diff --git a/Project.toml b/Project.toml index 27df49ed4fa..6ff7f29686d 100644 --- a/Project.toml +++ b/Project.toml @@ -1,7 +1,7 @@ name = "Trixi" uuid = "a7f1ee26-1774-49b1-8366-f1abc58fbfcb" authors = ["Michael Schlottke-Lakemper ", "Gregor Gassner ", "Hendrik Ranocha ", "Andrew R. Winters ", "Jesse Chan "] -version = "0.7.5-pre" +version = "0.7.6-pre" [deps] CodeTracking = "da1fd8a2-8d9e-5ec2-8556-3022fb5608a2" @@ -75,7 +75,7 @@ MuladdMacro = "0.2.2" Octavian = "0.3.21" OffsetArrays = "1.12" P4est = "0.4.9" -Polyester = "0.7.5" +Polyester = "0.7.10" PrecompileTools = "1.1" Preferences = "1.3" Printf = "1" diff --git a/docs/src/performance.md b/docs/src/performance.md index 40970e58c5c..9f81d3c3d8e 100644 --- a/docs/src/performance.md +++ b/docs/src/performance.md @@ -282,14 +282,3 @@ requires. It can thus be seen as a proxy for "energy used" and, as an extension, timing result, you need to set the analysis interval such that the `AnalysisCallback` is invoked at least once during the course of the simulation and discard the first PID value. - -## Performance issues with multi-threaded reductions -[False sharing](https://en.wikipedia.org/wiki/False_sharing) is a known performance issue -for systems with distributed caches. It also occurred for the implementation of a thread -parallel bounds checking routine for the subcell IDP limiting -in [PR #1736](https://github.com/trixi-framework/Trixi.jl/pull/1736). -After some [testing and discussion](https://github.com/trixi-framework/Trixi.jl/pull/1736#discussion_r1423881895), -it turned out that initializing a vector of length `n * Threads.nthreads()` and only using every -n-th entry instead of a vector of length `Threads.nthreads()` fixes the problem. -Since there are no processors with caches over 128B, we use `n = 128B / size(uEltype)`. -Now, the bounds checking routine of the IDP limiting scales as hoped. diff --git a/examples/dgmulti_2d/elixir_navierstokes_lid_driven_cavity.jl b/examples/dgmulti_2d/elixir_navierstokes_lid_driven_cavity.jl index 7c55cbf0ccf..a612dd0e0d5 100644 --- a/examples/dgmulti_2d/elixir_navierstokes_lid_driven_cavity.jl +++ b/examples/dgmulti_2d/elixir_navierstokes_lid_driven_cavity.jl @@ -4,12 +4,11 @@ using Trixi ############################################################################### # semidiscretization of the ideal compressible Navier-Stokes equations -# TODO: parabolic; unify names of these accessor functions prandtl_number() = 0.72 -mu() = 0.001 +mu = 0.001 equations = CompressibleEulerEquations2D(1.4) -equations_parabolic = CompressibleNavierStokesDiffusion2D(equations, mu = mu(), +equations_parabolic = CompressibleNavierStokesDiffusion2D(equations, mu = mu, Prandtl = prandtl_number()) # Create DG solver with polynomial degree = 3 and (local) Lax-Friedrichs/Rusanov flux as surface flux diff --git a/examples/dgmulti_3d/elixir_navierstokes_taylor_green_vortex.jl b/examples/dgmulti_3d/elixir_navierstokes_taylor_green_vortex.jl index dedd8267a3b..9ae90ac47b6 100644 --- a/examples/dgmulti_3d/elixir_navierstokes_taylor_green_vortex.jl +++ b/examples/dgmulti_3d/elixir_navierstokes_taylor_green_vortex.jl @@ -5,12 +5,11 @@ using Trixi ############################################################################### # semidiscretization of the compressible Navier-Stokes equations -# TODO: parabolic; unify names of these accessor functions prandtl_number() = 0.72 -mu() = 6.25e-4 # equivalent to Re = 1600 +mu = 6.25e-4 # equivalent to Re = 1600 equations = CompressibleEulerEquations3D(1.4) -equations_parabolic = CompressibleNavierStokesDiffusion3D(equations, mu = mu(), +equations_parabolic = CompressibleNavierStokesDiffusion3D(equations, mu = mu, Prandtl = prandtl_number()) """ diff --git a/examples/p4est_2d_dgsem/elixir_navierstokes_lid_driven_cavity.jl b/examples/p4est_2d_dgsem/elixir_navierstokes_lid_driven_cavity.jl index bc28ae6ffb3..728736fe49e 100644 --- a/examples/p4est_2d_dgsem/elixir_navierstokes_lid_driven_cavity.jl +++ b/examples/p4est_2d_dgsem/elixir_navierstokes_lid_driven_cavity.jl @@ -4,12 +4,11 @@ using Trixi ############################################################################### # semidiscretization of the ideal compressible Navier-Stokes equations -# TODO: parabolic; unify names of these accessor functions prandtl_number() = 0.72 -mu() = 0.001 +mu = 0.001 equations = CompressibleEulerEquations2D(1.4) -equations_parabolic = CompressibleNavierStokesDiffusion2D(equations, mu = mu(), +equations_parabolic = CompressibleNavierStokesDiffusion2D(equations, mu = mu, Prandtl = prandtl_number()) # Create DG solver with polynomial degree = 3 and (local) Lax-Friedrichs/Rusanov flux as surface flux diff --git a/examples/p4est_2d_dgsem/elixir_navierstokes_lid_driven_cavity_amr.jl b/examples/p4est_2d_dgsem/elixir_navierstokes_lid_driven_cavity_amr.jl index 898366969a4..d9eaf4fdb72 100644 --- a/examples/p4est_2d_dgsem/elixir_navierstokes_lid_driven_cavity_amr.jl +++ b/examples/p4est_2d_dgsem/elixir_navierstokes_lid_driven_cavity_amr.jl @@ -4,12 +4,11 @@ using Trixi ############################################################################### # semidiscretization of the ideal compressible Navier-Stokes equations -# TODO: parabolic; unify names of these accessor functions prandtl_number() = 0.72 -mu() = 0.001 +mu = 0.001 equations = CompressibleEulerEquations2D(1.4) -equations_parabolic = CompressibleNavierStokesDiffusion2D(equations, mu = mu(), +equations_parabolic = CompressibleNavierStokesDiffusion2D(equations, mu = mu, Prandtl = prandtl_number()) # Create DG solver with polynomial degree = 3 and (local) Lax-Friedrichs/Rusanov flux as surface flux diff --git a/examples/p4est_3d_dgsem/elixir_navierstokes_blast_wave_amr.jl b/examples/p4est_3d_dgsem/elixir_navierstokes_blast_wave_amr.jl index 5df89fbcdf2..d556d0ab70d 100644 --- a/examples/p4est_3d_dgsem/elixir_navierstokes_blast_wave_amr.jl +++ b/examples/p4est_3d_dgsem/elixir_navierstokes_blast_wave_amr.jl @@ -5,12 +5,11 @@ using Trixi ############################################################################### # semidiscretization of the compressible Navier-Stokes equations -# TODO: parabolic; unify names of these accessor functions prandtl_number() = 0.72 -mu() = 6.25e-4 # equivalent to Re = 1600 +mu = 6.25e-4 # equivalent to Re = 1600 equations = CompressibleEulerEquations3D(1.4) -equations_parabolic = CompressibleNavierStokesDiffusion3D(equations, mu = mu(), +equations_parabolic = CompressibleNavierStokesDiffusion3D(equations, mu = mu, Prandtl = prandtl_number()) function initial_condition_3d_blast_wave(x, t, equations::CompressibleEulerEquations3D) diff --git a/examples/p4est_3d_dgsem/elixir_navierstokes_taylor_green_vortex.jl b/examples/p4est_3d_dgsem/elixir_navierstokes_taylor_green_vortex.jl index d785013f5a9..9c90e4d3218 100644 --- a/examples/p4est_3d_dgsem/elixir_navierstokes_taylor_green_vortex.jl +++ b/examples/p4est_3d_dgsem/elixir_navierstokes_taylor_green_vortex.jl @@ -5,12 +5,11 @@ using Trixi ############################################################################### # semidiscretization of the compressible Navier-Stokes equations -# TODO: parabolic; unify names of these accessor functions prandtl_number() = 0.72 -mu() = 6.25e-4 # equivalent to Re = 1600 +mu = 6.25e-4 # equivalent to Re = 1600 equations = CompressibleEulerEquations3D(1.4) -equations_parabolic = CompressibleNavierStokesDiffusion3D(equations, mu = mu(), +equations_parabolic = CompressibleNavierStokesDiffusion3D(equations, mu = mu, Prandtl = prandtl_number()) """ diff --git a/examples/p4est_3d_dgsem/elixir_navierstokes_taylor_green_vortex_amr.jl b/examples/p4est_3d_dgsem/elixir_navierstokes_taylor_green_vortex_amr.jl index c15227a1c29..2741f0df174 100644 --- a/examples/p4est_3d_dgsem/elixir_navierstokes_taylor_green_vortex_amr.jl +++ b/examples/p4est_3d_dgsem/elixir_navierstokes_taylor_green_vortex_amr.jl @@ -5,12 +5,11 @@ using Trixi ############################################################################### # semidiscretization of the compressible Navier-Stokes equations -# TODO: parabolic; unify names of these accessor functions prandtl_number() = 0.72 -mu() = 6.25e-4 # equivalent to Re = 1600 +mu = 6.25e-4 # equivalent to Re = 1600 equations = CompressibleEulerEquations3D(1.4) -equations_parabolic = CompressibleNavierStokesDiffusion3D(equations, mu = mu(), +equations_parabolic = CompressibleNavierStokesDiffusion3D(equations, mu = mu, Prandtl = prandtl_number()) """ diff --git a/examples/tree_1d_dgsem/elixir_navierstokes_convergence_periodic.jl b/examples/tree_1d_dgsem/elixir_navierstokes_convergence_periodic.jl index 33ad0d5271c..eab0840f385 100644 --- a/examples/tree_1d_dgsem/elixir_navierstokes_convergence_periodic.jl +++ b/examples/tree_1d_dgsem/elixir_navierstokes_convergence_periodic.jl @@ -5,7 +5,6 @@ using Trixi ############################################################################### # semidiscretization of the compressible Navier-Stokes equations -# TODO: parabolic; unify names of these accessor functions prandtl_number() = 0.72 mu() = 6.25e-4 # equivalent to Re = 1600 diff --git a/examples/tree_2d_dgsem/elixir_navierstokes_lid_driven_cavity.jl b/examples/tree_2d_dgsem/elixir_navierstokes_lid_driven_cavity.jl index 70d76fc9075..b8e20e27f66 100644 --- a/examples/tree_2d_dgsem/elixir_navierstokes_lid_driven_cavity.jl +++ b/examples/tree_2d_dgsem/elixir_navierstokes_lid_driven_cavity.jl @@ -4,12 +4,11 @@ using Trixi ############################################################################### # semidiscretization of the ideal compressible Navier-Stokes equations -# TODO: parabolic; unify names of these accessor functions prandtl_number() = 0.72 -mu() = 0.001 +mu = 0.001 equations = CompressibleEulerEquations2D(1.4) -equations_parabolic = CompressibleNavierStokesDiffusion2D(equations, mu = mu(), +equations_parabolic = CompressibleNavierStokesDiffusion2D(equations, mu = mu, Prandtl = prandtl_number()) # Create DG solver with polynomial degree = 3 and (local) Lax-Friedrichs/Rusanov flux as surface flux diff --git a/examples/tree_2d_dgsem/elixir_navierstokes_shearlayer_amr.jl b/examples/tree_2d_dgsem/elixir_navierstokes_shearlayer_amr.jl index 4d92ea261e9..a7492bafb47 100644 --- a/examples/tree_2d_dgsem/elixir_navierstokes_shearlayer_amr.jl +++ b/examples/tree_2d_dgsem/elixir_navierstokes_shearlayer_amr.jl @@ -5,12 +5,11 @@ using Trixi ############################################################################### # semidiscretization of the compressible Navier-Stokes equations -# TODO: parabolic; unify names of these accessor functions prandtl_number() = 0.72 -mu() = 1.0 / 3.0 * 10^(-5) # equivalent to Re = 30,000 +mu = 1.0 / 3.0 * 10^(-4) # equivalent to Re = 30,000 equations = CompressibleEulerEquations2D(1.4) -equations_parabolic = CompressibleNavierStokesDiffusion2D(equations, mu = mu(), +equations_parabolic = CompressibleNavierStokesDiffusion2D(equations, mu = mu, Prandtl = prandtl_number()) """ diff --git a/examples/tree_2d_dgsem/elixir_navierstokes_taylor_green_vortex.jl b/examples/tree_2d_dgsem/elixir_navierstokes_taylor_green_vortex.jl index a3e38bf6d92..c6e5f0bc40a 100644 --- a/examples/tree_2d_dgsem/elixir_navierstokes_taylor_green_vortex.jl +++ b/examples/tree_2d_dgsem/elixir_navierstokes_taylor_green_vortex.jl @@ -5,12 +5,11 @@ using Trixi ############################################################################### # semidiscretization of the compressible Navier-Stokes equations -# TODO: parabolic; unify names of these accessor functions prandtl_number() = 0.72 -mu() = 6.25e-4 # equivalent to Re = 1600 +mu = 6.25e-4 # equivalent to Re = 1600 equations = CompressibleEulerEquations2D(1.4) -equations_parabolic = CompressibleNavierStokesDiffusion2D(equations, mu = mu(), +equations_parabolic = CompressibleNavierStokesDiffusion2D(equations, mu = mu, Prandtl = prandtl_number()) """ diff --git a/examples/tree_2d_dgsem/elixir_navierstokes_taylor_green_vortex_sutherland.jl b/examples/tree_2d_dgsem/elixir_navierstokes_taylor_green_vortex_sutherland.jl new file mode 100644 index 00000000000..9598ae184cd --- /dev/null +++ b/examples/tree_2d_dgsem/elixir_navierstokes_taylor_green_vortex_sutherland.jl @@ -0,0 +1,94 @@ + +using OrdinaryDiffEq +using Trixi + +############################################################################### +# semidiscretization of the compressible Navier-Stokes equations + +prandtl_number() = 0.72 + +# Use Sutherland's law for a temperature-dependent viscosity. +# For details, see e.g. +# Frank M. White: Viscous Fluid Flow, 2nd Edition. +# 1991, McGraw-Hill, ISBN, 0-07-069712-4 +# Pages 28 and 29. +@inline function mu(u, equations) + T_ref = 291.15 + + R_specific_air = 287.052874 + T = R_specific_air * Trixi.temperature(u, equations) + + C_air = 120.0 + mu_ref_air = 1.827e-5 + + return mu_ref_air * (T_ref + C_air) / (T + C_air) * (T / T_ref)^1.5 +end + +equations = CompressibleEulerEquations2D(1.4) +equations_parabolic = CompressibleNavierStokesDiffusion2D(equations, mu = mu, + Prandtl = prandtl_number()) + +""" + initial_condition_taylor_green_vortex(x, t, equations::CompressibleEulerEquations2D) + +The classical viscous Taylor-Green vortex in 2D. +This forms the basis behind the 3D case found for instance in + - Jonathan R. Bull and Antony Jameson + Simulation of the Compressible Taylor Green Vortex using High-Order Flux Reconstruction Schemes + [DOI: 10.2514/6.2014-3210](https://doi.org/10.2514/6.2014-3210) +""" +function initial_condition_taylor_green_vortex(x, t, + equations::CompressibleEulerEquations2D) + A = 1.0 # magnitude of speed + Ms = 0.1 # maximum Mach number + + rho = 1.0 + v1 = A * sin(x[1]) * cos(x[2]) + v2 = -A * cos(x[1]) * sin(x[2]) + p = (A / Ms)^2 * rho / equations.gamma # scaling to get Ms + p = p + 1.0 / 4.0 * A^2 * rho * (cos(2 * x[1]) + cos(2 * x[2])) + + return prim2cons(SVector(rho, v1, v2, p), equations) +end +initial_condition = initial_condition_taylor_green_vortex + +volume_flux = flux_ranocha +solver = DGSEM(polydeg = 3, surface_flux = flux_hllc, + volume_integral = VolumeIntegralFluxDifferencing(volume_flux)) + +coordinates_min = (-1.0, -1.0) .* pi +coordinates_max = (1.0, 1.0) .* pi +mesh = TreeMesh(coordinates_min, coordinates_max, + initial_refinement_level = 4, + n_cells_max = 100_000) + +semi = SemidiscretizationHyperbolicParabolic(mesh, (equations, equations_parabolic), + initial_condition, solver) + +############################################################################### +# ODE solvers, callbacks etc. + +tspan = (0.0, 20.0) +ode = semidiscretize(semi, tspan) + +summary_callback = SummaryCallback() + +analysis_interval = 100 +analysis_callback = AnalysisCallback(semi, interval = analysis_interval, + save_analysis = true, + extra_analysis_integrals = (energy_kinetic, + energy_internal)) + +alive_callback = AliveCallback(analysis_interval = analysis_interval) + +callbacks = CallbackSet(summary_callback, + analysis_callback, + alive_callback) + +############################################################################### +# run the simulation + +time_int_tol = 1e-9 +sol = solve(ode, RDPK3SpFSAL49(); abstol = time_int_tol, reltol = time_int_tol, + ode_default_options()..., callback = callbacks) +summary_callback() # print the timer summary diff --git a/examples/tree_3d_dgsem/elixir_navierstokes_taylor_green_vortex.jl b/examples/tree_3d_dgsem/elixir_navierstokes_taylor_green_vortex.jl index 65bd9aa133d..3e54c791ec6 100644 --- a/examples/tree_3d_dgsem/elixir_navierstokes_taylor_green_vortex.jl +++ b/examples/tree_3d_dgsem/elixir_navierstokes_taylor_green_vortex.jl @@ -5,12 +5,11 @@ using Trixi ############################################################################### # semidiscretization of the compressible Navier-Stokes equations -# TODO: parabolic; unify names of these accessor functions prandtl_number() = 0.72 -mu() = 6.25e-4 # equivalent to Re = 1600 +mu = 6.25e-4 # equivalent to Re = 1600 equations = CompressibleEulerEquations3D(1.4) -equations_parabolic = CompressibleNavierStokesDiffusion3D(equations, mu = mu(), +equations_parabolic = CompressibleNavierStokesDiffusion3D(equations, mu = mu, Prandtl = prandtl_number()) """ diff --git a/src/callbacks_stage/subcell_bounds_check_2d.jl b/src/callbacks_stage/subcell_bounds_check_2d.jl index 19d73968c9a..3a56ea71f62 100644 --- a/src/callbacks_stage/subcell_bounds_check_2d.jl +++ b/src/callbacks_stage/subcell_bounds_check_2d.jl @@ -12,35 +12,37 @@ (; variable_bounds) = limiter.cache.subcell_limiter_coefficients (; idp_bounds_delta_local, idp_bounds_delta_global) = limiter.cache - # Note: Accessing the threaded memory vector `idp_bounds_delta_local` with - # `deviation = idp_bounds_delta_local[key][Threads.threadid()]` causes critical performance - # issues due to False Sharing. - # Initializing a vector with n times the length and using every n-th entry fixes this - # problem and allows proper scaling: - # `deviation = idp_bounds_delta_local[key][n * Threads.threadid()]` - # Since there are no processors with caches over 128B, we use `n = 128B / size(uEltype)` - stride_size = div(128, sizeof(eltype(u))) # = n + # Note: In order to get the maximum deviation from the target bounds, this bounds check + # requires a reduction in every RK stage and for every enabled limiting option. To make + # this Thread-parallel we are using Polyester.jl's (at least v0.7.10) `@batch reduction` + # functionality. + # Although `@threaded` and `@batch` are currently used equivalently in Trixi.jl, we use + # `@batch` here to allow a possible redefinition of `@threaded` without creating errors here. + # See also https://github.com/trixi-framework/Trixi.jl/pull/1888#discussion_r1537785293. if local_minmax for v in limiter.local_minmax_variables_cons v_string = string(v) key_min = Symbol(v_string, "_min") key_max = Symbol(v_string, "_max") - deviation_min_threaded = idp_bounds_delta_local[key_min] - deviation_max_threaded = idp_bounds_delta_local[key_max] - @threaded for element in eachelement(solver, cache) - deviation_min = deviation_min_threaded[stride_size * Threads.threadid()] - deviation_max = deviation_max_threaded[stride_size * Threads.threadid()] + deviation_min = idp_bounds_delta_local[key_min] + deviation_max = idp_bounds_delta_local[key_max] + @batch reduction=((max, deviation_min), (max, deviation_max)) for element in eachelement(solver, + cache) for j in eachnode(solver), i in eachnode(solver) var = u[v, i, j, element] + # Note: We always save the absolute deviations >= 0 and therefore use the + # `max` operator for the lower and upper bound. The different directions of + # upper and lower bound are considered in their calculations with a + # different sign. deviation_min = max(deviation_min, variable_bounds[key_min][i, j, element] - var) deviation_max = max(deviation_max, var - variable_bounds[key_max][i, j, element]) end - deviation_min_threaded[stride_size * Threads.threadid()] = deviation_min - deviation_max_threaded[stride_size * Threads.threadid()] = deviation_max end + idp_bounds_delta_local[key_min] = deviation_min + idp_bounds_delta_local[key_max] = deviation_max end end if positivity @@ -49,40 +51,35 @@ continue end key = Symbol(string(v), "_min") - deviation_threaded = idp_bounds_delta_local[key] - @threaded for element in eachelement(solver, cache) - deviation = deviation_threaded[stride_size * Threads.threadid()] + deviation = idp_bounds_delta_local[key] + @batch reduction=(max, deviation) for element in eachelement(solver, cache) for j in eachnode(solver), i in eachnode(solver) var = u[v, i, j, element] deviation = max(deviation, variable_bounds[key][i, j, element] - var) end - deviation_threaded[stride_size * Threads.threadid()] = deviation end + idp_bounds_delta_local[key] = deviation end for variable in limiter.positivity_variables_nonlinear key = Symbol(string(variable), "_min") - deviation_threaded = idp_bounds_delta_local[key] - @threaded for element in eachelement(solver, cache) - deviation = deviation_threaded[stride_size * Threads.threadid()] + deviation = idp_bounds_delta_local[key] + @batch reduction=(max, deviation) for element in eachelement(solver, cache) for j in eachnode(solver), i in eachnode(solver) var = variable(get_node_vars(u, equations, solver, i, j, element), equations) deviation = max(deviation, variable_bounds[key][i, j, element] - var) end - deviation_threaded[stride_size * Threads.threadid()] = deviation end + idp_bounds_delta_local[key] = deviation end end for (key, _) in idp_bounds_delta_local - # Calculate maximum deviations of all threads - idp_bounds_delta_local[key][stride_size] = maximum(idp_bounds_delta_local[key][stride_size * i] - for i in 1:Threads.nthreads()) # Update global maximum deviations idp_bounds_delta_global[key] = max(idp_bounds_delta_global[key], - idp_bounds_delta_local[key][stride_size]) + idp_bounds_delta_local[key]) end if save_errors @@ -92,10 +89,8 @@ if local_minmax for v in limiter.local_minmax_variables_cons v_string = string(v) - print(f, ", ", - idp_bounds_delta_local[Symbol(v_string, "_min")][stride_size], - ", ", - idp_bounds_delta_local[Symbol(v_string, "_max")][stride_size]) + print(f, ", ", idp_bounds_delta_local[Symbol(v_string, "_min")], + ", ", idp_bounds_delta_local[Symbol(v_string, "_max")]) end end if positivity @@ -103,21 +98,18 @@ if v in limiter.local_minmax_variables_cons continue end - print(f, ", ", - idp_bounds_delta_local[Symbol(string(v), "_min")][stride_size]) + print(f, ", ", idp_bounds_delta_local[Symbol(string(v), "_min")]) end for variable in limiter.positivity_variables_nonlinear print(f, ", ", - idp_bounds_delta_local[Symbol(string(variable), "_min")][stride_size]) + idp_bounds_delta_local[Symbol(string(variable), "_min")]) end end println(f) end # Reset local maximum deviations for (key, _) in idp_bounds_delta_local - for i in 1:Threads.nthreads() - idp_bounds_delta_local[key][stride_size * i] = zero(eltype(idp_bounds_delta_local[key][stride_size])) - end + idp_bounds_delta_local[key] = zero(eltype(idp_bounds_delta_local[key])) end end diff --git a/src/callbacks_step/amr.jl b/src/callbacks_step/amr.jl index 6f57d6647fc..1ab65a3553e 100644 --- a/src/callbacks_step/amr.jl +++ b/src/callbacks_step/amr.jl @@ -138,11 +138,18 @@ function initialize!(cb::DiscreteCallback{Condition, Affect!}, u, t, # iterate until mesh does not change anymore has_changed = amr_callback(integrator, only_refine = amr_callback.adapt_initial_condition_only_refine) + iterations = 1 while has_changed compute_coefficients!(integrator.u, t, semi) u_modified!(integrator, true) has_changed = amr_callback(integrator, only_refine = amr_callback.adapt_initial_condition_only_refine) + iterations = iterations + 1 + if iterations > 10 + @warn "AMR for initial condition did not settle within 10 iterations!\n" * + "Consider adjusting thresholds or setting `adapt_initial_condition_only_refine`." + break + end end end diff --git a/src/equations/compressible_navier_stokes.jl b/src/equations/compressible_navier_stokes.jl index 3059771197c..c530625f226 100644 --- a/src/equations/compressible_navier_stokes.jl +++ b/src/equations/compressible_navier_stokes.jl @@ -62,3 +62,17 @@ Under `GradientVariablesEntropy`, the Navier-Stokes discretization is provably e """ struct GradientVariablesPrimitive end struct GradientVariablesEntropy end + +""" + dynamic_viscosity(u, equations) + +Wrapper for the dynamic viscosity that calls +`dynamic_viscosity(u, equations.mu, equations)`, which dispatches on the type of +`equations.mu`. +For constant `equations.mu`, i.e., `equations.mu` is of `Real`-type it is returned directly. +In all other cases, `equations.mu` is assumed to be a function with arguments +`u` and `equations` and is called with these arguments. +""" +dynamic_viscosity(u, equations) = dynamic_viscosity(u, equations.mu, equations) +dynamic_viscosity(u, mu::Real, equations) = mu +dynamic_viscosity(u, mu::T, equations) where {T} = mu(u, equations) diff --git a/src/equations/compressible_navier_stokes_1d.jl b/src/equations/compressible_navier_stokes_1d.jl index d2c46ecc7d8..3dbdf11c56b 100644 --- a/src/equations/compressible_navier_stokes_1d.jl +++ b/src/equations/compressible_navier_stokes_1d.jl @@ -21,6 +21,9 @@ the [`CompressibleEulerEquations1D`](@ref). Fluid properties such as the dynamic viscosity ``\mu`` can be provided in any consistent unit system, e.g., [``\mu``] = kg m⁻¹ s⁻¹. +The viscosity ``\mu`` may be a constant or a function of the current state, e.g., +depending on temperature (Sutherland's law): ``\mu = \mu(T)``. +In the latter case, the function `mu` needs to have the signature `mu(u, equations)`. The particular form of the compressible Navier-Stokes implemented is ```math @@ -80,7 +83,7 @@ where w_2 = \frac{\rho v1}{p},\, w_3 = -\frac{\rho}{p} ``` """ -struct CompressibleNavierStokesDiffusion1D{GradientVariables, RealT <: Real, +struct CompressibleNavierStokesDiffusion1D{GradientVariables, RealT <: Real, Mu, E <: AbstractCompressibleEulerEquations{1}} <: AbstractCompressibleNavierStokesDiffusion{1, 3, GradientVariables} # TODO: parabolic @@ -89,7 +92,7 @@ struct CompressibleNavierStokesDiffusion1D{GradientVariables, RealT <: Real, gamma::RealT # ratio of specific heats inv_gamma_minus_one::RealT # = inv(gamma - 1); can be used to write slow divisions as fast multiplications - mu::RealT # viscosity + mu::Mu # viscosity Pr::RealT # Prandtl number kappa::RealT # thermal diffusivity for Fick's law @@ -103,16 +106,17 @@ function CompressibleNavierStokesDiffusion1D(equations::CompressibleEulerEquatio gradient_variables = GradientVariablesPrimitive()) gamma = equations.gamma inv_gamma_minus_one = equations.inv_gamma_minus_one - μ, Pr = promote(mu, Prandtl) # Under the assumption of constant Prandtl number the thermal conductivity - # constant is kappa = gamma μ / ((gamma-1) Pr). + # constant is kappa = gamma μ / ((gamma-1) Prandtl). # Important note! Factor of μ is accounted for later in `flux`. - kappa = gamma * inv_gamma_minus_one / Pr + # This avoids recomputation of kappa for non-constant μ. + kappa = gamma * inv_gamma_minus_one / Prandtl CompressibleNavierStokesDiffusion1D{typeof(gradient_variables), typeof(gamma), + typeof(mu), typeof(equations)}(gamma, inv_gamma_minus_one, - μ, Pr, kappa, + mu, Prandtl, kappa, equations, gradient_variables) end @@ -159,10 +163,12 @@ function flux(u, gradients, orientation::Integer, # in the implementation q1 = equations.kappa * dTdx - # Constant dynamic viscosity is copied to a variable for readability. - # Offers flexibility for dynamic viscosity via Sutherland's law where it depends - # on temperature and reference values, Ts and Tref such that mu(T) - mu = equations.mu + # In the simplest cases, the user passed in `mu` or `mu()` + # (which returns just a constant) but + # more complex functions like Sutherland's law are possible. + # `dynamic_viscosity` is a helper function that handles both cases + # by dispatching on the type of `equations.mu`. + mu = dynamic_viscosity(u, equations) # viscous flux components in the x-direction f1 = zero(rho) diff --git a/src/equations/compressible_navier_stokes_2d.jl b/src/equations/compressible_navier_stokes_2d.jl index 5df7c01ca5c..3256343703a 100644 --- a/src/equations/compressible_navier_stokes_2d.jl +++ b/src/equations/compressible_navier_stokes_2d.jl @@ -21,6 +21,9 @@ the [`CompressibleEulerEquations2D`](@ref). Fluid properties such as the dynamic viscosity ``\mu`` can be provided in any consistent unit system, e.g., [``\mu``] = kg m⁻¹ s⁻¹. +The viscosity ``\mu`` may be a constant or a function of the current state, e.g., +depending on temperature (Sutherland's law): ``\mu = \mu(T)``. +In the latter case, the function `mu` needs to have the signature `mu(u, equations)`. The particular form of the compressible Navier-Stokes implemented is ```math @@ -80,7 +83,7 @@ where w_2 = \frac{\rho v_1}{p},\, w_3 = \frac{\rho v_2}{p},\, w_4 = -\frac{\rho}{p} ``` """ -struct CompressibleNavierStokesDiffusion2D{GradientVariables, RealT <: Real, +struct CompressibleNavierStokesDiffusion2D{GradientVariables, RealT <: Real, Mu, E <: AbstractCompressibleEulerEquations{2}} <: AbstractCompressibleNavierStokesDiffusion{2, 4, GradientVariables} # TODO: parabolic @@ -89,7 +92,7 @@ struct CompressibleNavierStokesDiffusion2D{GradientVariables, RealT <: Real, gamma::RealT # ratio of specific heats inv_gamma_minus_one::RealT # = inv(gamma - 1); can be used to write slow divisions as fast multiplications - mu::RealT # viscosity + mu::Mu # viscosity Pr::RealT # Prandtl number kappa::RealT # thermal diffusivity for Fick's law @@ -103,16 +106,17 @@ function CompressibleNavierStokesDiffusion2D(equations::CompressibleEulerEquatio gradient_variables = GradientVariablesPrimitive()) gamma = equations.gamma inv_gamma_minus_one = equations.inv_gamma_minus_one - μ, Pr = promote(mu, Prandtl) # Under the assumption of constant Prandtl number the thermal conductivity - # constant is kappa = gamma μ / ((gamma-1) Pr). + # constant is kappa = gamma μ / ((gamma-1) Prandtl). # Important note! Factor of μ is accounted for later in `flux`. - kappa = gamma * inv_gamma_minus_one / Pr + # This avoids recomputation of kappa for non-constant μ. + kappa = gamma * inv_gamma_minus_one / Prandtl CompressibleNavierStokesDiffusion2D{typeof(gradient_variables), typeof(gamma), + typeof(mu), typeof(equations)}(gamma, inv_gamma_minus_one, - μ, Pr, kappa, + mu, Prandtl, kappa, equations, gradient_variables) end @@ -168,10 +172,12 @@ function flux(u, gradients, orientation::Integer, q1 = equations.kappa * dTdx q2 = equations.kappa * dTdy - # Constant dynamic viscosity is copied to a variable for readability. - # Offers flexibility for dynamic viscosity via Sutherland's law where it depends - # on temperature and reference values, Ts and Tref such that mu(T) - mu = equations.mu + # In the simplest cases, the user passed in `mu` or `mu()` + # (which returns just a constant) but + # more complex functions like Sutherland's law are possible. + # `dynamic_viscosity` is a helper function that handles both cases + # by dispatching on the type of `equations.mu`. + mu = dynamic_viscosity(u, equations) if orientation == 1 # viscous flux components in the x-direction diff --git a/src/equations/compressible_navier_stokes_3d.jl b/src/equations/compressible_navier_stokes_3d.jl index e5567ae5789..9833122eb32 100644 --- a/src/equations/compressible_navier_stokes_3d.jl +++ b/src/equations/compressible_navier_stokes_3d.jl @@ -21,6 +21,9 @@ the [`CompressibleEulerEquations3D`](@ref). Fluid properties such as the dynamic viscosity ``\mu`` can be provided in any consistent unit system, e.g., [``\mu``] = kg m⁻¹ s⁻¹. +The viscosity ``\mu`` may be a constant or a function of the current state, e.g., +depending on temperature (Sutherland's law): ``\mu = \mu(T)``. +In the latter case, the function `mu` needs to have the signature `mu(u, equations)`. The particular form of the compressible Navier-Stokes implemented is ```math @@ -80,7 +83,7 @@ where w_2 = \frac{\rho v_1}{p},\, w_3 = \frac{\rho v_2}{p},\, w_4 = \frac{\rho v_3}{p},\, w_5 = -\frac{\rho}{p} ``` """ -struct CompressibleNavierStokesDiffusion3D{GradientVariables, RealT <: Real, +struct CompressibleNavierStokesDiffusion3D{GradientVariables, RealT <: Real, Mu, E <: AbstractCompressibleEulerEquations{3}} <: AbstractCompressibleNavierStokesDiffusion{3, 5, GradientVariables} # TODO: parabolic @@ -89,7 +92,7 @@ struct CompressibleNavierStokesDiffusion3D{GradientVariables, RealT <: Real, gamma::RealT # ratio of specific heats inv_gamma_minus_one::RealT # = inv(gamma - 1); can be used to write slow divisions as fast multiplications - mu::RealT # viscosity + mu::Mu # viscosity Pr::RealT # Prandtl number kappa::RealT # thermal diffusivity for Fick's law @@ -103,16 +106,17 @@ function CompressibleNavierStokesDiffusion3D(equations::CompressibleEulerEquatio gradient_variables = GradientVariablesPrimitive()) gamma = equations.gamma inv_gamma_minus_one = equations.inv_gamma_minus_one - μ, Pr = promote(mu, Prandtl) # Under the assumption of constant Prandtl number the thermal conductivity - # constant is kappa = gamma μ / ((gamma-1) Pr). + # constant is kappa = gamma μ / ((gamma-1) Prandtl). # Important note! Factor of μ is accounted for later in `flux`. - kappa = gamma * inv_gamma_minus_one / Pr + # This avoids recomputation of kappa for non-constant μ. + kappa = gamma * inv_gamma_minus_one / Prandtl CompressibleNavierStokesDiffusion3D{typeof(gradient_variables), typeof(gamma), + typeof(mu), typeof(equations)}(gamma, inv_gamma_minus_one, - μ, Pr, kappa, + mu, Prandtl, kappa, equations, gradient_variables) end @@ -181,10 +185,12 @@ function flux(u, gradients, orientation::Integer, q2 = equations.kappa * dTdy q3 = equations.kappa * dTdz - # Constant dynamic viscosity is copied to a variable for readability. - # Offers flexibility for dynamic viscosity via Sutherland's law where it depends - # on temperature and reference values, Ts and Tref such that mu(T) - mu = equations.mu + # In the simplest cases, the user passed in `mu` or `mu()` + # (which returns just a constant) but + # more complex functions like Sutherland's law are possible. + # `dynamic_viscosity` is a helper function that handles both cases + # by dispatching on the type of `equations.mu`. + mu = dynamic_viscosity(u, equations) if orientation == 1 # viscous flux components in the x-direction diff --git a/src/solvers/dgsem_tree/subcell_limiters_2d.jl b/src/solvers/dgsem_tree/subcell_limiters_2d.jl index 3f7954c8958..9343cee4397 100644 --- a/src/solvers/dgsem_tree/subcell_limiters_2d.jl +++ b/src/solvers/dgsem_tree/subcell_limiters_2d.jl @@ -18,18 +18,11 @@ function create_cache(limiter::Type{SubcellLimiterIDP}, equations::AbstractEquat # Memory for bounds checking routine with `BoundsCheckCallback`. # Local variable contains the maximum deviation since the last export. - # Using a threaded vector to parallelize bounds check. - idp_bounds_delta_local = Dict{Symbol, Vector{real(basis)}}() + idp_bounds_delta_local = Dict{Symbol, real(basis)}() # Global variable contains the total maximum deviation. idp_bounds_delta_global = Dict{Symbol, real(basis)}() - # Note: False sharing causes critical performance issues on multiple threads when using a vector - # of length `Threads.nthreads()`. Initializing a vector of length `n * Threads.nthreads()` - # and then only using every n-th entry, fixes the problem and allows proper scaling. - # Since there are no processors with caches over 128B, we use `n = 128B / size(uEltype)` - stride_size = div(128, sizeof(eltype(basis.nodes))) # = n for key in bound_keys - idp_bounds_delta_local[key] = [zero(real(basis)) - for _ in 1:(stride_size * Threads.nthreads())] + idp_bounds_delta_local[key] = zero(real(basis)) idp_bounds_delta_global[key] = zero(real(basis)) end diff --git a/test/test_parabolic_2d.jl b/test/test_parabolic_2d.jl index 9f1382caa62..d47c34f9e75 100644 --- a/test/test_parabolic_2d.jl +++ b/test/test_parabolic_2d.jl @@ -476,20 +476,38 @@ end @test_trixi_include(joinpath(examples_dir(), "tree_2d_dgsem", "elixir_navierstokes_shearlayer_amr.jl"), l2=[ - 0.00526017743452336, - 0.4130430692895672, - 0.4310996183791349, - 1.1544344171604635, + 0.005155557460409018, + 0.4048446934219344, + 0.43040068852937047, + 1.1255130552079322, ], linf=[ - 0.03492185879198495, - 1.392635891671335, - 1.357551616406459, - 8.713760873018146, + 0.03287305649809613, + 1.1656793717431393, + 1.3917196016246969, + 8.146587380114653, ], tspan=(0.0, 0.7)) end +@trixi_testset "TreeMesh2D: elixir_navierstokes_taylor_green_vortex_sutherland.jl" begin + @test_trixi_include(joinpath(examples_dir(), "tree_2d_dgsem", + "elixir_navierstokes_taylor_green_vortex_sutherland.jl"), + l2=[ + 0.001452856280034929, + 0.0007538775539989481, + 0.0007538775539988681, + 0.011035506549989587, + ], + linf=[ + 0.003291912841311362, + 0.002986462478096974, + 0.0029864624780958637, + 0.0231954665514138, + ], + tspan=(0.0, 1.0)) +end + @trixi_testset "P4estMesh2D: elixir_advection_diffusion_periodic.jl" begin @test_trixi_include(joinpath(examples_dir(), "p4est_2d_dgsem", "elixir_advection_diffusion_periodic.jl"), diff --git a/test/test_unit.jl b/test/test_unit.jl index 03a78f6918a..79950f58d59 100644 --- a/test/test_unit.jl +++ b/test/test_unit.jl @@ -1576,6 +1576,45 @@ end @test mesh.boundary_faces[:entire_boundary] == [1, 2] end + +@testset "Sutherlands Law" begin + function mu(u, equations) + T_ref = 291.15 + + R_specific_air = 287.052874 + T = R_specific_air * Trixi.temperature(u, equations) + + C_air = 120.0 + mu_ref_air = 1.827e-5 + + return mu_ref_air * (T_ref + C_air) / (T + C_air) * (T / T_ref)^1.5 + end + + function mu_control(u, equations, T_ref, R_specific, C, mu_ref) + T = R_specific * Trixi.temperature(u, equations) + + return mu_ref * (T_ref + C) / (T + C) * (T / T_ref)^1.5 + end + + # Dry air (values from Wikipedia: https://de.wikipedia.org/wiki/Sutherland-Modell) + T_ref = 291.15 + C = 120.0 # Sutherland's constant + R_specific = 287.052874 + mu_ref = 1.827e-5 + prandtl_number() = 0.72 + gamma = 1.4 + + equations = CompressibleEulerEquations2D(gamma) + equations_parabolic = CompressibleNavierStokesDiffusion2D(equations, mu = mu, + Prandtl = prandtl_number()) + + # Flow at rest + u = prim2cons(SVector(1.0, 0.0, 0.0, 1.0), equations_parabolic) + + # Comparison value from https://www.engineeringtoolbox.com/air-absolute-kinematic-viscosity-d_601.html at 18°C + @test isapprox(mu_control(u, equations_parabolic, T_ref, R_specific, C, mu_ref), + 1.803e-5, atol = 5e-8) +end end end #module