From 5de5d6a1a76a14dcb8f8ba300facb32d7006afc9 Mon Sep 17 00:00:00 2001 From: Hans Jansen Date: Thu, 12 Oct 2023 19:23:40 +0200 Subject: [PATCH] liblzma: Moved CLMUL CRC logic to crc_common.h. crc64_fast.c was updated to use the code from crc_common.h instead. --- src/liblzma/check/crc64_fast.c | 257 ++------------------------------- src/liblzma/check/crc_common.h | 230 ++++++++++++++++++++++++++++- 2 files changed, 240 insertions(+), 247 deletions(-) diff --git a/src/liblzma/check/crc64_fast.c b/src/liblzma/check/crc64_fast.c index adca0584e..88ba7d331 100644 --- a/src/liblzma/check/crc64_fast.c +++ b/src/liblzma/check/crc64_fast.c @@ -10,9 +10,9 @@ /// /// crc64_clmul uses 32/64-bit x86 SSSE3, SSE4.1, and CLMUL instructions. /// It was derived from -/// https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/fast-crc-computation-generic-polynomials-pclmulqdq-paper.pdf +/// https://www.researchgate.net/publication/263424619_Fast_CRC_computation /// and the public domain code from https://github.com/rawrunprotected/crc -/// (URLs were checked on 2022-11-07). +/// (URLs were checked on 2023-09-29). /// /// FIXME: Builds for 32-bit x86 use crc64_x86.S by default instead /// of this file and thus CLMUL version isn't available on 32-bit x86 @@ -29,47 +29,7 @@ /////////////////////////////////////////////////////////////////////////////// #include "check.h" - -#undef CRC_GENERIC -#undef CRC_CLMUL -#undef CRC_USE_GENERIC_FOR_SMALL_INPUTS - -// If CLMUL cannot be used then only the generic slice-by-four is built. -#if !defined(HAVE_USABLE_CLMUL) -# define CRC_GENERIC 1 - -// If CLMUL is allowed unconditionally in the compiler options then the -// generic version can be omitted. Note that this doesn't work with MSVC -// as I don't know how to detect the features here. -// -// NOTE: Keep this this in sync with crc64_table.c. -#elif (defined(__SSSE3__) && defined(__SSE4_1__) && defined(__PCLMUL__)) \ - || (defined(__e2k__) && __iset__ >= 6) -# define CRC_CLMUL 1 - -// Otherwise build both and detect at runtime which version to use. -#else -# define CRC_GENERIC 1 -# define CRC_CLMUL 1 - -/* - // The generic code is much faster with 1-8-byte inputs and has - // similar performance up to 16 bytes at least in microbenchmarks - // (it depends on input buffer alignment too). If both versions are - // built, this #define will use the generic version for inputs up to - // 16 bytes and CLMUL for bigger inputs. It saves a little in code - // size since the special cases for 0-16-byte inputs will be omitted - // from the CLMUL code. -# define CRC_USE_GENERIC_FOR_SMALL_INPUTS 1 -*/ - -# if defined(_MSC_VER) -# include -# elif defined(HAVE_CPUID_H) -# include -# endif -#endif - +#include "crc_common.h" ///////////////////////////////// // Generic slice-by-four CRC64 // @@ -77,8 +37,6 @@ #ifdef CRC_GENERIC -#include "crc_common.h" - #ifdef WORDS_BIGENDIAN # define A1(x) ((x) >> 56) @@ -173,17 +131,6 @@ calc_hi(uint64_t poly, uint64_t a) */ -#define MASK_L(in, mask, r) \ - r = _mm_shuffle_epi8(in, mask) - -#define MASK_H(in, mask, r) \ - r = _mm_shuffle_epi8(in, _mm_xor_si128(mask, vsign)) - -#define MASK_LH(in, mask, low, high) \ - MASK_L(in, mask, low); \ - MASK_H(in, mask, high) - - // MSVC (VS2015 - VS2022) produces bad 32-bit x86 code from the CLMUL CRC // code when optimizations are enabled (release build). According to the bug // report, the ebx register is corrupted and the calculated result is wrong. @@ -206,14 +153,6 @@ calc_hi(uint64_t poly, uint64_t a) #if (defined(__GNUC__) || defined(__clang__)) && !defined(__EDG__) __attribute__((__target__("ssse3,sse4.1,pclmul"))) #endif -// The intrinsics use 16-byte-aligned reads from buf, thus they may read -// up to 15 bytes before or after the buffer (depending on the alignment -// of the buf argument). The values of the extra bytes are ignored. -// This unavoidably trips -fsanitize=address so address sanitizier has -// to be disabled for this function. -#if lzma_has_attribute(__no_sanitize_address__) -__attribute__((__no_sanitize_address__)) -#endif static uint64_t crc64_clmul(const uint8_t *buf, size_t size, uint64_t crc) { @@ -237,150 +176,24 @@ crc64_clmul(const uint8_t *buf, size_t size, uint64_t crc) const uint64_t mu = 0x9c3e466c172963d5; // (calc_lo(poly) << 1) | 1 const uint64_t k2 = 0xdabe95afc7875f40; // calc_hi(poly, 1) const uint64_t k1 = 0xe05dd497ca393ae4; // calc_hi(poly, k2) - const __m128i vfold0 = _mm_set_epi64x(p, mu); - const __m128i vfold1 = _mm_set_epi64x(k2, k1); - // Create a vector with 8-bit values 0 to 15. This is used to - // construct control masks for _mm_blendv_epi8 and _mm_shuffle_epi8. - const __m128i vramp = _mm_setr_epi32( - 0x03020100, 0x07060504, 0x0b0a0908, 0x0f0e0d0c); + const __m128i vfold8 = _mm_set_epi64x(p, mu); + const __m128i vfold16 = _mm_set_epi64x(k2, k1); - // This is used to inverse the control mask of _mm_shuffle_epi8 - // so that bytes that wouldn't be picked with the original mask - // will be picked and vice versa. - const __m128i vsign = _mm_set1_epi8(0x80); - - // Memory addresses A to D and the distances between them: - // - // A B C D - // [skip_start][size][skip_end] - // [ size2 ] - // - // A and D are 16-byte aligned. B and C are 1-byte aligned. - // skip_start and skip_end are 0-15 bytes. size is at least 1 byte. - // - // A = aligned_buf will initially point to this address. - // B = The address pointed by the caller-supplied buf. - // C = buf + size == aligned_buf + size2 - // D = buf + size + skip_end == aligned_buf + size2 + skip_end - const size_t skip_start = (size_t)((uintptr_t)buf & 15); - const size_t skip_end = (size_t)((0U - (uintptr_t)(buf + size)) & 15); - const __m128i *aligned_buf = (const __m128i *)( - (uintptr_t)buf & ~(uintptr_t)15); - - // If size2 <= 16 then the whole input fits into a single 16-byte - // vector. If size2 > 16 then at least two 16-byte vectors must - // be processed. If size2 > 16 && size <= 16 then there is only - // one 16-byte vector's worth of input but it is unaligned in memory. - // - // NOTE: There is no integer overflow here if the arguments are valid. - // If this overflowed, buf + size would too. - size_t size2 = skip_start + size; - - // Masks to be used with _mm_blendv_epi8 and _mm_shuffle_epi8: - // The first skip_start or skip_end bytes in the vectors will have - // the high bit (0x80) set. _mm_blendv_epi8 and _mm_shuffle_epi8 - // will produce zeros for these positions. (Bitwise-xor of these - // masks with vsign will produce the opposite behavior.) - const __m128i mask_start - = _mm_sub_epi8(vramp, _mm_set1_epi8(skip_start)); - const __m128i mask_end = _mm_sub_epi8(vramp, _mm_set1_epi8(skip_end)); - - // Get the first 1-16 bytes into data0. If loading less than 16 bytes, - // the bytes are loaded to the high bits of the vector and the least - // significant positions are filled with zeros. - const __m128i data0 = _mm_blendv_epi8(_mm_load_si128(aligned_buf), - _mm_setzero_si128(), mask_start); - ++aligned_buf; + __m128i v0, v1, v2; #if defined(__i386__) || defined(_M_IX86) - const __m128i initial_crc = _mm_set_epi64x(0, ~crc); + crc_simd_body(buf, size, &v0, &v1, vfold16, _mm_set_epi64x(0, ~crc)); #else // GCC and Clang would produce good code with _mm_set_epi64x // but MSVC needs _mm_cvtsi64_si128 on x86-64. - const __m128i initial_crc = _mm_cvtsi64_si128(~crc); -#endif - - __m128i v0, v1, v2, v3; - -#ifndef CRC_USE_GENERIC_FOR_SMALL_INPUTS - if (size <= 16) { - // Right-shift initial_crc by 1-16 bytes based on "size" - // and store the result in v1 (high bytes) and v0 (low bytes). - // - // NOTE: The highest 8 bytes of initial_crc are zeros so - // v1 will be filled with zeros if size >= 8. The highest 8 - // bytes of v1 will always become zeros. - // - // [ v1 ][ v0 ] - // [ initial_crc ] size == 1 - // [ initial_crc ] size == 2 - // [ initial_crc ] size == 15 - // [ initial_crc ] size == 16 (all in v0) - const __m128i mask_low = _mm_add_epi8( - vramp, _mm_set1_epi8(size - 16)); - MASK_LH(initial_crc, mask_low, v0, v1); - - if (size2 <= 16) { - // There are 1-16 bytes of input and it is all - // in data0. Copy the input bytes to v3. If there - // are fewer than 16 bytes, the low bytes in v3 - // will be filled with zeros. That is, the input - // bytes are stored to the same position as - // (part of) initial_crc is in v0. - MASK_L(data0, mask_end, v3); - } else { - // There are 2-16 bytes of input but not all bytes - // are in data0. - const __m128i data1 = _mm_load_si128(aligned_buf); - - // Collect the 2-16 input bytes from data0 and data1 - // to v2 and v3, and bitwise-xor them with the - // low bits of initial_crc in v0. Note that the - // the second xor is below this else-block as it - // is shared with the other branch. - MASK_H(data0, mask_end, v2); - MASK_L(data1, mask_end, v3); - v0 = _mm_xor_si128(v0, v2); - } - - v0 = _mm_xor_si128(v0, v3); - v1 = _mm_alignr_epi8(v1, v0, 8); - } else + crc_simd_body(buf, size, &v0, &v1, vfold16, _mm_cvtsi64_si128(~crc)); #endif - { - const __m128i data1 = _mm_load_si128(aligned_buf); - MASK_LH(initial_crc, mask_start, v0, v1); - v0 = _mm_xor_si128(v0, data0); - v1 = _mm_xor_si128(v1, data1); - -#define FOLD \ - v1 = _mm_xor_si128(v1, _mm_clmulepi64_si128(v0, vfold1, 0x00)); \ - v0 = _mm_xor_si128(v1, _mm_clmulepi64_si128(v0, vfold1, 0x11)); - - while (size2 > 32) { - ++aligned_buf; - size2 -= 16; - FOLD - v1 = _mm_load_si128(aligned_buf); - } - - if (size2 < 32) { - MASK_H(v0, mask_end, v2); - MASK_L(v0, mask_end, v0); - MASK_L(v1, mask_end, v3); - v1 = _mm_or_si128(v2, v3); - } - - FOLD - v1 = _mm_srli_si128(v0, 8); -#undef FOLD - } - v1 = _mm_xor_si128(_mm_clmulepi64_si128(v0, vfold1, 0x10), v1); - v0 = _mm_clmulepi64_si128(v1, vfold0, 0x00); - v2 = _mm_clmulepi64_si128(v0, vfold0, 0x10); - v0 = _mm_xor_si128(_mm_xor_si128(v2, _mm_slli_si128(v0, 8)), v1); + v1 = _mm_xor_si128(_mm_clmulepi64_si128(v0, vfold16, 0x10), v1); + v0 = _mm_clmulepi64_si128(v1, vfold8, 0x00); + v2 = _mm_clmulepi64_si128(v0, vfold8, 0x10); + v0 = _mm_xor_si128(_mm_xor_si128(v1, _mm_slli_si128(v0, 8)), v2); #if defined(__i386__) || defined(_M_IX86) return ~(((uint64_t)(uint32_t)_mm_extract_epi32(v0, 3) << 32) | @@ -399,53 +212,7 @@ crc64_clmul(const uint8_t *buf, size_t size, uint64_t crc) #endif #endif - -//////////////////////// -// Detect CPU support // -//////////////////////// - #if defined(CRC_GENERIC) && defined(CRC_CLMUL) -static inline bool -is_clmul_supported(void) -{ - int success = 1; - uint32_t r[4]; // eax, ebx, ecx, edx - -#if defined(_MSC_VER) - // This needs with MSVC. ICC has it as a built-in - // on all platforms. - __cpuid(r, 1); -#elif defined(HAVE_CPUID_H) - // Compared to just using __asm__ to run CPUID, this also checks - // that CPUID is supported and saves and restores ebx as that is - // needed with GCC < 5 with position-independent code (PIC). - success = __get_cpuid(1, &r[0], &r[1], &r[2], &r[3]); -#else - // Just a fallback that shouldn't be needed. - __asm__("cpuid\n\t" - : "=a"(r[0]), "=b"(r[1]), "=c"(r[2]), "=d"(r[3]) - : "a"(1), "c"(0)); -#endif - - // Returns true if these are supported: - // CLMUL (bit 1 in ecx) - // SSSE3 (bit 9 in ecx) - // SSE4.1 (bit 19 in ecx) - const uint32_t ecx_mask = (1 << 1) | (1 << 9) | (1 << 19); - return success && (r[2] & ecx_mask) == ecx_mask; - - // Alternative methods that weren't used: - // - ICC's _may_i_use_cpu_feature: the other methods should work too. - // - GCC >= 6 / Clang / ICX __builtin_cpu_supports("pclmul") - // - // CPUID decding is needed with MSVC anyway and older GCC. This keeps - // the feature checks in the build system simpler too. The nice thing - // about __builtin_cpu_supports would be that it generates very short - // code as is it only reads a variable set at startup but a few bytes - // doesn't matter here. -} - - typedef uint64_t (*crc64_func_type)( const uint8_t *buf, size_t size, uint64_t crc); diff --git a/src/liblzma/check/crc_common.h b/src/liblzma/check/crc_common.h index f3ee205de..867e53d91 100644 --- a/src/liblzma/check/crc_common.h +++ b/src/liblzma/check/crc_common.h @@ -1,9 +1,11 @@ /////////////////////////////////////////////////////////////////////////////// // /// \file crc_common.h -/// \brief Some endian-dependent macros for CRC32 and CRC64 +/// \brief Some functions and macros for CRC32 and CRC64 // -// Author: Lasse Collin +// Authors: Lasse Collin +// Ilya Kurdyukov +// Hans Jansen // // This file has been put into the public domain. // You can do whatever you want with this file. @@ -28,3 +30,227 @@ # define S8(x) ((x) >> 8) # define S32(x) ((x) >> 32) #endif + + +#undef CRC_GENERIC +#undef CRC_CLMUL +#undef CRC_USE_GENERIC_FOR_SMALL_INPUTS + +// If CLMUL cannot be used then only the generic slice-by-four is built. +#if !defined(HAVE_USABLE_CLMUL) +# define CRC_GENERIC 1 + +// If CLMUL is allowed unconditionally in the compiler options then the +// generic version can be omitted. Note that this doesn't work with MSVC +// as I don't know how to detect the features here. +// +// NOTE: Keep this this in sync with crc32_table.c. +#elif (defined(__SSSE3__) && defined(__SSE4_1__) && defined(__PCLMUL__)) \ + || (defined(__e2k__) && __iset__ >= 6) +# define CRC_CLMUL 1 + +// Otherwise build both and detect at runtime which version to use. +#else +# define CRC_GENERIC 1 +# define CRC_CLMUL 1 + +/* + // The generic code is much faster with 1-8-byte inputs and has + // similar performance up to 16 bytes at least in microbenchmarks + // (it depends on input buffer alignment too). If both versions are + // built, this #define will use the generic version for inputs up to + // 16 bytes and CLMUL for bigger inputs. It saves a little in code + // size since the special cases for 0-16-byte inputs will be omitted + // from the CLMUL code. +# define CRC_USE_GENERIC_FOR_SMALL_INPUTS 1 +*/ + +# if defined(_MSC_VER) +# include +# elif defined(HAVE_CPUID_H) +# include +# endif +#endif + +//////////////////////// +// Detect CPU support // +//////////////////////// + +#if defined(CRC_GENERIC) && defined(CRC_CLMUL) +static inline bool +is_clmul_supported(void) +{ + int success = 1; + uint32_t r[4]; // eax, ebx, ecx, edx + +#if defined(_MSC_VER) + // This needs with MSVC. ICC has it as a built-in + // on all platforms. + __cpuid(r, 1); +#elif defined(HAVE_CPUID_H) + // Compared to just using __asm__ to run CPUID, this also checks + // that CPUID is supported and saves and restores ebx as that is + // needed with GCC < 5 with position-independent code (PIC). + success = __get_cpuid(1, &r[0], &r[1], &r[2], &r[3]); +#else + // Just a fallback that shouldn't be needed. + __asm__("cpuid\n\t" + : "=a"(r[0]), "=b"(r[1]), "=c"(r[2]), "=d"(r[3]) + : "a"(1), "c"(0)); +#endif + + // Returns true if these are supported: + // CLMUL (bit 1 in ecx) + // SSSE3 (bit 9 in ecx) + // SSE4.1 (bit 19 in ecx) + const uint32_t ecx_mask = (1 << 1) | (1 << 9) | (1 << 19); + return success && (r[2] & ecx_mask) == ecx_mask; + + // Alternative methods that weren't used: + // - ICC's _may_i_use_cpu_feature: the other methods should work too. + // - GCC >= 6 / Clang / ICX __builtin_cpu_supports("pclmul") + // + // CPUID decding is needed with MSVC anyway and older GCC. This keeps + // the feature checks in the build system simpler too. The nice thing + // about __builtin_cpu_supports would be that it generates very short + // code as is it only reads a variable set at startup but a few bytes + // doesn't matter here. +} +#endif + + +#define MASK_L(in, mask, r) r = _mm_shuffle_epi8(in, mask); +#define MASK_H(in, mask, r) \ + r = _mm_shuffle_epi8(in, _mm_xor_si128(mask, vsign)); +#define MASK_LH(in, mask, low, high) \ + MASK_L(in, mask, low) MASK_H(in, mask, high) + +#ifdef CRC_CLMUL + +#include + + +#if (defined(__GNUC__) || defined(__clang__)) && !defined(__EDG__) +__attribute__((__target__("ssse3,sse4.1,pclmul"))) +#endif +#if lzma_has_attribute(__no_sanitize_address__) +__attribute__((__no_sanitize_address__)) +#endif +static inline void +crc_simd_body(const uint8_t *buf, size_t size, __m128i *v0, __m128i *v1, + __m128i vfold16, __m128i crc2vec) +{ +#if TUKLIB_GNUC_REQ(4, 6) || defined(__clang__) +# pragma GCC diagnostic push +# pragma GCC diagnostic ignored "-Wsign-conversion" +#endif + // Memory addresses A to D and the distances between them: + // + // A B C D + // [skip_start][size][skip_end] + // [ size2 ] + // + // A and D are 16-byte aligned. B and C are 1-byte aligned. + // skip_start and skip_end are 0-15 bytes. size is at least 1 byte. + // + // A = aligned_buf will initially point to this address. + // B = The address pointed by the caller-supplied buf. + // C = buf + size == aligned_buf + size2 + // D = buf + size + skip_end == aligned_buf + size2 + skip_end + uintptr_t skip_start = (uintptr_t)buf & 15; + uintptr_t skip_end = -(uintptr_t)(buf + size) & 15; + + // Create a vector with 8-bit values 0 to 15. + // This is used to construct control masks + // for _mm_blendv_epi8 and _mm_shuffle_epi8. + __m128i vramp = _mm_setr_epi32( + 0x03020100, 0x07060504, 0x0b0a0908, 0x0f0e0d0c); + + // This is used to inverse the control mask of _mm_shuffle_epi8 + // so that bytes that wouldn't be picked with the original mask + // will be picked and vice versa. + __m128i vsign = _mm_set1_epi8(-0x80); + + // Masks to be used with _mm_blendv_epi8 and _mm_shuffle_epi8 + // The first skip_start or skip_end bytes in the vectors will hav + // the high bit (0x80) set. _mm_blendv_epi8 and _mm_shuffle_epi + // will produce zeros for these positions. (Bitwise-xor of thes + // masks with vsign will produce the opposite behavior.) + __m128i mask_start = _mm_sub_epi8(vramp, _mm_set1_epi8(skip_start)); + __m128i mask_end = _mm_sub_epi8(vramp, _mm_set1_epi8(skip_end)); + + // If size2 <= 16 then the whole input fits into a single 16-byte + // vector. If size2 > 16 then at least two 16-byte vectors must + // be processed. If size2 > 16 && size <= 16 then there is only + // one 16-byte vector's worth of input but it is unaligned in memory. + // + // NOTE: There is no integer overflow here if the arguments + // are valid. If this overflowed, buf + size would too. + uintptr_t size2 = skip_start + size; + const __m128i *aligned_buf = (const __m128i*)((uintptr_t)buf & -16); + __m128i v2, v3, vcrc, data0; + + vcrc = crc2vec; + + // Get the first 1-16 bytes into data0. If loading less than 16 + // bytes, the bytes are loaded to the high bits of the vector and + // the least significant positions are filled with zeros. + data0 = _mm_load_si128(aligned_buf); + data0 = _mm_blendv_epi8(data0, _mm_setzero_si128(), mask_start); + aligned_buf++; + if (size2 <= 16) { + // There are 1-16 bytes of input and it is all + // in data0. Copy the input bytes to v3. If there + // are fewer than 16 bytes, the low bytes in v3 + // will be filled with zeros. That is, the input + // bytes are stored to the same position as + // (part of) initial_crc is in v0. + __m128i mask_low = _mm_add_epi8( + vramp, _mm_set1_epi8(size - 16)); + MASK_LH(vcrc, mask_low, *v0, *v1) + MASK_L(data0, mask_end, v3) + *v0 = _mm_xor_si128(*v0, v3); + *v1 = _mm_alignr_epi8(*v1, *v0, 8); + } else { + __m128i data1 = _mm_load_si128(aligned_buf); + if (size <= 16) { + // Collect the 2-16 input bytes from data0 and data1 + // to v2 and v3, and bitwise-xor them with the + // low bits of initial_crc in v0. Note that the + // the second xor is below this else-block as it + // is shared with the other branch. + __m128i mask_low = _mm_add_epi8( + vramp, _mm_set1_epi8(size - 16)); + MASK_LH(vcrc, mask_low, *v0, *v1); + MASK_H(data0, mask_end, v2) + MASK_L(data1, mask_end, v3) + *v0 = _mm_xor_si128(*v0, v2); + *v0 = _mm_xor_si128(*v0, v3); + + *v1 = _mm_alignr_epi8(*v1, *v0, 8); + } else { + const __m128i *end = (const __m128i*)( + (char*)aligned_buf++ - 16 + size2); + MASK_LH(vcrc, mask_start, *v0, *v1) + *v0 = _mm_xor_si128(*v0, data0); + *v1 = _mm_xor_si128(*v1, data1); + while (aligned_buf < end) { + *v1 = _mm_xor_si128(*v1, _mm_clmulepi64_si128(*v0, vfold16, 0x00)); \ + *v0 = _mm_xor_si128(*v1, _mm_clmulepi64_si128(*v0, vfold16, 0x11)); + *v1 = _mm_load_si128(aligned_buf++); + } + + if (aligned_buf != end) { + MASK_H(*v0, mask_end, v2) + MASK_L(*v0, mask_end, *v0) + MASK_L(*v1, mask_end, v3) + *v1 = _mm_or_si128(v2, v3); + } + *v1 = _mm_xor_si128(*v1, _mm_clmulepi64_si128(*v0, vfold16, 0x00)); + *v0 = _mm_xor_si128(*v1, _mm_clmulepi64_si128(*v0, vfold16, 0x11)); + + *v1 = _mm_srli_si128(*v0, 8); + } + } +} +#endif