-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbathymetry.py
105 lines (83 loc) · 3.95 KB
/
bathymetry.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import numpy as np
import xarray as xr
from matplotlib.pyplot import cm
import laplacefilter
class Bathymetry():
def __init__(self, config):
self.config=config
self.ax=None
def add_bathymetry_from_ROMS(self):
df = xr.open_mfdataset(self.config.ROMSFILE)
bathX, bathY = self.config.mymap(df.lon_rho.values, df.lat_rho.values)
bathZ = df.h.values
# mask_rho = df.mask_rho.values
levels = [-200, -175, -150, -125, -100, -75, -65, -60, -55, -50, -45, -40, -35, -30, -25, -20, -15, -10, -5]
self.config.mymap.contourf(bathX, bathY, -bathZ,
# cmap=mpl_util.LevelColormap(levels,cmap=cm.Greys_r),
alpha=0.5)
print("[Bathymetry] Adding bathymetry from ROMS min,mean,max depths: {},{},{}".format(np.min(bathZ), np.mean(bathZ),
np.max(bathZ)))
def add_bathymetry_from_etopo1(self):
etopo = xr.open_dataset(self.config.etopo1)
lats = etopo['y'].values
lons = etopo['x'].values
res = self.findSubsetIndices(self.config.ymin - 5,
self.config.ymax + 5,
self.config.xmin - 20,
self.config.xmax + 10,
lats, lons)
res = [int(x) for x in res]
bathy = etopo["z"][int(res[2]):int(res[3]), int(res[0]):int(res[1])].values
bathySmoothed = laplacefilter.laplace_filter(bathy, M=None)
lon, lat = np.meshgrid(lons[res[0]:res[1]], lats[res[2]:res[3]])
levels = [-5000, -4000, -3000, -2000, -1750, -1500, -1250, -1000, -750, -500, -400, -300, -200, -100,-75, -50, -40, -30, -20, -10, -5]
self.config.ax.contourf(lon, lat, bathySmoothed, levels,
cmap=self.config.level_colormap(levels, cmap=cm.Greys_r),
alpha=0.8,
transform=self.config.projection,
origin='lower')
print("[Bathymetry] Adding bathymetry from ETOPO1 min,mean,max depths: {},{},{}".format(np.min(bathySmoothed),
np.mean(bathySmoothed),
np.max(bathySmoothed)))
def findSubsetIndices(self, min_lat, max_lat, min_lon, max_lon, lats, lons):
"""Array to store the results returned from the function"""
res = np.zeros((4), dtype=np.float64)
minLon = min_lon;
maxLon = max_lon
distances1 = [];
distances2 = []
indices = [];
index = 1
for point in lats:
s1 = max_lat - point # (vector subtract)
s2 = min_lat - point # (vector subtract)
distances1.append((np.dot(s1, s1), point, index))
distances2.append((np.dot(s2, s2), point, index - 1))
index = index + 1
distances1.sort()
distances2.sort()
indices.append(distances1[0])
indices.append(distances2[0])
distances1 = [];
distances2 = [];
index = 1
for point in lons:
s1 = maxLon - point # (vector subtract)
s2 = minLon - point # (vector subtract)
distances1.append((np.dot(s1, s1), point, index))
distances2.append((np.dot(s2, s2), point, index - 1))
index = index + 1
distances1.sort()
distances2.sort()
indices.append(distances1[0])
indices.append(distances2[0])
""" Save final product: max_lat_indices,min_lat_indices,max_lon_indices,min_lon_indices"""
minJ = indices[1][2]
maxJ = indices[0][2]
minI = indices[3][2]
maxI = indices[2][2]
res[0] = minI;
res[1] = maxI;
res[2] = minJ;
res[3] = maxJ;
return res