-
Notifications
You must be signed in to change notification settings - Fork 10
/
train_region_active.py
140 lines (121 loc) · 5.76 KB
/
train_region_active.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# basic
import os
import sys
import argparse
from tqdm import tqdm
from datetime import datetime
# torch
import torch
import torch.multiprocessing as mp
import torch.distributed as dist
# custom
from base_agent import BaseTrainer
from dataloader import get_dataset, get_active_dataset
from active_selection import get_active_selector
from utils.common import initialization, finalization
class Trainer(BaseTrainer):
def __init__(self, args, logger):
super().__init__(args, logger)
def train(self, active_set):
# prepare dataset
train_dataset = active_set.label_dataset
val_dataset = get_dataset(name=self.args.name, data_root=self.args.data_dir, imageset='val')
self.sampler, self.train_dataset_loader = self.get_trainloader(train_dataset)
self.val_sampler, self.val_dataset_loader = self.get_valloader(val_dataset)
self.checkpoint_file = os.path.join(self.model_save_dir, f'checkpoint{active_set.selection_iter}.tar')
# max epoch
if active_set.selection_iter == 1:
max_epoch = self.args.training_epoch
else:
max_epoch = self.args.finetune_epoch
start_val_epoch = max_epoch - 20
for epoch in tqdm(range(max_epoch)):
validation = (epoch >= start_val_epoch)
self.train_one_epoch(epoch, validation)
def main(rank, args):
# initialization
logger = initialization(rank, args)
t_start = datetime.now()
val_result = {}
# Active Learning dataset
active_set = get_active_dataset(args, mode='region')
active_selector = get_active_selector(args, region=True)
# Active Learning iteration
for selection_iter in range(1, args.max_iterations + 1):
active_set.selection_iter = selection_iter
if rank == 0:
data_num = round(active_set.get_fraction_of_labeled_data() * 100)
logger.info(f"AL {selection_iter}: Start Training ({data_num}% training data)")
trainer = Trainer(args, logger)
# reaload previous ckpt
if selection_iter > 1:
prevckpt_fname = os.path.join(args.model_save_dir, f'checkpoint{selection_iter-1}.tar')
trainer.load_checkpoint(prevckpt_fname, rank)
if args.distributed_training is True:
dist.barrier()
trainer.train(active_set)
# load best checkpoint
if args.distributed_training is True:
dist.barrier()
fname = os.path.join(args.model_save_dir, f'checkpoint{selection_iter}.tar')
trainer.load_checkpoint(fname, rank)
# evaluate the result
val_return = trainer.validate(update_ckpt=False)
if rank == 0:
logger.info(f"AL {selection_iter}: Get best validation result")
val_result[selection_iter] = val_return
# active-select pool
if rank == 0:
logger.info(f"AL {selection_iter}: Select Next Batch")
active_selector.select_next_batch(trainer, active_set, args.active_percent)
if rank == 0:
# Dump Selection items
active_set.dump_datalist()
if args.distributed_training is True:
# Wait for rank 0 to write selection path
dist.barrier()
if rank != 0:
active_set.load_datalist()
dist.barrier()
# finalization
finalization(t_start, val_result, logger, args)
if __name__ == '__main__':
# Training settings
parser = argparse.ArgumentParser(description='Region-based Active Learning framework.')
# basic
parser.add_argument('-n', '--name', choices=['s3dis', 'semantic_kitti', 'scannet'], default='s3dis',
help='training dataset (default: s3dis)')
parser.add_argument('-d', '--data_dir', default='/tmp2/tsunghan/S3DIS_processed/')
parser.add_argument('-p', '--model_save_dir', default='./test')
parser.add_argument('-m', '--model', choices=['minkunet', 'spvcnn'], default='spvcnn',
help='training model (default: spvcnn)')
# training related
parser.add_argument('--num_classes', type=int, default=13, help='number of classes in dataset')
parser.add_argument('--ignore_idx', type=int, default=-100, help='ignore index')
parser.add_argument('--training_epoch', type=int, default=200, help='initial training epoch')
parser.add_argument('--finetune_epoch', type=int, default=50, help='finetune epoch')
parser.add_argument('--train_batch_size', type=int, default=4, help='batch size for training (default: 4)')
parser.add_argument('--val_batch_size', type=int, default=10, help='batch size for validation (default: 10)')
parser.add_argument('--distributed_training', action='store_true', help='distributed training or not')
parser.add_argument('--ddp_port', type=int, default=7122, help='DDP connection port')
# Active Learning setting
parser.add_argument('--max_iterations', type=int, default=10,
help='Number of active learning iterations (default: 10)')
parser.add_argument('--active_method', type=str, required=True,
choices=['random', 'softmax_confidence', 'softmax_margin', 'softmax_entropy',
'mc_dropout', 'ReDAL'],
help='Active Learning Methods')
parser.add_argument('--active_percent', type=float, default=2.0,
help='active selection percent % (default: 2.0)')
parser.add_argument('--ReDAL_config_path', type=str, default=None,
help='ReDAL config path')
args = parser.parse_args()
print(' '.join(sys.argv))
print(args)
if args.distributed_training is True:
args.gpus = torch.cuda.device_count()
mp.spawn(main, nprocs=args.gpus, args=(args,))
else:
main(0, args)