forked from joachim-gassen/ExPanDaR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ExPanDaR_examples.R
191 lines (151 loc) · 6.56 KB
/
ExPanDaR_examples.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
# --- Header -------------------------------------------------------------------
# (C) Joachim Gassen 2020, [email protected], see LICENSE for license
#
# This file contains some simple use cases for the ExPanDaR package.
# It is not a part of the package itself.
# ------------------------------------------------------------------------------
# Start this with a virgin R session
library(ExPanDaR)
ExPanD(export_nb_option = TRUE)
# --- Use ExPanD with cross-sectional data -------------------------------------
library(ExPanDaR)
ExPanD(mtcars, export_nb_option = TRUE)
# --- Use ExPanD on a condensed Worldbank data set -----------------------------
library(ExPanDaR)
library(tidyverse)
assign_vars <- function(var_name, definition) {
assignments <- paste0(var_name, " = ", definition, ",")
assignments[length(assignments)] <- substr(assignments[length(assignments)], 1,
nchar(assignments[length(assignments)])-1)
return(assignments)
}
calc_variables <- function(df, var_name, definition, type, can_be_na) {
cs_id <- definition[type == "cs_id"]
ts_id <- definition[type == "ts_id"]
code <- c("df %>% arrange(",
paste(c(cs_id, ts_id), collapse=", "),
") %>%")
vars_to_assign <- which(var_name %in% cs_id)
code <- c(code, "mutate(",
assign_vars(var_name[vars_to_assign], definition[vars_to_assign]),
") %>% ")
code <- c(code,"group_by(",
paste(cs_id, collapse=", "),
") %>%")
vars_to_assign <- which(!var_name %in% cs_id)
code <- c(code, "transmute(",
assign_vars(var_name[vars_to_assign], definition[vars_to_assign]),
") %>%")
code <- c(code, "drop_na(",
paste(var_name[can_be_na != 1], collapse = ","),
") -> ret ")
eval(parse(text = code))
return(as.data.frame(ret))
}
wb_var_def <- worldbank_var_def %>%
slice(c(1:4,8,16:23))
wb_var_def <- wb_var_def[c(1:5, 13, 6:12),]
wb_var_def$can_be_na[wb_var_def$var_name == "lifeexpectancy"] <- 0
wb <- calc_variables(worldbank,
wb_var_def$var_name,
wb_var_def$var_def,
wb_var_def$type,
wb_var_def$can_be_na)
# write_csv(wb, "wb_condensed.csv")
ExPanD(wb, cs_id = "country", ts_id ="year", export_nb_option = TRUE)
# A niced ExPanD version with variable definitions and
# a short info text to put online.
wb_data_def <- wb_var_def %>%
left_join(worldbank_data_def, by = c("var_def" = "var_name")) %>%
select(-var_def) %>%
rename(var_def = var_def.y,
type = type.x) %>%
select(var_name, var_def, type, can_be_na)
# write_csv(wb_data_def, "wb_data_def.csv")
title <- "Explore the Preston Curve with ExPanDaR"
abstract <- paste(
"The data for this sample has been collected using the",
"<a href=https://data.worldbank.org>World Bank API</a>.",
"See this <a href=https://joachim-gassen.github.io/2018/12/interactive-panel-eda-with-3-lines-of-code>",
"blog post</a> for further information."
)
ExPanD(wb, df_def = wb_data_def,
title = title, abstract = abstract,
export_nb_option = TRUE)
# --- Use ExPanD to explore IMDB data ------------------------------------------
library(tidyverse)
name_basics <- read_tsv("https://datasets.imdbws.com/name.basics.tsv.gz",
na = "\\N", quote = '')
title_basics <- read_tsv("https://datasets.imdbws.com/title.basics.tsv.gz",
na = "\\N", quote = '')
title_ratings <- read_tsv("https://datasets.imdbws.com/title.ratings.tsv.gz",
na = "\\N", quote = '')
title_akas <- read_tsv("https://datasets.imdbws.com/title.akas.tsv.gz",
na = "\\N", quote = '')
title_crew <- read_tsv("https://datasets.imdbws.com/title.crew.tsv.gz",
na = "\\N", quote = '')
title_episode <- read_tsv("https://datasets.imdbws.com/title.episode.tsv.gz",
na = "\\N", quote = '')
title_principals <- read_tsv("https://datasets.imdbws.com/title.principals.tsv.gz",
na = "\\N", quote = '')
name_basics %>%
filter(str_detect(primaryProfession, "actor|actress")) %>%
select(nconst, primaryName, birthYear) -> actors
name_basics %>%
filter(str_detect(primaryProfession, "director")) %>%
select(nconst, primaryName, birthYear) -> directors
lead_actor <- title_principals %>%
filter(str_detect(category, "actor|actress")) %>%
select(tconst, ordering, nconst, category) %>%
group_by(tconst) %>%
filter(ordering == min(ordering)) %>%
mutate(lead_actor_gender = ifelse(category == "actor", "male", "female")) %>%
left_join(name_basics) %>%
rename(lead_actor_name = primaryName,
lead_actor_yob = birthYear,
lead_actor_yod = deathYear) %>%
select(tconst, lead_actor_name, lead_actor_gender,
lead_actor_yob, lead_actor_yod)
director <- title_principals %>%
filter(str_detect(category, "director")) %>%
select(tconst, ordering, nconst, category) %>%
group_by(tconst) %>%
filter(ordering == min(ordering)) %>%
left_join(name_basics) %>%
rename(director_name = primaryName,
director_yob = birthYear,
director_yod = deathYear) %>%
select(tconst, director_name, director_yob, director_yod)
imdb <- title_ratings %>%
left_join(title_basics) %>%
left_join(lead_actor) %>%
left_join(director) %>%
filter(titleType == "movie" | titleType == "tvSeries",
numVotes >= 10000,
isAdult == 0) %>%
mutate(year = startYear,
lead_actor_age = ifelse(startYear - lead_actor_yob > 0,
startYear - lead_actor_yob, NA),
director_age = ifelse(startYear - director_yob > 0,
startYear - director_yob, NA),
genre = str_split(genres, ',', simplify = TRUE)[,1],
type = ifelse(titleType == "movie", "Movie", "TV Series")) %>%
rename(avg_rating = averageRating,
num_votes = numVotes,
length_minutes = runtimeMinutes,
title = primaryTitle) %>%
select(tconst, year, type, title, genre,
num_votes, avg_rating, length_minutes,
director_name, director_age,
lead_actor_name, lead_actor_age, lead_actor_gender)
cl <- readRDS("IMDb_ExPanD.RDS")
ExPanD(
imdb, cs_id = c("tconst", "title"), config_list = cl,
components = c(bar_chart = FALSE),
title = "Explore IMDb Data", abstract = paste(
"Data as provided by the fabulous",
"<a href=https://www.imdb.com>Internet Movie Database</a>."
),
export_nb_option = TRUE
)
# ------------------------------------------------------------------------------