diff --git a/src/equations/ideal_glm_mhd_multiion.jl b/src/equations/ideal_glm_mhd_multiion.jl index 53aca822ec..0e1a2054ff 100644 --- a/src/equations/ideal_glm_mhd_multiion.jl +++ b/src/equations/ideal_glm_mhd_multiion.jl @@ -457,7 +457,7 @@ end dissipation[ind_E] -= 0.5f0 * λ * h_B_psi * B3_avg * (w_rr[3] - w_ll[3]) dissipation[ind_E] -= 0.5f0 * λ * h_B_psi * psi_avg * (w_rr[end] - w_ll[end]) - # Dissipation for the energy equation of all ion species depending on w_5. These are the values of the dissipation + # Dissipation for the energy equation of all ion species depending on `w_5`. These are the values of the dissipation # vector that depend on the magnetic and divergence-cleaning field terms of the entries marked with a red cross in # Figure 1 of the reference given above. for kk in eachcomponent(equations) diff --git a/src/equations/numerical_fluxes.jl b/src/equations/numerical_fluxes.jl index 9a1d40d88e..266b84ba4c 100644 --- a/src/equations/numerical_fluxes.jl +++ b/src/equations/numerical_fluxes.jl @@ -233,7 +233,7 @@ flux_es = FluxPlusDissipation(flux_ec, DissipationLaxFriedrichsEntropyVariables( In particular, the numerical flux has the form ```math -f^{\\mathrm{ES}} = f^{\\mathrm{EC}} + \\frac{1}{2} \\lambda_{\\mathrm{max}} H (w_r - w_l), +f^{\\mathrm{ES}} = f^{\\mathrm{EC}} - \\frac{1}{2} \\lambda_{\\mathrm{max}} H (w_r - w_l), ```` where ``f^{\\mathrm{EC}}`` is the entropy-conservative two-point flux function (computed with, e.g., `flux_ec`), ``\\lambda_{\\mathrm{max}}`` is the maximum wave speed estimated as `max_abs_speed(u_l, u_r, orientation_or_normal_direction, equations)`,