-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_particles_at_depth.py
123 lines (102 loc) · 4.52 KB
/
plot_particles_at_depth.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import matplotlib.gridspec as gridspec
import matplotlib.pyplot as plt
import numpy as np
import matplotlib.dates as mdates
import xarray as xr
from pandas.plotting import register_matplotlib_converters
import matplotlib.dates as mdates
import matplotlib.gridspec as gridspec
import matplotlib.pyplot as plt
import numpy as np
import xarray as xr
from pandas.plotting import register_matplotlib_converters
register_matplotlib_converters()
import seaborn as sns
sns.set()
import time
sed_crit = 0.1
import glob
def p_density(df, min_density, max_density, col, axis, norm):
startdate = np.datetime64('2000-01-01T00:00:00')
d = df.where(df.density > max_density, drop=True)
df = d.where(d.density < min_density, drop=True)
d = df
d['dif_depth'] = d.sea_floor_depth_below_sea_level - d.z
grp = d.groupby('trajectory')
# loop = [[utils.get_start_sed_depth(d), n, d] for n, d in grp if utils.get_start_sed_depth(d) != (None, None, None)]
s = list(map(lambda x: x[0], loop))
trajectories = list(map(lambda x: x[1], loop))
ds_all = list(map(lambda x: x[2], loop))
starts = list(map(lambda x: x[0], s))
seds = list(map(lambda x: x[1], s))
sed_depths = list(map(lambda x: x[2], s))
for k, ds in enumerate(ds_all): # loop over trajectories
start, sed = starts[k], seds[k]
if start != sed:
if norm == True:
# lifetime = ds.time[stop].values - ds.time[start].values
dif = ds.time[start] - startdate
x = ds.time[start:sed + 1] - dif
z = ds.z[start:sed + 1]
elif norm == False:
x = d.time[start:sed + 1]
z = d.z[start:sed + 1]
axis.plot(x, z, '-', color=col, linewidth=0.3, alpha=0.5, zorder=9)
axis.plot(x[-1], z[-1].values, 'ko', markersize=0.5, zorder=10)
if norm == True:
axis.set_title('Distibution of particles (type {}), normalized by time'.format(max_density))
frmt = '%M-%d'
elif norm == False:
axis.set_title('Distibution of particles (type {})'.format(max_density))
frmt = '%b/%d'
axis.xaxis.set_major_formatter(mdates.DateFormatter(frmt))
axis.set_ylabel('Depth, m')
axis.set_xlabel('Month,day of the release')
axis.set_ylim(30, 0)
# axis.set_xlim(startdate,'2000-02-15T00:00:00')
return sed_depths
def call_make_plot_mf(paths, experiment, normalize):
fig = plt.figure(figsize=(11.69, 8.27), dpi=100,
facecolor='white')
gs = gridspec.GridSpec(3, 2, width_ratios=[3, 1])
gs.update(left=0.08, right=0.98, top=0.96, bottom=0.08,
wspace=0.13, hspace=0.37)
ax1 = fig.add_subplot(gs[0])
ax1_1 = fig.add_subplot(gs[1])
ax2 = fig.add_subplot(gs[2])
ax2_1 = fig.add_subplot(gs[3])
ax3 = fig.add_subplot(gs[4])
ax3_1 = fig.add_subplot(gs[5])
with xr.open_mfdataset(paths, concat_dim='time') as ds: #
df = ds.load()
print(df)
# df = xr.open_mfdataset(paths,concat_dim='time')
# df = df.where(df.status > -1, drop = True)
df['z'] = df['z'] * -1.
sed_depths1 = p_density(df, 0, 1000, '#d65460', ax1, normalize)
sed_depths2 = p_density(df, 1000, 1200, 'g', ax2, normalize)
sed_depths4 = p_density(df, 1200, 2000, '#006080', ax3, normalize)
bins = np.arange(1, 200, 10)
ax1_1.hist(sed_depths1, bins=bins, density=True, color='k')
ax2_1.hist(sed_depths2, bins=bins, density=True, color='k')
ax3_1.hist(sed_depths4, bins=bins, density=True, color='k')
for axis2 in (ax1_1, ax2_1, ax3_1):
axis2.set_title('Sedimentation depths')
axis2.set_xlim(0, 200)
# if normalize == True:
# plt.savefig('Figures/Kelp_trajectories_and_sedimentation_norm_experiment{}.png'.format(experiment),format = 'png')
# else:
# plt.savefig('Figures/Kelp_trajectories_and_sedimentation.png',format = 'png')
print("--- It took %s seconds to run the script ---" % (time.time() - start_time))
plt.show()
if __name__ == '__main__':
start_time = time.time()
experiments = (1)
# paths = utils.get_paths(polygons,experiment = 1)
allpaths = (glob.glob("results/*.nc"))
print(allpaths)
# for exp in experiments:
# call_make_plot_mf(utils.get_paths(pol,experiment = exp),experiment = exp,normalize =True)
# call_make_plot_mf(utils.get_paths(pol,experiment = 2),experiment = 2,normalize =True)
pt = "/Users/trondkr/Dropbox/NIVA/MARTINI/Glomma_particles/output/Glomma_clay_drift_20190501_to_20190504.nc"
call_make_plot_mf(pt, experiment=1, normalize=True)