-
Notifications
You must be signed in to change notification settings - Fork 52
/
server.py
executable file
·57 lines (48 loc) · 1.87 KB
/
server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
#!/usr/bin/env python3
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Example with single random Linear implemented with PyTorch framework."""
import logging
import numpy as np
import torch # pytype: disable=import-error
from pytriton.decorators import batch
from pytriton.model_config import ModelConfig, Tensor
from pytriton.triton import Triton
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
MODEL = torch.nn.Linear(20, 30).to(DEVICE).eval()
@batch
def _infer_fn(**inputs):
(input1_batch,) = inputs.values()
input1_batch_tensor = torch.from_numpy(input1_batch).to(DEVICE)
output1_batch_tensor = MODEL(input1_batch_tensor)
output1_batch = output1_batch_tensor.cpu().detach().numpy()
return [output1_batch]
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(name)s: %(message)s")
logger = logging.getLogger("examples.linear_random_pytorch.server")
with Triton() as triton:
logger.info("Loading Linear model.")
triton.bind(
model_name="Linear",
infer_func=_infer_fn,
inputs=[
Tensor(dtype=np.float32, shape=(-1,)),
],
outputs=[
Tensor(dtype=np.float32, shape=(-1,)),
],
config=ModelConfig(max_batch_size=128),
strict=True,
)
logger.info("Serving models")
triton.serve()