", "--tokens", type = int, default = 128, help = "Max no. tokens")
parser.add_argument("-ps", "--prompt_speed", action = "store_true", help = "Test prompt processing (batch) speed over context length")
parser.add_argument("-s", "--speed", action = "store_true", help = "Test raw generation speed over context length")
parser.add_argument("-mix", "--mix_layers", type = str, help = "Load replacement layers from secondary model. Example: --mix_layers 1,6-7:/mnt/models/other_model")
parser.add_argument("-nwu", "--no_warmup", action = "store_true", help = "Skip warmup before testing model")
parser.add_argument("-sl", "--stream_layers", action = "store_true", help = "Load model layer by layer (perplexity evaluation only)")
parser.add_argument("-sp", "--standard_perplexity", choices = ["wiki2"], help = "Run standard (HF) perplexity test, stride 512 (experimental)")
parser.add_argument("-rr", "--rank_reduce", type = str, help = "Rank-reduction for MLP layers of model, in reverse order (for experimentation)")
parser.add_argument("-mol", "--max_output_len", type = int, help = "Set max output chunk size (incompatible with ppl tests)")
# Initialize model and tokenizer
model_init.add_args(parser)
args = parser.parse_args()
# Check conflicting settings
if args.stream_layers:
if args.eval_token or args.eval_token_8bit or args.eval_token_q4 or args.eval_token_q6 or args.eval_token_q8:
print(" ## Can't test token ppl while streaming layers")
sys.exit()
if args.prompt:
print(" ## Can't generate while streaming layers")
sys.exit()
if args.speed or args.prompt_speed:
print(" ## Can't test speed while streaming layers")
sys.exit()
if args.gpu_split:
print(" ## Can only use one GPU when streaming layers")
sys.exit()
if args.eval_context_lens and args.stream_layers:
print(" ## eval_context_lens not compatible with stream_layers")
sys.exit()
if args.eval_dataset:
if args.length and args.eval_length != args.length:
print(" !! Overriding model context length to match eval row length")
args.length = args.eval_length
# Init
model_init.check_args(args)
model_init.print_options(args)
model, tokenizer = model_init.init(
args,
allow_auto_split = True,
skip_load = args.stream_layers,
benchmark = True,
max_output_len = args.max_output_len,
progress = True
)
cache = None
# Auto split
if not model.loaded and not args.stream_layers:
if args.mix_layers:
print(" !! Warning, auto split does not account for VRAM requirement of replacement layers")
print(" -- Loading model...")
cache = ExLlamaV2Cache(model, lazy = True)
t = time.time()
model.load_autosplit(cache, progress = True)
t = time.time() - t
print(f" -- Loaded model in {t:.4f} seconds")
if args.stream_layers:
stream_batch_size = 2
model.config.max_batch_size = stream_batch_size
model.load(lazy = True)
# Rank reduction
if args.rank_reduce:
if args.stream_layers:
print(" ## --rank_reduce can not be combined with --stream_layers")
sys.exit()
rr = args.rank_reduce.split(",")
idx = len(model.modules) - 1
for r in rr:
k = float(r)
while True:
idx -= 1
module = model.modules[idx]
if isinstance(module, ExLlamaV2ParallelDecoder): break
if isinstance(module, ExLlamaV2MLP): break
if isinstance(module, ExLlamaV2MoEMLP): break
if idx < 0:
print(" ## Not enough layers")
sys.exit()
print(f" -- Reducing {module.key} ({module.name}) to {k * 100:.2f}%")
module.rank_reduce(k)
# Replacement
if args.mix_layers:
intervals_, extra_dir = args.mix_layers.split(":")
print(f" -- Loading replacement layers from: {extra_dir}")
extra_config = ExLlamaV2Config()
extra_config.model_dir = extra_dir
extra_config.prepare()
intervals = intervals_.split(",")
for interval in intervals:
ab = interval.split("-")
a, b = int(ab[0]), int(ab[-1])
for idx in range(a, b + 1):
print(f" -- Layer {idx}...")
layerkey = "model.layers." + str(idx) + "."
remove = [k for k in model.config.tensor_file_map.keys() if k.startswith(layerkey)]
replace = [k for k in extra_config.tensor_file_map.keys() if k.startswith(layerkey)]
# reload = [k for k in model.modules_dict.keys() if k.startswith(layerkey)]
for k in remove: del model.config.tensor_file_map[k]
for k in replace: model.config.tensor_file_map[k] = extra_config.tensor_file_map[k]
# for k in reload:
# model.modules_dict[k].unload()
# model.modules_dict[k].load()
if not args.stream_layers:
model.modules[idx * 2 + 1].reload()
model.modules[idx * 2 + 2].reload()
# Test generation
if args.prompt:
with torch.inference_mode():
if cache is None:
cache = ExLlamaV2Cache(model) if not model.tp_context else ExLlamaV2Cache_TP(model)
ids = tokenizer.encode(args.prompt)
tokens_prompt = ids.shape[-1]
print(f" -- Warmup...")
generator = ExLlamaV2BaseGenerator(model, cache, tokenizer)
if not args.no_warmup: generator.warmup()
print(f" -- Generating...")
print()
settings = ExLlamaV2Sampler.Settings()
settings.temperature = 1.0
settings.top_k = 0
settings.top_p = 0.8
settings.token_repetition_penalty = 1.02
settings.disallow_tokens(tokenizer, [tokenizer.eos_token_id])
time_begin = time.time()
output = generator.generate_simple(args.prompt, settings, args.tokens, token_healing = True, add_bos = not args.prompt_no_bos)
torch.cuda.synchronize()
time_prompt = time.time()
time_end = time.time()
print(output)
print()
total_gen = time_end - time_begin
print(f" -- Response generated in {total_gen:.2f} seconds, {args.tokens} tokens, {args.tokens / total_gen:.2f} tokens/second (includes prompt eval.)")
# Test perplexity
if args.eval_dataset or args.standard_perplexity:
with torch.inference_mode():
print(f" -- Running perplexity test")
if args.standard_perplexity:
eval_length = args.eval_length
if args.eval_dataset:
print(f" !! Note, overriding specified --eval_dataset with {args.standard_perplexity}")
from datasets import load_dataset
if args.standard_perplexity == "wiki2":
ds = "wikitext"
part = "wikitext-2-raw-v1"
split = "test"
# if args.standard_perplexity == "c4":
# ds = "allenai/c4"
# part = "allenai--c4"
# split = "train"
print(f" -- Loading dataset {ds}, {part}, {split}...")
test = load_dataset(ds, part, split = split)
print(f" -- Tokenizing samples...")
text = "\n\n".join(test["text"])
eval_tokens = tokenizer.encode(text)
stride = 512
seqs = []
eval_len = []
a = 0
while True:
b = a + model.config.max_seq_len
if b > eval_tokens.shape[-1]: break
seqs.append(eval_tokens[:, a:b])
eval_len.append(b if a == 0 else stride)
a += stride
eval_tokens = torch.cat(seqs, dim = 0)
else:
eval_dataset = args.eval_dataset
eval_rows = args.eval_rows
eval_length = args.eval_length
print(f" -- Dataset: {eval_dataset}")
print(f" -- Tokenizing eval data, {eval_rows} rows x {eval_length} tokens...")
eval_tokens = get_tokens(eval_rows, eval_length, eval_dataset, tokenizer)
eval_len = [eval_tokens.shape[1]] * eval_tokens.shape[0]
# if args.eval_bos:
if model.config.arch.lm.requires_bos:
boss = torch.full((eval_tokens.shape[0], 1), tokenizer.bos_token_id, dtype = torch.long)
eval_tokens = torch.cat((boss, eval_tokens[:, :-1]), dim = 1)
if args.eval_context_lens:
logprob_sum = []
logprob_count = []
else:
logprob_sum = 0.0
logprob_count = 0
def ppl(input_ids__, logits__, lengths__, bins = False):
logits_device = model.modules[-1].device() if not model.tp_context else \
torch.device(model.tp_context.device)
if bins:
num_bins = (max(lengths__) + 255) // 256
logprob_sum_ = [0.0] * num_bins
logprob_count_ = [0] * num_bins
else:
logprob_sum_ = 0.0
logprob_count_ = 0
assert logits__.shape[0] == input_ids__.shape[0]
ll = logits__.shape[1]
for bi in range(logits__.shape[0]):
cl = max(ll - lengths__[bi], 0)
logits_ = logits__[bi:bi+1, cl:, :]
input_ids_ = input_ids__[bi:bi+1, cl:]
if bins:
chunksize = 256
else:
chunksize = logits_.shape[1] * 4000 // logits_.shape[2] + 1
b_ = 0
while b_ < logits_.shape[1]:
a_ = b_
b_ = min(b_ + chunksize, logits_.shape[1])
logits_f = logits_[:, a_:b_, :].to(logits_device).float() + 1e-10
target_ids = input_ids_[:, a_ + 1:b_ + 1].to(logits_f.device)
log_probs = F.log_softmax(logits_f, dim=-1)
token_log_probs = log_probs.gather(-1, target_ids.unsqueeze(-1)).squeeze(-1)
if bins:
# for cbin in range(a_ // 256 + 1):
cbin = a_ // 256
logprob_sum_[cbin] += token_log_probs.sum().item()
logprob_count_[cbin] += target_ids.numel()
else:
logprob_sum_ += token_log_probs.sum().item()
logprob_count_ += target_ids.numel()
return logprob_sum_, logprob_count_
if args.stream_layers:
print(f" -- Inference (streamed)", end = "")
sys.stdout.flush()
batch_size, seq_len = eval_tokens.shape
attn_params = ExLlamaV2Attention.Params(stream_batch_size, seq_len, 0, None, None)
# attn_mask = model.build_attn_mask(stream_batch_size, seq_len, 0, None, "cuda:0")
for idx, module in enumerate(model.modules):
module.set_device_idx(-1 if idx == 0 else 0)
model.modules[0].load()
hidden_state = model.modules[0].forward(eval_tokens)
model.modules[0].unload()
for idx, module in enumerate(model.modules):
if idx == 0: continue
print(".", end = "")
sys.stdout.flush()
module.load()
b = 0
while b < eval_tokens.shape[0]:
a = b
b = min(b + stream_batch_size, eval_tokens.shape[0])
x = hidden_state[a:b, :, :].to("cuda:0")
x = module.forward(x, cache = None, attn_params = attn_params, past_len = 0, loras = None)
if idx < len(model.modules) - 1:
hidden_state[a:b, :, :] = x.to("cpu")
else:
input_ids = eval_tokens[a:b, :]
logits = x[:, :-1, :]
# if model.config.logit_scale != 1:
# logits.mul_(model.config.logit_scale)
logprob_sum__, logprob_count__ = ppl(input_ids, logits, eval_len[a:b])
logprob_sum += logprob_sum__
logprob_count += logprob_count__
module.unload()
print()
else:
print(f" -- Inference", end = "")
sys.stdout.flush()
if cache is None:
if eval_length > model.config.max_input_len:
cache = ExLlamaV2Cache(model, max_seq_len = eval_length) if not model.tp_context else ExLlamaV2Cache_TP(model, max_seq_len = eval_length)
else:
cache = None
for i in range(eval_tokens.shape[0]):
if i % 10 == 0: print(".", end = "")
sys.stdout.flush()
input_ids = eval_tokens[i:i+1, :]
input_ids = input_ids[:, :]
if cache is not None: cache.current_seq_len = 0
logits = model.forward(input_ids, cache, cpu_logits = input_ids.numel() > 2048)
logits = logits[:, :-1, :]
logprob_sum__, logprob_count__ = ppl(input_ids, logits, eval_len[i:i+1], args.eval_context_lens)
if args.eval_context_lens:
while len(logprob_sum) < len(logprob_sum__):
logprob_sum.append(0.0)
logprob_count.append(0)
for j in range(len(logprob_sum__)):
logprob_sum[j] += logprob_sum__[j]
logprob_count[j] += logprob_count__[j]
else:
logprob_sum += logprob_sum__
logprob_count += logprob_count__
if not args.eval_context_lens:
print()
mean_log_prob = logprob_sum / logprob_count
perplexity = math.exp(-mean_log_prob)
print(f" -- Evaluation perplexity: {perplexity:.4f}")
else:
print()
for j in range(len(logprob_sum__)):
mean_log_prob = logprob_sum[j] / logprob_count[j]
perplexity = math.exp(-mean_log_prob)
dl = min((j + 1) * 256, eval_length)
print(f" -- Evaluation perplexity: {dl} {perplexity:.4f}")
def test_ppl_token():
global logprob_sum, logprob_count, i, input_ids
global logits, target_ids, log_probs, token_log_probs
global mean_log_prob, perplexity
# set_catch("model.layers.3")
logprob_sum = 0
logprob_count = 0
for i in range(eval_tokens.shape[0]):
cache.current_seq_len = 0
for j in range(eval_tokens.shape[1] - 1):
if j % 256 == 0: print(".", end = "")
sys.stdout.flush()
input_ids = eval_tokens[i:i + 1, j:j + 1]
logits = model.forward(input_ids, cache)
logits = logits.float() + 1e-10
log_probs = F.log_softmax(logits, dim = -1)
logprob_sum += log_probs[0, 0, eval_tokens[i, j+1]]
logprob_count += 1
# mean_log_prob = logprob_sum / logprob_count
# perplexity = math.exp(-mean_log_prob)
# print(f" -- Token {j}: {perplexity:.4f}")
print()
mean_log_prob = logprob_sum / logprob_count
perplexity = math.exp(-mean_log_prob)
print(f" -- Evaluation perplexity: {perplexity:.4f}")
if args.eval_token:
if args.standard_perplexity:
print(f" !! Note, can't evalutate token perplexity on standard test")
else:
print(f" -- Inference (token)", end = "")
sys.stdout.flush()
cache = ExLlamaV2Cache(model, max_seq_len = eval_length) if not model.tp_context else \
ExLlamaV2Cache_TP(model, max_seq_len = eval_length)
test_ppl_token()
if args.eval_token_8bit:
if args.standard_perplexity:
print(f" !! Note, can't evalutate token perplexity on standard test")
else:
print(f" -- Inference (token, 8-bit cache)", end = "")
sys.stdout.flush()
cache = ExLlamaV2Cache_8bit(model, max_seq_len = eval_length) if not model.tp_context else \
ExLlamaV2Cache_TP(model, max_seq_len = eval_length, base = ExLlamaV2Cache_8bit)
test_ppl_token()
if args.eval_token_q4:
if args.standard_perplexity:
print(f" !! Note, can't evalutate token perplexity on standard test")
else:
print(f" -- Inference (token, Q4 cache)", end = "")
sys.stdout.flush()
cache = ExLlamaV2Cache_Q4(model, max_seq_len = eval_length) if not model.tp_context else \
ExLlamaV2Cache_TP(model, max_seq_len = eval_length, base = ExLlamaV2Cache_Q4)
# cache.calibrate(tokenizer)
test_ppl_token()
if args.eval_token_q6:
if args.standard_perplexity:
print(f" !! Note, can't evalutate token perplexity on standard test")
else:
print(f" -- Inference (token, Q6 cache)", end = "")
sys.stdout.flush()
cache = ExLlamaV2Cache_Q6(model, max_seq_len = eval_length) if not model.tp_context else \
ExLlamaV2Cache_TP(model, max_seq_len = eval_length, base = ExLlamaV2Cache_Q6)
# cache.calibrate(tokenizer)
test_ppl_token()
if args.eval_token_q8:
if args.standard_perplexity:
print(f" !! Note, can't evalutate token perplexity on standard test")
else:
print(f" -- Inference (token, Q8 cache)", end = "")
sys.stdout.flush()
cache = ExLlamaV2Cache_Q8(model, max_seq_len = eval_length) if not model.tp_context else \
ExLlamaV2Cache_TP(model, max_seq_len = eval_length, base = ExLlamaV2Cache_Q8)
# cache.calibrate(tokenizer)
test_ppl_token()
# Test prompt speed
if args.prompt_speed:
with torch.inference_mode():
if cache is None:
cache = ExLlamaV2Cache(model) if not model.tp_context else ExLlamaV2Cache_TP(model)
ids = torch.randint(0, model.config.vocab_size - 1, (1, model.config.max_seq_len))
print(f" -- Warmup...")
if not args.no_warmup:
model.forward(ids[:, -1:])
print(f" -- Measuring prompt speed...")
torch.cuda.synchronize()
current_len = 128
step = 128
prompt_iters = 3
while True:
total_time = 0
for i in range(prompt_iters):
torch.cuda.synchronize()
time_begin = time.time()
cache.current_seq_len = 0
model.forward(ids[:, :current_len], cache, preprocess_only = True)
torch.cuda.synchronize()
time_end = time.time()
total_time += time_end - time_begin
tps = current_len / (total_time / prompt_iters)
print(f" ** Length {current_len:>5} tokens: {tps:>11.4f} t/s")
if current_len >= 1024: step = 1024
if current_len >= 4096: step = 4096
if current_len >= 16384: step = 8192
current_len_ = current_len
current_len = min(current_len + step, model.config.max_seq_len)
if current_len == current_len_: break
# Test token speed
if args.speed:
with torch.inference_mode():
if cache is None:
cache = ExLlamaV2Cache(model) if not model.tp_context else ExLlamaV2Cache_TP(model)
cache.current_seq_len = 0
print(f" -- Measuring token speed...")
ids = tokenizer.encode("X")
model.forward(ids[:, :])
current_idx = ids.shape[-1]
next_stop = 128
while True:
time_begin = time.time()
tokens = next_stop - current_idx
for i in range(tokens):
logits = model.forward(ids[:, -1:], cache)
sample = torch.argmax(logits[0, -1]).cpu().unsqueeze(0).unsqueeze(0)
sample.clamp_(0, tokenizer.get_vocab_size() - 1)
ids = torch.cat((ids, sample), dim=-1)
time_end = time.time()
tps = tokens / (time_end - time_begin)
print(f" ** Position {current_idx:>5} + {tokens:>3} tokens: {tps:>9.4f} t/s")
current_idx = next_stop
next_stop = min(next_stop + 128, model.config.max_seq_len)
if next_stop == current_idx: break