forked from KUL-Radneuron/KUL_FWT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathKUL_FWT_reorientTCKs.py
executable file
·132 lines (111 loc) · 5.86 KB
/
KUL_FWT_reorientTCKs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
#!/usr/bin/env python3
# A small python script to reorient a TCK bundle and its centroid based on VOIs
# AR @ [email protected], [email protected]
import nibabel as nib
import numpy as np
import os, sys, getopt, glob
import scipy
import dipy
import dipy.stats.analysis as dsa
import dipy.tracking.streamline as dts
from dipy.tracking import utils
from dipy.io.image import load_nifti, load_nifti_data, save_nifti
from dipy.io.stateful_tractogram import Space, StatefulTractogram
from dipy.io.streamline import load_tractogram, save_tractogram
import dipy.data as dpd
import pkgutil
from dipy.io.utils import create_nifti_header, get_reference_info
# import matplotlib
# import csv
# matplotlib.use('Qt5Agg')
# import matplotlib.pyplot as plt
# from nilearn import plotting
# from dipy.viz import actor, window, colormap as cmap
# from dipy.segment.clustering import QuickBundles
# from dipy.segment.metric import AveragePointwiseEuclideanMetric, ResampleFeature
# inf1 = '/media/rad/Data/DF_final/sub-DF_KUL_WBTCK_Seg_output/sub-DF_TCKs_output/CST_LT_output/QQ/tmp/CST_LT_fin_WB_iFOD2_rs1c_inMNI.tck'
# inf2 = '/media/rad/Data/DF_final/sub-DF_KUL_WBTCK_Seg_output/sub-DF_TCKs_output/CST_LT_output/QQ/tmp/CST_LT_fin_WB_iFOD2_inMNI_centroid1.tck'
# voi1 = '/media/rad/Data/DF_final/sub-DF_KUL_WBTCK_Seg_output/sub-DF_VOIs/CST_LT_VOIs_inMNI/CST_LT_incs1_map_inMNI.nii.gz'
# voi2 = '/media/rad/Data/DF_final/sub-DF_KUL_WBTCK_Seg_output/sub-DF_VOIs/CST_LT_VOIs_inMNI/CST_LT_incs2_map_inMNI.nii.gz'
# mdir = '/media/rad/Data/DF_final/sub-DF_KUL_WBTCK_Seg_output/sub-DF_prep'
def main(argv):
inf1 = ''
inf2 = ''
mdir = ''
voi1 = ''
voi2 = ''
try:
opts, args = getopt.getopt(argv,"hi:c:m:s:e:",["inf1=","inf2=","mdir=","voi1=","voi2="])
except getopt.GetoptError:
print ('KUL_FWT_reorientTCKs.py -i <ifile> -c <cfile> -m <mdir> -s <voi1> -e <voi2>')
sys.exit(2)
for opt, arg in opts:
if opt == '-h':
print ('KUL_FWT_reorientTCKs.py -i <ifile> -c <cfile> -m <mdir> -s <voi1> -e <voi2>')
sys.exit()
elif opt in ("-i", "--ifile"):
inf1 = arg
elif opt in ("-c", "--cfile"):
inf2 = arg
elif opt in ("-m", "--mdir"):
mdir = arg
elif opt in ("-s", "--voi1"):
voi1 = arg
elif opt in ("-e", "--voi2"):
voi2 = arg
print ('Input bundle TCK file is "', inf1)
print ('Input centroid TCK file is "', inf2)
print ('Start VOI file is "', voi1)
print ('End VOI file is "', voi2)
print ('Metrics folder is "', mdir)
# sanity checks
if os.path.isfile(inf1):
if os.path.isfile(inf2):
if os.path.isfile(voi1):
if os.path.isfile(voi2):
if os.path.isdir(mdir):
# define metric images
refff = glob.glob(os.path.join(mdir, 'FS_2_UKBB_*_Warped.nii.gz'))[0]
# for refff we should load FS warped to MNI from prep dir
reff = nib.load(refff)
tckv1 = nib.load(voi1)
tckv2 = nib.load(voi2)
# binarize on the fly
tckv1.get_fdata()[tckv1.get_fdata()>1] = 1
tckv2.get_fdata()[tckv2.get_fdata()>1] = 1
# get name of input ??
# get paths and names
in_path, _ = os.path.split(inf1)
in_nr = str.rsplit((str.split(inf1, '/')[-1]), '_',2)
# _, c_nam = os.path.split(inf2)
# get your gun
o_dir, _ = os.path.split(in_path)
# we are already in QQ right?
outf1 = os.path.join(o_dir, (in_nr[0]) + '_inMNI_rTCK.tck')
outf2 = os.path.join(o_dir, (in_nr[0]) + '_inMNI_centroid_rTCK.tck')
# load the input tractogram centroid
tck_in = load_tractogram(inf1, reff, bbox_valid_check=False).streamlines
tck_cent = load_tractogram(inf2, reff, bbox_valid_check=False).streamlines
reor_tck = dts.orient_by_rois(tck_in, (reff.affine), (tckv1.get_fdata()), (tckv2.get_fdata()), in_place=False, as_generator=False)
reor_c = dts.orient_by_rois(tck_cent, (reff.affine), (tckv1.get_fdata()), (tckv2.get_fdata()), in_place=False, as_generator=False)
reor_c_out = StatefulTractogram(reor_c, reff, Space.RASMM)
reor_TCK_out = StatefulTractogram(reor_tck, reff, Space.RASMM)
save_tractogram(reor_TCK_out, outf1, bbox_valid_check=False)
save_tractogram(reor_c_out, outf2, bbox_valid_check=False)
# reor_tck = dts.orient_by_streamline(tck_in, reor_tckc, n_points=100, in_place=False, as_generator=False)
# QB stuff
# feature = ResampleFeature(nb_points=51)
# metric = AveragePointwiseEuclideanMetric(feature)
# qb = QuickBundles(np.inf, metric=metric)
# #find your center ;)
# clust_tck = qb.cluster(tck_r)
# tck_center = clust_tck.centroids[0]
# rs_tckc = dsa.set_number_of_points(tck_r, 100)
# get your weights
# w_tcks = dsa.gaussian_weights(reor_tck)
# reor_tck = dts.orient_by_streamline(tck_in,rs_tckc)
# reor_cent = dts.orient_by_streamline(tck_cent,rs_tckc)
# reor_cent_out = StatefulTractogram(reor_tckc, reff, Space.RASMM)
# save_tractogram(reor_tck_out, outf1, bbox_valid_check=False)
if __name__ == "__main__":
main(sys.argv[1:])