From 158e53372cd168e3c2b243f70e3b9faa62c700c3 Mon Sep 17 00:00:00 2001 From: ArseniyKholod <119304909+ArseniyKholod@users.noreply.github.com> Date: Sun, 5 Nov 2023 15:44:01 +0100 Subject: [PATCH] Update differentiable_programming.jl (#1704) --- docs/literate/src/files/differentiable_programming.jl | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/docs/literate/src/files/differentiable_programming.jl b/docs/literate/src/files/differentiable_programming.jl index 33427803afc..0960ba25d9f 100644 --- a/docs/literate/src/files/differentiable_programming.jl +++ b/docs/literate/src/files/differentiable_programming.jl @@ -43,7 +43,7 @@ scatter(real.(λ), imag.(λ), label="central flux") # As you can see here, the maximal real part is close to zero. relative_maximum = maximum(real, λ) / maximum(abs, λ) -@test 3.0e-10 < relative_maximum < 8.0e-10 #src +@test 3.0e-10 < relative_maximum < 9.0e-10 #src # Interestingly, if we add dissipation by switching to the `flux_lax_friedrichs` # at the interfaces, the maximal real part of the eigenvalues increases. @@ -87,7 +87,7 @@ scatter(real.(λ), imag.(λ), label="central flux") # Here, the maximal real part is basically zero to machine accuracy. relative_maximum = maximum(real, λ) / maximum(abs, λ) -@test 1.0e-17 < relative_maximum < 1.0e-15 #src +@test 1.0e-17 < relative_maximum < 2.0e-15 #src # Moreover, the eigenvectors are not as ill-conditioned as in 2D.