diff --git a/examples/structured_2d_dgsem/elixir_euler_warm_bubble.jl b/examples/structured_2d_dgsem/elixir_euler_warm_bubble.jl index abe96ecd70a..63991d45b88 100644 --- a/examples/structured_2d_dgsem/elixir_euler_warm_bubble.jl +++ b/examples/structured_2d_dgsem/elixir_euler_warm_bubble.jl @@ -2,12 +2,12 @@ using OrdinaryDiffEq using Trixi # Physical constants -g::Float64 = 9.81 # gravity of earth -p_0::Float64 = 100_000.0 # reference pressure -c_p::Float64 = 1004.0 # heat capacity for constant pressure (dry air) -c_v::Float64 = 717.0 # heat capacity for constant volume (dry air) -R = c_p - c_v # gas constant (dry air) -gamma = c_p / c_v # heat capacity ratio (dry air) +g::Float64 = 9.81 # gravity of earth +p_0::Float64 = 100_000.0 # reference pressure +c_p::Float64 = 1004.0 # heat capacity for constant pressure (dry air) +c_v::Float64 = 717.0 # heat capacity for constant volume (dry air) +R = c_p - c_v # gas constant (dry air) +gamma = c_p / c_v # heat capacity ratio (dry air) # Warm bubble test from # Wicker, L. J., and Skamarock, W. C., 1998: A time-splitting scheme @@ -26,7 +26,7 @@ function initial_condition_warm_bubble(x, t, equations::CompressibleEulerEquatio θ_ref = 300.0 Δθ = 0.0 if r <= rc - Δθ = 2 * cospi(0.5*r/rc)^2 + Δθ = 2 * cospi(0.5 * r / rc)^2 end θ = θ_ref + Δθ # potential temperature @@ -34,17 +34,17 @@ function initial_condition_warm_bubble(x, t, equations::CompressibleEulerEquatio exner = 1 - g / (c_p * θ) * x[2] # pressure - p = p_0 * exner^(c_p/R) + p = p_0 * exner^(c_p / R) # temperature T = θ * exner - + # density - rho = p / (R*T) - + rho = p / (R * T) + v1 = 20.0 v2 = 0.0 - E = c_v * T + 0.5 * (v1^2 + v2^2) + E = c_v * T + 0.5 * (v1^2 + v2^2) return SVector(rho, rho * v1, rho * v2, rho * E) end @@ -54,16 +54,15 @@ end return SVector(zero(eltype(u)), zero(eltype(u)), -g * rho, -g * rho_v2) end - ############################################################################### # semidiscretization of the compressible Euler equations equations = CompressibleEulerEquations2D(gamma) -boundary_conditions = (x_neg=boundary_condition_periodic, - x_pos=boundary_condition_periodic, - y_neg=boundary_condition_slip_wall, - y_pos=boundary_condition_slip_wall) +boundary_conditions = (x_neg = boundary_condition_periodic, + x_pos = boundary_condition_periodic, + y_neg = boundary_condition_slip_wall, + y_pos = boundary_condition_slip_wall) polydeg = 4 basis = LobattoLegendreBasis(polydeg) @@ -74,7 +73,7 @@ volume_integral = VolumeIntegralFluxDifferencing(volume_flux) solver = DGSEM(basis, surface_flux, volume_integral) -coordinates_min = ( 0.0, 0.0) +coordinates_min = (0.0, 0.0) coordinates_max = (20_000.0, 10_000.0) cells_per_dimension = (64, 32) @@ -95,18 +94,18 @@ summary_callback = SummaryCallback() analysis_interval = 1000 -analysis_callback = AnalysisCallback(semi, interval=analysis_interval, - extra_analysis_errors=(:entropy_conservation_error,)) +analysis_callback = AnalysisCallback(semi, interval = analysis_interval, + extra_analysis_errors = (:entropy_conservation_error,)) -alive_callback = AliveCallback(analysis_interval=analysis_interval) +alive_callback = AliveCallback(analysis_interval = analysis_interval) -save_solution = SaveSolutionCallback(interval=analysis_interval, - save_initial_solution=true, - save_final_solution=true, - output_directory="out.struct_lmars_ra", - solution_variables=cons2prim) +save_solution = SaveSolutionCallback(interval = analysis_interval, + save_initial_solution = true, + save_final_solution = true, + output_directory = "out.struct_lmars_ra", + solution_variables = cons2prim) -stepsize_callback = StepsizeCallback(cfl=0.2) +stepsize_callback = StepsizeCallback(cfl = 0.2) callbacks = CallbackSet(summary_callback, analysis_callback, @@ -116,9 +115,9 @@ callbacks = CallbackSet(summary_callback, ############################################################################### # run the simulation -sol = solve(ode, CarpenterKennedy2N54(williamson_condition=false), - maxiters=1.0e7, - dt=1.0, # solve needs some value here but it will be overwritten by the stepsize_callback - save_everystep=false, callback=callbacks); +sol = solve(ode, CarpenterKennedy2N54(williamson_condition = false), + maxiters = 1.0e7, + dt = 1.0, # solve needs some value here but it will be overwritten by the stepsize_callback + save_everystep = false, callback = callbacks); summary_callback()