From 3c2e8b9fe29c0a4b7076dbc84e98b9c641796c96 Mon Sep 17 00:00:00 2001 From: Alcardens <72311744+Alcardens@users.noreply.github.com> Date: Sun, 15 Dec 2024 09:33:37 +0100 Subject: [PATCH] Update interpol.tex The triangle for barycentric coordinates was named p1p2p3, but is referred to as p0p1p2 in the equations and figure --- interpol/interpol.tex | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/interpol/interpol.tex b/interpol/interpol.tex index 2834527..9803614 100755 --- a/interpol/interpol.tex +++ b/interpol/interpol.tex @@ -264,7 +264,7 @@ \subsection{Linear interpolation in triangulation (\textbf{TIN})}% \labfig{fig:li} \end{marginfigure} The linear interpolation in a triangle can be efficiently implemented by using barycentric coordinates, which are local coordinates defined within a triangle. -Referring to \reffig{fig:li}, any point $x$ inside a triangle $p_1p_2p_3$ can be represented as a linear combination of the 3 vertices: +Referring to \reffig{fig:li}, any point $x$ inside a triangle $p_0p_1p_2$ can be represented as a linear combination of the 3 vertices: \begin{equation} x = w_0p_0 + w_1p_1 + w_2p_2 \end{equation} @@ -272,7 +272,7 @@ \subsection{Linear interpolation in triangulation (\textbf{TIN})}% \begin{equation} w_0 + w_1 + w_2 = 1 \end{equation} -The coefficients $w_i$ are the barycentric coordinates of the point $x$ with respect to the triangle $p_1p_2p_3$. +The coefficients $w_i$ are the barycentric coordinates of the point $x$ with respect to the triangle $p_0p_1p_2$. Finding the coefficients $w_0$, $w_1$, and $w_2$ can be done by solving a system of linear equations. If we subtract $p_2$ from $x$, and we use $w_2 = 1 - w_0 - w_1$, we obtain \begin{equation}