From f5c15beed686afc3a0631e49f96289f7f2595fd7 Mon Sep 17 00:00:00 2001 From: KrisshChawla Date: Fri, 24 Nov 2023 10:24:21 -0600 Subject: [PATCH] formatting --- .../elixir_euler_quasi_1d_discontinuous.jl | 6 +- .../elixir_euler_quasi_1d_source_terms.jl | 8 +- src/equations/compressible_euler_quasi_1d.jl | 114 +++++++++--------- 3 files changed, 66 insertions(+), 62 deletions(-) diff --git a/examples/tree_1d_dgsem/elixir_euler_quasi_1d_discontinuous.jl b/examples/tree_1d_dgsem/elixir_euler_quasi_1d_discontinuous.jl index c4e3c9cf0bf..8f0196b3d2e 100644 --- a/examples/tree_1d_dgsem/elixir_euler_quasi_1d_discontinuous.jl +++ b/examples/tree_1d_dgsem/elixir_euler_quasi_1d_discontinuous.jl @@ -17,12 +17,12 @@ An entropy conservation verification initial condition taken from [DOI: 10.48550/arXiv.2307.12089](https://doi.org/10.48550/arXiv.2307.12089) """ function initial_condition_discontinuity(x, t, - equations::CompressibleEulerEquationsQuasi1D) + equations::CompressibleEulerEquationsQuasi1D) rho = (x[1] < 0) ? 3.4718 : 2.0 v1 = (x[1] < 0) ? -2.5923 : -3.0 p = (x[1] < 0) ? 5.7118 : 2.639 a = (x[1] < 0) ? 1.0 : 1.5 - + return prim2cons(SVector(rho, v1, p, a), equations) end @@ -82,4 +82,4 @@ callbacks = CallbackSet(summary_callback, sol = solve(ode, CarpenterKennedy2N54(williamson_condition = false), dt = 1.0, # solve needs some value here but it will be overwritten by the stepsize_callback save_everystep = false, callback = callbacks); -summary_callback() # print the timer summary \ No newline at end of file +summary_callback() # print the timer summary diff --git a/examples/tree_1d_dgsem/elixir_euler_quasi_1d_source_terms.jl b/examples/tree_1d_dgsem/elixir_euler_quasi_1d_source_terms.jl index 964519aba9a..7b08a455892 100644 --- a/examples/tree_1d_dgsem/elixir_euler_quasi_1d_source_terms.jl +++ b/examples/tree_1d_dgsem/elixir_euler_quasi_1d_source_terms.jl @@ -12,8 +12,8 @@ initial_condition = initial_condition_convergance_test volume_flux = (flux_chan_etal, flux_nonconservative_chan_etal) surface_flux = volume_flux -solver = DGSEM(polydeg=4, surface_flux=surface_flux, - volume_integral=VolumeIntegralFluxDifferencing(volume_flux)) +solver = DGSEM(polydeg = 4, surface_flux = surface_flux, + volume_integral = VolumeIntegralFluxDifferencing(volume_flux)) coordinates_min = -1.0 coordinates_max = 1.0 @@ -22,7 +22,7 @@ mesh = TreeMesh(coordinates_min, coordinates_max, n_cells_max = 10_000) semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, solver, - source_terms=source_terms_convergence_test) + source_terms = source_terms_convergence_test) ############################################################################### # ODE solvers, callbacks etc. @@ -57,4 +57,4 @@ callbacks = CallbackSet(summary_callback, sol = solve(ode, CarpenterKennedy2N54(williamson_condition = false), dt = 1.0, # solve needs some value here but it will be overwritten by the stepsize_callback save_everystep = false, callback = callbacks); -summary_callback() # print the timer summary \ No newline at end of file +summary_callback() # print the timer summary diff --git a/src/equations/compressible_euler_quasi_1d.jl b/src/equations/compressible_euler_quasi_1d.jl index b8ca29fa0e3..e3361629b7a 100644 --- a/src/equations/compressible_euler_quasi_1d.jl +++ b/src/equations/compressible_euler_quasi_1d.jl @@ -6,9 +6,9 @@ #! format: noindent @doc raw""" - CompressibleEulerEquations1D(gamma) + CompressibleEulerEquationsQuasi1D(gamma) -The compressible Euler equations +The quasi-1d compressible Euler equations ```math \frac{\partial}{\partial t} \begin{pmatrix} @@ -30,7 +30,8 @@ a \frac{\partial}{\partial x} \end{pmatrix} ``` for an ideal gas with ratio of specific heats `gamma` in one space dimension. -Here, ``\rho`` is the density, ``v_1`` the velocity, ``e`` the specific total energy **rather than** specific internal energy, ``a`` the (possibly) variable nozzle width, and +Here, ``\rho`` is the density, ``v_1`` the velocity, ``e`` the specific total energy **rather than** specific internal energy, +``a`` the (possibly) variable nozzle width, and ```math p = (\gamma - 1) \left( e - \frac{1}{2} \rho v_1^2 \right) ``` @@ -64,7 +65,9 @@ have_nonconservative_terms(::CompressibleEulerEquationsQuasi1D) = Trixi.True() function varnames(::typeof(cons2cons), ::CompressibleEulerEquationsQuasi1D) ("a_rho", "a_rho_v1", "a_e", "a") end -varnames(::typeof(cons2prim), ::CompressibleEulerEquationsQuasi1D) = ("rho", "v1", "p", "a") +function varnames(::typeof(cons2prim), ::CompressibleEulerEquationsQuasi1D) + ("rho", "v1", "p", "a") +end """ initial_condition_convergance_test(x, t, equations::CompressibleEulerEquationsQuasi1D) @@ -73,7 +76,8 @@ A smooth initial condition used for convergence tests in combination with [`source_terms_convergence_test`](@ref) (and [`BoundaryConditionDirichlet(initial_condition_convergence_test)`](@ref) in non-periodic domains). """ -function initial_condition_convergance_test(x, t, equations::CompressibleEulerEquationsQuasi1D) +function initial_condition_convergance_test(x, t, + equations::CompressibleEulerEquationsQuasi1D) c = 2 A = 0.1 L = 2 @@ -83,10 +87,10 @@ function initial_condition_convergance_test(x, t, equations::CompressibleEulerEq rho = ini v1 = 1.0 - e = ini^2 / rho + e = ini^2 / rho p = (equations.gamma - 1) * (e - 0.5 * rho * v1^2) a = 1.5 - 0.5 * cos(x[1] * pi) - + return prim2cons(SVector(rho, v1, p, a), equations) end @@ -102,7 +106,7 @@ as defined in [`initial_condition_convergance_test`](@ref). """ @inline function source_terms_convergence_test(u, x, t, equations::CompressibleEulerEquationsQuasi1D) - # Same settings as in `initial_condition`. + # Same settings as in `initial_condition_convergance_test`. #Derivatives calculated with ForwardDiff.jl c = 2 A = 0.1 @@ -110,41 +114,40 @@ as defined in [`initial_condition_convergance_test`](@ref). f = 1 / L ω = 2 * pi * f x1, = x - ini(x1,t) = c + A * sin(ω * (x1 - t)) + ini(x1, t) = c + A * sin(ω * (x1 - t)) - rho(x1,t) = ini(x1,t) + rho(x1, t) = ini(x1, t) v1(x1, t) = 1.0 - e(x1,t) = ini(x1,t)^2 / rho(x1,t) - p1(x1,t) = (equations.gamma - 1) * (e(x1,t) - 0.5 * rho(x1,t) * v1(x1,t)^2) - a(x1,t) = 1.5 - 0.5 * cos(x1 * pi) - - arho(x1,t) = a(x1,t) * rho(x1,t) - arhou(x1,t) = arho(x1,t) * v1(x1,t) - aE(x1,t) = a(x1,t) * e(x1,t) - - darho_dt(x1,t) = ForwardDiff.derivative(t->arho(x1,t), t) - darhou_dx(x1,t) = ForwardDiff.derivative(x1->arhou(x1,t), x1) - - arhouu(x1,t) = arhou(x1,t) * v1(x1,t) - darhou_dt(x1,t) = ForwardDiff.derivative(t->arhou(x1,t), t) - darhouu_dx(x1,t) = ForwardDiff.derivative(x1->arhouu(x1,t), x1) - dp1_dx(x1,t) = ForwardDiff.derivative(x1->p1(x1,t), x1) - - auEp(x1,t) = a(x1,t) * v1(x1,t) * (e(x1,t) + p1(x1,t)) - daE_dt(x1,t) = ForwardDiff.derivative(t->aE(x1, t), t) - dauEp_dx(x1,t) = ForwardDiff.derivative(x1->auEp(x1,t), x1) - - - du1 = darho_dt(x1,t) + darhou_dx(x1,t) - du2 = darhou_dt(x1,t) + darhouu_dx(x1,t) + a(x1,t) * dp1_dx(x1,t) - du3 = daE_dt(x1,t) + dauEp_dx(x1,t) - + e(x1, t) = ini(x1, t)^2 / rho(x1, t) + p1(x1, t) = (equations.gamma - 1) * (e(x1, t) - 0.5 * rho(x1, t) * v1(x1, t)^2) + a(x1, t) = 1.5 - 0.5 * cos(x1 * pi) + + arho(x1, t) = a(x1, t) * rho(x1, t) + arhou(x1, t) = arho(x1, t) * v1(x1, t) + aE(x1, t) = a(x1, t) * e(x1, t) + + darho_dt(x1, t) = ForwardDiff.derivative(t -> arho(x1, t), t) + darhou_dx(x1, t) = ForwardDiff.derivative(x1 -> arhou(x1, t), x1) + + arhouu(x1, t) = arhou(x1, t) * v1(x1, t) + darhou_dt(x1, t) = ForwardDiff.derivative(t -> arhou(x1, t), t) + darhouu_dx(x1, t) = ForwardDiff.derivative(x1 -> arhouu(x1, t), x1) + dp1_dx(x1, t) = ForwardDiff.derivative(x1 -> p1(x1, t), x1) + + auEp(x1, t) = a(x1, t) * v1(x1, t) * (e(x1, t) + p1(x1, t)) + daE_dt(x1, t) = ForwardDiff.derivative(t -> aE(x1, t), t) + dauEp_dx(x1, t) = ForwardDiff.derivative(x1 -> auEp(x1, t), x1) + + du1 = darho_dt(x1, t) + darhou_dx(x1, t) + du2 = darhou_dt(x1, t) + darhouu_dx(x1, t) + a(x1, t) * dp1_dx(x1, t) + du3 = daE_dt(x1, t) + dauEp_dx(x1, t) + return SVector(du1, du2, du3, 0.0) end """ boundary_condition_slip_wall(u_inner, orientation, direction, x, t, - surface_flux_function, equations::CompressibleEulerEquations1D) + surface_flux_function, equations::CompressibleEulerEquationsQuasi1D) Determine the boundary numerical surface flux for a slip wall condition. Imposes a zero normal velocity at the wall. Density is taken from the internal solution state and pressure is computed as an @@ -195,16 +198,17 @@ are available in the paper: end # Calculate 1D flux for a single point -@inline function Trixi.flux(u, orientation::Integer, equations::CompressibleEulerEquationsQuasi1D) +@inline function Trixi.flux(u, orientation::Integer, + equations::CompressibleEulerEquationsQuasi1D) a_rho, a_rho_v1, a_e, a = u rho, v1, p, a = cons2prim(u, equations) e = a_e / a - + # Ignore orientation since it is always "1" in 1D f1 = a_rho_v1 - f2 = a_rho_v1 * v1 + f2 = a_rho_v1 * v1 f3 = a * v1 * (e + p) - + return SVector(f1, f2, f3, zero(eltype(u))) end @@ -227,11 +231,11 @@ Further details are available in the paper: #Variables _, _, p_ll, a_ll = cons2prim(u_ll, equations) _, _, p_rr, _ = cons2prim(u_rr, equations) - + p_avg = 0.5 * (p_ll + p_rr) z = zero(eltype(u_ll)) - + return SVector(z, 2 * a_ll * p_avg, z, z) end @@ -248,7 +252,7 @@ Further details are available in the paper: [DOI: 10.48550/arXiv.2307.12089](https://doi.org/10.48550/arXiv.2307.12089) """ @inline function flux_chan_etal(u_ll, u_rr, orientation::Integer, - equations::CompressibleEulerEquationsQuasi1D) + equations::CompressibleEulerEquationsQuasi1D) # Unpack left and right state rho_ll, v1_ll, p_ll, a_ll = cons2prim(u_ll, equations) rho_rr, v1_rr, p_rr, a_rr = cons2prim(u_rr, equations) @@ -261,7 +265,7 @@ Further details are available in the paper: # = pₗ pᵣ log((ϱₗ pᵣ) / (ϱᵣ pₗ)) / (ϱₗ pᵣ - ϱᵣ pₗ) inv_rho_p_mean = p_ll * p_rr * Trixi.inv_ln_mean(rho_ll * p_rr, rho_rr * p_ll) v1_avg = 0.5 * (v1_ll + v1_rr) - a_v1_avg = 0.5 * (a_ll * v1_ll + a_rr * v1_rr) + a_v1_avg = 0.5 * (a_ll * v1_ll + a_rr * v1_rr) p_avg = 0.5 * (p_ll + p_rr) velocity_square_avg = 0.5 * (v1_ll * v1_rr) @@ -271,7 +275,7 @@ Further details are available in the paper: f2 = rho_mean * a_v1_avg * v1_avg f3 = f1 * (velocity_square_avg + inv_rho_p_mean * equations.inv_gamma_minus_one) + 0.5 * (p_ll * a_rr * v1_rr + p_rr * a_ll * v1_ll) - + return SVector(f1, f2, f3, zero(eltype(u_ll))) end @@ -303,7 +307,7 @@ end a_rho, a_rho_v1, a_e, a = u rho = a_rho / a v1 = a_rho_v1 / a_rho - e = a_e / a + e = a_e / a p = (equations.gamma - 1) * (e - 0.5 * rho * v1^2) c = sqrt(equations.gamma * p / rho) @@ -312,9 +316,9 @@ end # Convert conservative variables to primitive @inline function cons2prim(u, equations::CompressibleEulerEquationsQuasi1D) - a_rho, a_rho_v1, a_e, a = u + a_rho, a_rho_v1, a_e, a = u q = cons2prim(u, CompressibleEulerEquations1D(equations.gamma)) - + return SVector(q[1] / a, q[2], q[3] / a, a) end @@ -322,11 +326,11 @@ end @inline function Trixi.cons2entropy(u, equations::CompressibleEulerEquationsQuasi1D) a_rho, a_rho_v1, a_e, a = u q = cons2entropy(u, CompressibleEulerEquations1D(equations.gamma)) - - w1 = q[1] -log(a) + + w1 = q[1] - log(a) w2 = q[2] w3 = q[3] - + return SVector(w1, w2, w3, a) end @@ -335,7 +339,7 @@ end rho, v1, p, a = u q = prim2cons(u, CompressibleEulerEquations1D(equations.gamma)) - return SVector(a * q[1], a * q[2], a * q[3] , a) + return SVector(a * q[1], a * q[2], a * q[3], a) end @inline function Trixi.density(u, equations::CompressibleEulerEquationsQuasi1D) @@ -347,7 +351,7 @@ end a_rho, a_rho_v1, a_e, a = u rho = a_rho / a v1 = a_rho_v1 / a_rho - e = a_e / a + e = a_e / a p = (equations.gamma - 1) * (e - 0.5 * rho * v1^2) return p end @@ -357,8 +361,8 @@ end rho = a_rho / a v1 = a_rho_v1 / a_rho rho_v1 = a_rho_v1 / a - e = a_e / a + e = a_e / a rho_times_p = (equations.gamma - 1) * (e - 0.5 * rho * v1^2) * rho return rho_times_p end -end # @muladd \ No newline at end of file +end # @muladd