-
Notifications
You must be signed in to change notification settings - Fork 1
/
test_swag.py
219 lines (182 loc) · 8.33 KB
/
test_swag.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import argparse
from os import listdir
from os.path import join as pjoin, isdir, exists
import torch
import torch.nn.functional as nnf
from dca.swag import SWAG
from dca.utils import coro_timer, mkdirp
from dca.models32 import loadmodel
from dca.calibration import bins2diagram
from dca.trainutils import coro_log, do_epoch, do_evalbatch, \
check_cuda, deteministic_run, SummaryWriter, bn_update
from dca.dataloaders import SVHNInfo, get_svhn_train_loaders, \
get_svhn_test_loader
from utils import get_outputsaver, summarize_csv
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('traindir', type=str,
help='path that collects all trained runs.')
parser.add_argument('-j', '--workers', default=1, type=int, metavar='N',
help='number of data loading workers')
parser.add_argument('-b', '--batch', default=128, type=int,
metavar='N', help='test mini-batch size')
parser.add_argument('-sp', '--tvsplit', default=0.9, type=float,
metavar='RATIO',
help='ratio of data used for training')
parser.add_argument('-pf', '--printfreq', default=10, type=int,
metavar='N', help='print frequency')
parser.add_argument('-d', '--device', default='cpu', type=str,
metavar='DEV', help='run on cpu/cuda')
parser.add_argument('-s', '--seed', type=int, default=0,
help='fixes seed for reproducibility')
parser.add_argument('-sd', '--save_dir',
help='The directory used to save test results',
default='save_temp', type=str)
parser.add_argument('-so', '--saveoutput', action='store_true',
help='save output probability')
parser.add_argument('-dd', '--data_dir',
help='The directory to find/store dataset',
default='../data', type=str)
parser.add_argument('-nb', '--bins', default=20, type=int,
help='number of bins for ece & reliability diagram')
parser.add_argument('-pd', '--plotdiagram', action='store_true',
help='plot reliability diagram for best val')
parser.add_argument('-tbd', '--tensorboard_dir', default='', type=str,
help='if specified, record data for tensorboard.')
parser.add_argument('-sms', '--swag_modelsamples', type=int, default=64,
help='number of swag model samples')
parser.add_argument('-ssm', '--swag_samplemode', default='modelwise',
choices=SWAG.sample_mode,
help=f'specify at which level sampling will happen')
parser.add_argument('-srr', '--swag_reducerank', type=int,
help='if specified, limit rank of off-diagonal part')
parser.add_argument('-srs', '--swag_reducestep', type=int, default=1,
help='if reduce rank, step size for thinning')
parser.add_argument('-sbu', '--swag_bnupdate', action='store_true',
help='update BatchNorm for averaged model')
return parser.parse_args()
def do_swagevalbatch(batchinput, models):
inputs, gt = batchinput[:-1], batchinput[-1]
cumloss = 0.0
cumprob = torch.zeros([])
nmodel = len(models)
for model in models:
output = model(*inputs)
loss = nnf.nll_loss(nnf.log_softmax(output, 1), gt) / nmodel
cumloss += loss.item()
cumprob = cumprob + nnf.softmax(output, 1) / nmodel
return cumprob, gt, cumloss
if __name__ == '__main__':
timer = coro_timer()
t_init = next(timer)
print(f'>>> Test initiated at {t_init.isoformat()} <<<\n')
args = get_args()
print(args, end='\n\n')
# if seed is specified, run deterministically
if args.seed is not None:
deteministic_run(seed=args.seed)
# get device for this experiment
device = torch.device(args.device)
if device != torch.device('cpu'):
check_cuda()
# build train_dir for this experiment
mkdirp(args.save_dir)
# prep tensorboard if specified
if args.tensorboard_dir:
mkdirp(args.tensorboard_dir)
sw = SummaryWriter(args.tensorboard_dir)
else:
sw = None
# distinguish between runs on validation data and test data
ndata = SVHNInfo.counts['test']
log_ece = coro_log(sw, args.printfreq, args.bins, args.save_dir)
prefix = ''
bnupd_loader, _ = get_svhn_train_loaders(
args.data_dir, args.tvsplit, args.workers,
(device != torch.device('cpu')), args.batch, args.batch)
test_loader = get_svhn_test_loader(
args.data_dir, args.workers, (device != torch.device('cpu')),
args.batch)
# iterate over all trained runs, assume model name best_model.pt
for runfolder in sorted([d for d in listdir(args.traindir)
if isdir(pjoin(args.traindir, d))]):
model_path = pjoin(args.traindir, runfolder, 'best_model.pt')
if not exists(model_path):
print(f'skipping {pjoin(args.traindir, runfolder)}\n')
continue
print(f'loading model from {model_path} ...\n')
# resume model
swagmodel, dic = loadmodel(model_path, device)
if args.swag_reducerank is not None:
swagmodel.reduce_rank(args.swag_reducerank, args.swag_reducestep)
outclass = dic['modelargs'][0]
print(f'>>> Test starts at {next(timer)[0].isoformat()} <<<\n')
# do SWAG sampled model evaluation
prefix = 'test'
if args.saveoutput:
outputsaver = get_outputsaver(
args.save_dir, ndata, outclass,
f'predictions_{prefix}_{runfolder}.npy')
else:
outputsaver = None
log_ece.send((runfolder, prefix, len(test_loader), outputsaver))
with torch.no_grad():
# sample models from swag
sampledmodels = [swagmodel.sampled_model(mode=args.swag_samplemode)
for _ in range(args.swag_modelsamples)]
# prepare them for evaluation
for i, model in enumerate(sampledmodels):
if args.swag_bnupdate:
print(f'updating BatchNorm for SWAG model sample '
f'{i+1}/{len(sampledmodels)} ...', end='')
bn_update(bnupd_loader, model, device=device)
print(' Done.')
model.eval()
print()
do_epoch(test_loader, do_swagevalbatch, log_ece, device,
models=sampledmodels)
bins, _, avgvloss = log_ece.throw(StopIteration)[:3]
if args.saveoutput:
outputsaver.close()
del sampledmodels
if args.plotdiagram:
bins2diagram(
bins, False,
pjoin(args.save_dir, f'calibration_{prefix}_{runfolder}.pdf'))
print(f'>>> Time elapsed: {next(timer)[1]} <<<\n')
# do SWA evaluation
prefix = 'swatest'
if args.saveoutput:
outputsaver = get_outputsaver(
args.save_dir, ndata, outclass,
f'predictions_{prefix}_{runfolder}.npy')
else:
outputsaver = None
log_ece.send((runfolder, prefix, len(test_loader), outputsaver))
with torch.no_grad():
swamodel = swagmodel.averaged_model()
if args.swag_bnupdate:
print('updating BatchNorm ...', end='')
bn_update(bnupd_loader, swamodel, device=device)
print(' Done.')
swamodel.eval()
do_epoch(test_loader, do_evalbatch, log_ece, device,
model=swamodel)
bins, _, avgvloss = log_ece.throw(StopIteration)[:3]
if args.saveoutput:
outputsaver.close()
del swamodel
if args.plotdiagram:
bins2diagram(
bins, False,
pjoin(args.save_dir, f'calibration_{prefix}_{runfolder}.pdf'))
print(f'>>> Time elapsed: {next(timer)[1]} <<<\n')
log_ece.close()
if prefix:
print('- SWA results:')
summarize_csv(pjoin(args.save_dir, f'{prefix}.csv'))
print()
print('- SWAG results:')
summarize_csv(pjoin(args.save_dir, f'{prefix[3:]}.csv'))
print()
print(f'>>> Test completed at {next(timer)[0].isoformat()} <<<\n')