-
Notifications
You must be signed in to change notification settings - Fork 0
/
02-analysis-writeup.Rmd
1347 lines (1107 loc) · 52.7 KB
/
02-analysis-writeup.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
---
title: "Analysis Write-up"
author: "Thomas Klebel"
date: Last updated `r lubridate::today()`
output:
bookdown::html_document2:
number_sections: false
keep_md: true
toc: true
bibliography: landscape.bib
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = FALSE, message = FALSE, dpi = 400, dev.args = list(type = "cairo"))
```
```{r import, message=FALSE}
theme_set(theme_hrbrmstr(plot_margin = margin(15, 15, 15, 15)))
# define colours
not_spec_col = "#D95F02"
unsure_col = "#FDE725"
# import data
refined <- readd(clean_data)
refined_with_areas <- readd(clean_areas)
# tweak factor ordering
refined_with_areas <- refined_with_areas %>%
order_pr_type()
```
# Sample characteristics
The approach taken to create the sample of journals led to a few journals
having no data on disciplinary area: some journals like "Gut" were within the
top 100 journals, but not within any of the sub-categories. This is because the
h-index varies greatly between sub-categories. Figure
\@ref(fig:h-indices)A
shows the top-20 journals of each discipline.
The missing categorisations were added in a second step, to facilitate analysis
of all journals that distinguishes by discipline. To this end, we scraped all
disciplines and sub-disciplines from Google Scholar and matched those to our data.
^[The code for collecting the data from Google Scholar can be found here:
ADD LINKS HERE TO DATA AND SCRIPT]
As stated, the criteria for inclusion into the Google Scholar rankings are opaque
and non-reproducible. For example it is possible for a journal to be included in
different disciplines, which makes a lot of sense
(for example "Physics & Mathematics" along with
"Engineering & Computer Science"). It is however also possible for a journal to
be included in a sub-discipline, and not in the parent discipline, despite
having a higher h-index than all journals listed in the parent discipline.^[As
of 2019-07-02, the "Journal of Cleaner Production" is listed in the social
sciences under "sustainable development"
(https://scholar.google.at/citations?view_op=top_venues&hl=en&vq=soc_sustainabledevelopment).
But it is not listed under the parent category
(https://scholar.google.at/citations?view_op=top_venues&hl=en&vq=soc).]
```{r sample-characteristics}
n_double <- refined_with_areas %>%
count(title, sort = T) %>%
filter(n > 1) %>%
nrow()
```
The nature of our selection means that
`r glue::glue("{n_double} out of {nrow(refined)}")` journals are assigned to two
disciplines. The inclusion criteria further mean, that disciplines are not
represented equally in the sample. Since many of the top 100 journals belong to
the health and medical sciences, the sample is slightly skewed in that direction
(see figure \@ref(fig:h-indices)B).
```{r h-indices, fig.cap="Sample characteristics", fig.width=8, fig.height=8}
# set seed for jittered points to stay always the same (otherwise annoying for
# git)
set.seed(1234)
# compute colours
disc_cols <- refined_with_areas %>%
filter(!area_was_scraped) %>%
mutate(area = fct_reorder(area, `h5-index`)) %>%
pull(area) %>%
levels() %>%
rev() %>%
set_names(viridis(8), nm = .)
p1 <- refined_with_areas %>%
filter(!area_was_scraped) %>%
ggplot(aes(fct_reorder(area, `h5-index`), `h5-index`)) +
geom_boxplot(width = .6, outlier.alpha = 0) +
coord_flip() +
geom_jitter(width = .2, aes(colour = area), show.legend = F, alpha = .7) +
labs(x = NULL) +
scale_color_manual(values = disc_cols)
p2 <- refined_with_areas %>%
plot_univariate(area, nudge_y = .5) +
coord_flip() +
labs(title = NULL) +
hrbrmisc::theme_hrbrmstr(grid = "") +
theme(axis.text.x = element_blank()) +
aes(colour = area) +
scale_color_manual(values = disc_cols)
p1 / p2 + plot_annotation(tag_levels = "A")
```
(A): The distribution of h5-indices across the top-20 journals of each
discipline. (B) Number and proportion of journals sampled by discipline in total.
```{r write-h-indices-data, include=FALSE}
refined_with_areas %>%
filter(!area_was_scraped) %>%
select(area, `h5-index`, title) %>%
arrange(area) %>%
write_csv("data/figures/Fig7_A.csv")
select_bivariate(df = refined_with_areas) %>%
write_csv("data/figures/Fig7_B.csv")
```
```{r}
oa_status <- refined %>%
summarise(has_oa = sum(!is.na(bibjson.oa_start.year)),
n_total = n())
```
Regarding practices of open access, only `r oa_status$has_oa` of
`r oa_status$n_total` journals are listed in the Directory of Open Access
Journals (DOAJ) and can thus be considered fully open access. ^[Code and data
for querying the DOAJ API and matching to our data can be found here FIXME]
# Peer Review
```{r pr-computation}
peer_type_data <- refined_with_areas %>%
make_proportion(pr_type_clean, area, order_string = "blind|Other")
# what is the percentage of "unsure"?
pr_type_prop <- refined %>%
make_proportion(pr_type_clean)
unsure <- pr_type_prop %>%
filter(pr_type_clean == "Unsure")
n_unsure <- unsure %>%
pull(n)
perc_unsure <- unsure %>%
pull(prop) %>%
make_percent2(round_to = "comma")
perc_not_blind <- pr_type_prop %>%
filter(pr_type_clean == "Not blinded") %>%
pull(prop) %>%
make_percent()
perc_single <- pr_type_prop %>%
filter(pr_type_clean == "Single blind") %>%
pull(prop) %>%
scales::percent()
perc_double <- pr_type_prop %>%
filter(pr_type_clean == "Double blind") %>%
pull(prop) %>%
scales::percent()
```
Information on what type of peer review is used by a journal is mixed
(see figure \@ref(fig:peer-type-combined)A).
Overall, `r n_unsure` out of 171 journals (`r perc_unsure`) do not provide clear
information about their peer review process. The most common peer review
practice is single blind per review (`r perc_single`), followed by double blind
peer review (`r perc_double`).
Some journals offer the option for authors to
choose whether to use single or double blind peer review. These cases have been
coded as "Other" and amount to the majority of this category. `r perc_not_blind`
of journals ("The BMJ" and "The Cochrane Database of Systematic Reviews") do not
anonymize papers or reviews during review process.
```{r peer-type-combined, fig.width=6, fig.height=6, fig.cap="Type of peer review employed by journals"}
p_cols <- c("Single blind" = "#7AD151", "Double blind" = "#2A788E",
"Not blinded" = "#414487",
"Unsure" = unsure_col, "Other" = "#666666")
p1 <- ggplot(pr_type_prop, aes(fct_reorder(pr_type_clean, n), prop, fill = fct_rev(pr_type_clean))) +
geom_chicklet(width = .6, show.legend = F) +
coord_flip() +
scale_fill_manual(values = p_cols) +
scale_y_continuous(labels = function(x) scales::percent(x, accuracy = 1)) +
theme(legend.position = "top") +
guides(fill = guide_legend(reverse = T)) +
labs(fill = NULL, x = NULL, y = NULL)
p2 <- ggplot(peer_type_data, aes(fct_reorder(area, order), prop, fill = fct_rev(pr_type_clean))) +
geom_chicklet(position = "fill", width = .6, show.legend = F) +
coord_flip() +
scale_fill_manual(values = p_cols) +
scale_y_continuous(labels = scales::percent) +
theme(legend.position = "top") +
guides(fill = guide_legend(reverse = T)) +
labs(fill = NULL, x = NULL, y = NULL)
p1 / p2 +
plot_annotation(tag_levels = "A") +
plot_layout(heights = c(.75, 1))
```
(A) Type of peer review used overall (n = 171)
(B) Type of peer review used by disciplines (n = 193)
```{r peer-type-data, include=FALSE}
select_univariate(pr_type_clean, df = refined) %>%
write_csv("data/figures/Fig3_A.csv")
select_bivariate(pr_type_clean, df = refined_with_areas) %>%
write_csv("data/figures/Fig3_B.csv")
```
However, there are major differences between disciplines (see figure
\@ref(fig:peer-type-combined)B). In the social sciences, humanities, and business, double
blind peer review is generally the norm, while in the natural sciences it is
single
blind peer review. Business, economics & management displays the highest level
of unclear policies, with social science and humanities being very clear and the
other sciences somehwere in between.
# Open Peer Review
```{r opr-computation}
pdata <- refined %>%
select(opr_reports:opr_interaction) %>%
gather(var, val) %>%
mutate(val_clean = case_when(
str_detect(val, "Conditional") ~ "Conditional",
str_detect(str_to_lower(val), "not spec") ~ "Not specified",
str_detect(val, "Optional") ~ "Optional",
# recode mandatory to yes, since the meaning is the same
str_detect(val, "Mandatory") ~ "Yes",
TRUE ~ val
)) %>%
make_proportion(val_clean, var, order_string = "Yes|Condi|Optio") %>%
mutate(val_clean = factor(val_clean,
levels = c("Yes", "Conditional", "Optional",
"No", "Not specified")))
labels <- pdata %>%
distinct(var) %>%
mutate(label = case_when(
var == "opr_reports" ~ "Are peer review reports being published?",
var == "opr_responses" ~ "Are author responses to reviews being published?",
var == "opr_letters" ~ "Are editorial decision letters being published?",
var == "opr_versions" ~ "Are previous versions of the manuscript being published?",
var == "opr_identities_published" ~ "Are reviewer identities being published?",
var == "opr_indenties_author" ~ "Are reviewer identities revealed to the author (even if not published)?",
var == "opr_comments" ~ "Is there public commenting during formal peer review?",
var == "opr_interaction" ~ "Is there open interaction (reviewers consult with one another)?"
)) %>%
mutate_at("label", ~str_wrap(., 40))
```
Information on open peer review is similarly scarce (see fig. \@ref(fig:opr-combined)A).
The survey included questions on common dimensions of open peer review, like
whether peer review reports, editorial decision letters or previous versions of
the manuscript are published, or whether there is public commenting during peer
review, and similar questions. All surveyed aspects of
open peer review lack any kind of information in more than 50% of journals
surveyed.
Furthermore, three quarters of journals do not provide information on all except
one aspect. When there is information, in most cases it is
dismissive of open peer review. No journal in our sample allows public
commenting during formal peer review. Other forms of openness are similarly
rare With the sole exception that some journals may reveal reviewer
identities to the authors, all other aspects are not specified or not
available in more than 95% of journals.
```{r opr-combined, fig.width=7, fig.height=8, fig.cap="Aspects of open peer review"}
p_cols <- c("Not specified" = not_spec_col, "Yes" = "#414487",
"Conditional" = "#2A788E",
"Optional" = "#22A884", "No" = "#7AD151"
)
p1 <- pdata %>%
left_join(labels) %>%
ggplot(., aes(fct_reorder(label, order), prop, fill = fct_rev(val_clean))) +
geom_chicklet(position = "fill", width = .6) +
coord_flip() +
scale_y_continuous(labels = scales::percent) +
scale_fill_manual(values = p_cols) +
theme(legend.position = "bottom") +
guides(fill = guide_legend(reverse = T)) +
labs(x = NULL, y = NULL, fill = NULL)
rev_identitiy <- refined_with_areas %>%
mutate(opr_indenties_author_clean = case_when(
str_detect(opr_indenties_author, "Conditional") ~ "Conditional",
str_detect(str_to_lower(opr_indenties_author), "not spec") ~ "Not specified",
str_detect(opr_indenties_author, "Optional") ~ "Optional",
# recode mandatory to yes, since the meaning is the same
str_detect(opr_indenties_author, "Mandatory") ~ "Yes",
TRUE ~ opr_indenties_author
)) %>%
mutate(opr_indenties_author_clean = factor(opr_indenties_author_clean,
levels = c("Yes", "Conditional", "Optional",
"No", "Not specified"))) %>%
make_proportion(opr_indenties_author_clean, area, order_string = "Not")
p2 <- ggplot(rev_identitiy, aes(fct_rev(fct_reorder(area, order)), prop,
fill = fct_rev(opr_indenties_author_clean))) +
geom_chicklet(position = "fill", width = .6, show.legend = F) +
coord_flip() +
scale_fill_manual(values = p_cols) +
scale_y_continuous(labels = scales::percent) +
theme(legend.position = "top") +
guides(fill = guide_legend(reverse = T)) +
labs(fill = NULL, x = NULL, y = NULL)
p1 / p2 +
plot_annotation(tag_levels = "A")
```
(A) Aspects of open peer review across all journals in the sample (n = 171)
(B) Results on whether reviewer identitities are revealed to the authors, even if
they are not published. (n = 193)
```{r opr-combined-export, include=FALSE}
refined %>%
select(title, issn, opr_reports:opr_interaction) %>%
gather(var, val, -title, -issn) %>%
mutate(val_clean = case_when(
str_detect(val, "Conditional") ~ "Conditional",
str_detect(str_to_lower(val), "not spec") ~ "Not specified",
str_detect(val, "Optional") ~ "Optional",
# recode mandatory to yes, since the meaning is the same
str_detect(val, "Mandatory") ~ "Yes",
TRUE ~ val
)) %>%
left_join(labels) %>%
select(journal = title, issn, variable = var, label, value = val_clean) %>%
write_csv("data/figures/Fig4_A.csv")
refined_with_areas %>%
mutate(opr_indenties_author_clean = case_when(
str_detect(opr_indenties_author, "Conditional") ~ "Conditional",
str_detect(str_to_lower(opr_indenties_author), "not spec") ~ "Not specified",
str_detect(opr_indenties_author, "Optional") ~ "Optional",
# recode mandatory to yes, since the meaning is the same
str_detect(opr_indenties_author, "Mandatory") ~ "Yes",
TRUE ~ opr_indenties_author
)) %>%
select(journal = title, issn, open_peer_review.identities_revealed_to_authors = opr_indenties_author_clean) %>%
write_csv("data/figures/Fig4_B.csv")
```
```{r opr-table}
pdata %>%
left_join(labels, by = "var") %>%
ungroup %>%
select(label, val_clean, n, prop) %>%
mutate(label = str_replace(label, "\\n", " ")) %>%
knitr::kable(caption = "Aspects of Open Peer Review (A)")
```
Since the aspect of revealed reviewer identities is the only one that is
explicitly allowed by a substantive number of journals
(`r pdata %>% filter(var == "opr_indenties_author") %>% pull(order) %>% unique() %>% scales::percent(., .1)`), we examine it
separately for each discipline
(see fig. \@ref(fig:opr-combined)B). Whereas revealing reviewer
identities to the authors is absent from the social sciences, humanities and
business in the investigated subset of journals, it is not unusual in the
natural sciences, at least on an optional basis
(for example in case the referee wants to sign their review).
# Co-Review
```{r}
coreview_policies <- refined %>%
select(coreview_policy) %>%
filter(!is.na(coreview_policy),
!(coreview_policy %in% c("Not specified", "Not found")))
distinct_coreview <- coreview_policies %>%
distinct() %>%
# remove rows that were identified as duplicates by manual inspection of the
# file "data-transformed/coreview-policies.csv"
# selection for deleting duplicates was done by keeping the version with more
# text to retain as much information as possible
filter(!row_number(coreview_policy) %in% c(34, 10, 26, 27, 14, 19, 31, 33, 41,
12))
```
Information on co-review policies is sparse.
Only `r nrow(coreview_policies)` out of `r nrow(refined)` journals do have an
explicit co-review policy.
Splitting the results by discipline
reveals noticeable differences (see fig. \@ref(fig:co-rev)).
While in the life and earth sciences, health & medical sciences as well as
physics & mathematics more then a quarter of journals permit contributions
from co-reviewers, in the
humanities, chemical & materials sciences, and in business, economics &
management 90% of journals have no policy on co-reviewing.
```{r co-rev, fig.cap="Prevalence of co-review", fig.asp=.6}
co_rev <- refined_with_areas %>%
mutate(coreview_email = case_when(
coreview_email == "unsure" ~ "Unsure",
# lump the two not specified to unsure, since this is similar in this
# instance
coreview_email == "Not specified" ~ "Unsure",
TRUE ~ coreview_email
),
coreview_email = factor(coreview_email,
levels = c("Yes", "No", "Unsure"))) %>%
make_proportion(coreview_email, area, order_string = "Yes")
p_cols <- c("Unsure" = unsure_col, "Yes" = "#414487",
"No" = "#7AD151"
)
ggplot(co_rev, aes(fct_reorder(area, order), prop,
fill = fct_rev(coreview_email))) +
geom_chicklet(position = "fill", width = .6) +
coord_flip() +
scale_fill_manual(values = p_cols) +
scale_y_continuous(labels = scales::percent) +
theme(legend.position = "top") +
guides(fill = guide_legend(reverse = T)) +
labs(fill = NULL, x = NULL, y = NULL,
caption = "Can co-reviewers contribute?")
```
```{r corev-export, include=FALSE}
refined_with_areas %>%
mutate(coreview_email = case_when(
coreview_email == "unsure" ~ "Unsure",
# lump the two not specified to unsure, since this is similar in this
# instance
coreview_email == "Not specified" ~ "Unsure",
TRUE ~ coreview_email
)) %>%
select(journal = title, issn, can_coreviewers_contribute = coreview_email) %>%
write_csv("data/figures/Fig5.csv")
```
```{r corev-table}
knitr::kable(co_rev)
```
To obtain a more nuanced view of the policies' contents, we also analysed their
full text via text mining. Due to policies being similar across journals of
certain publishers, there are `r nrow(distinct_coreview)`
distinct policies in our dataset (compared to `r nrow(coreview_policies)`
policies in total). Since the policies are rather short, we are
somewhat limited in regard to what insight we can gain from automated
procedures.
```{r}
custom_stopwords <- tidytext::stop_words %>%
filter(word != "not")
stopped_words <- distinct_coreview %>%
mutate(policy_id = row_number()) %>%
unnest_tokens(word, coreview_policy) %>%
anti_join(custom_stopwords)
```
To extract meaningful information we first removed common words of the English
language (via the list of stop-words from the tidytext package
[@silge_tidytext_2016], except for the word "not", which is relevant since some
policies state, that it is *not* appropriate to share information with students
or colleagues). The resulting list contains `r nrow(stopped_words)` words in
total.
For a simple overview, the words were stemmed to reduce similar but not
identical versions of certain words (like editor/editors).
Table \@ref(tab:coreview-table) displays the most frequent parts of the
distinct policies, sorted by the proportion of policies that contain a given
term.
```{r coreview-table}
stemmed_words <- stopped_words %>%
mutate(word_stemmed = SnowballC::wordStem(word))
top_terms <- stemmed_words %>%
mutate(word_appears = T) %>%
complete(policy_id, word_stemmed, fill = list(word_appears = FALSE)) %>%
group_by(word_stemmed) %>%
summarise(n = sum(word_appears),
n_policies = max(policy_id),
prop_of_texts = mean(word_appears)) %>%
arrange(desc(prop_of_texts)) %>%
mutate(prop_of_texts = scales::percent(prop_of_texts, accuracy = 1)) %>%
head(20)
# sample from variants
set.seed(1234)
top_variants <- stemmed_words %>%
count(word, word_stemmed, name = "variant_count") %>%
right_join(top_terms) %>%
arrange(word_stemmed, desc(variant_count)) %>%
group_by(word_stemmed) %>%
slice(1:3) %>%
# filter(word != word_stemmed) %>%
mutate(variants = list(unique(word)),
variants = map_chr(variants, paste, collapse = "; ")) %>%
select(-word, -variant_count) %>%
distinct() %>%
arrange(desc(prop_of_texts))
top_variants %>%
select(Term = word_stemmed, Variants = variants, `Term frequency` = n,
`Proportion of policies that contain term` = prop_of_texts) %>%
knitr::kable(caption = "Propensity of terms in co-review policies")
```
```{r sample-co-rev-phrases}
co_rev_sentences <- distinct_coreview %>%
unnest_tokens(sentence, coreview_policy, token = "sentences") %>%
distinct()
# search_terms <- top_terms$word_stemmed
search_terms <- top_variants %>%
pull(variants) %>%
str_split(pattern = "; ") %>%
flatten_chr()
set.seed(98375)
sampled_sentences <- co_rev_sentences %>%
mutate(matching = map(sentence, str_detect, search_terms)) %>%
unnest(matching) %>%
mutate(term = rep(search_terms, nrow(co_rev_sentences))) %>%
filter(matching) %>%
group_by(term) %>%
slice_sample(n = 1)
sampled_sentences %>%
mutate(sentence = str_replace(sentence, term, paste0("*", term, "*"))) %>%
select(term, sample_phrase = sentence) %>%
knitr::kable(caption = "Sample phrases for prominent terms in co-review policies")
```
The most prominent themes that emerge are:
- Individuals with varying stakes regarding peer review: editor, colleague,
collaborator, student, peer.
- Confidentiality as a central principle.
- Important elements of scholarly publishing: manuscript, journal, review,
process.
- Verbal forms pertaining to relationships between the individuals: inform,
involve, consult, discuss, obtain, ensure.
These directions become more intelligible when we look at bigrams (see fig.
\@ref(fig:bigrams)). With this procedure the text is
split into pairs of words (for example the sentence "All humans are equal"
becomes "All humans", "humans are", "are equal"). The most prominent bigrams
were "peer -> review" and "review -> process". To take a look at the strength
of other associations, the term "review" was removed from the figure. The
most frequent associations in the figure are depicted by bold arrows.
```{r bigrams, fig.width=9, fig.height=7, fig.cap="Bigrams of co-review policies"}
distinct_coreview %>%
make_bigram_analysis(coreview_policy, remove = "review", cutoff = 1,
point_col = "#7AD151") +
theme(legend.position = "bottom") +
labs(edge_alpha = "How many times each bigram occured:")
```
```{r bigrams-export, include=FALSE}
my_stop_words <- c("review", tidytext::stop_words$word) %>%
str_remove("not")
# code extracted from the function `make_bigram_analysis`
distinct_coreview %>%
distinct(coreview_policy) %>%
tidytext::unnest_tokens(bigram, coreview_policy, token = "ngrams", n = 2) %>%
separate(bigram, c("word1", "word2"), sep = " ") %>%
filter(!word1 %in% my_stop_words) %>%
filter(!word2 %in% my_stop_words) %>%
count(word1, word2, sort = TRUE) %>%
write_csv("data/figures/S1 Fig.csv")
```
From both displays it is obvious, that journals stress the importance of
"maintaining confidentiality", by "not shar[ing]" or disclosing information,
neither to "junior researchers", "laboratory colleagues" nor "graduate
students". Even if the policies do not explicitly forbid or allow the
involvement of other researchers, in many cases they mandate the reviewer to
first obtain permission from the editor in case they want to involve someone
else in their review. The editor's prominent role can also be observed by the
terms' frequent appearance in the policies. Almost three quarters of all
policies mention the term "editor".
```{r}
distinct_coreview %>%
pull(coreview_policy) %>%
# regex from https://stackoverflow.com/a/15586010/3149349
str_extract_all(., "(?:[^ ]+ ){0,5}editor(?: [^ ]+){0,2}") %>%
flatten_chr()
```
# Preprints
```{r}
# prepare data on preprint versions
clean_preprint_version <- function(df) {
df %>%
mutate(preprint_version_clean = case_when(
# there is just one mention of "Unclear". Looking through the policy,
# preprints are clearly allowed, but it is unsure, which version. We can
# therefore safely group it to "Unsure".
str_detect(preprint_version, "Unsure|Unclear") ~
"Unsure (preprints are allowed, but it's not clear which version)",
# str_detect(preprint_version, "Any .*? or") ~ "Other",
str_detect(preprint_version, "Other") ~ "Other",
str_detect(preprint_version, "None") ~ "None",
str_detect(preprint_version, "First sub") ~
"First submission only (before peer review)",
str_detect(preprint_version, "^After peer re") ~ "After peer review",
str_detect(preprint_version, "Any|any") ~ "Any",
str_detect(preprint_version, "No") ~ "No preprint policy",
))
}
preprint_version_univariate <- refined %>%
clean_preprint_version() %>%
make_proportion(preprint_version_clean, order_string = "Any|After|First|Uns")
# prepare data on citing preprints
clean_preprint_citation <- function(df) {
df %>%
mutate(preprint_citation_clean = case_when(
str_detect(preprint_citation, "Not spec") ~ "Not specified",
str_detect(preprint_citation, "Unsure") ~ "Unsure",
str_detect(preprint_citation, "No") ~ "No",
str_detect(preprint_citation, "only in the text") ~ "Yes, but only in the text",
str_detect(preprint_citation, "reference list") ~ "Yes, in the reference list",
is.na(preprint_citation) ~ NA_character_,
TRUE ~ "Other"
))
}
preprint_citation_univariate <- refined %>%
clean_preprint_citation() %>%
make_proportion(preprint_citation_clean, order_string = "Yes")
```
Preprints are more common within our sample than open peer review or co-review
policies. Almost
`r preprint_version_univariate %>% pull(order) %>% make_percent2(., "comma")`
of all journals allow preprints at least in some way. Most of them
(`r preprint_version_univariate[[3, 3]] %>% make_percent2(., "comma")`)
however only allow preprints before peer review while
`r preprint_version_univariate[[4, 3]] %>% make_percent2(., "comma")`
do not have a preprint policy.
```{r preprint-combined, fig.cap="Posting and citing of preprints", fig.height=10, fig.width=8}
refined_with_areas <- refined_with_areas %>%
clean_preprint_version() %>%
mutate(preprint_version_clean = fct_relevel(
preprint_version_clean, "Unsure (preprints are allowed, but it's not clear which version)",
"Any", "First submission only (before peer review)") %>%
fct_relevel("Other" ,"None", "No preprint policy", after = 4))
# plot preprint version
preprint_version <- refined_with_areas %>%
make_proportion(preprint_version_clean, area,
order_string = "Any|After|First|Uns")
p1_cols <- c("No preprint policy" = not_spec_col, "Other" = "#666666",
"Any" = "#414487", "After peer review" = "#2A788E",
"First submission only (before peer review)" = "#22A884",
"Unsure (preprints are allowed, but it's not clear which version)" = "#440154",
"None" = "#7AD151"
)
p1 <- ggplot(preprint_version, aes(fct_reorder(area, order), prop,
fill = fct_rev(preprint_version_clean))) +
geom_chicklet(position = "fill", width = .6) +
geom_step(data = slice(preprint_version, 1),
aes(x = area, y = order, group = 1), direction = "vh",
position = position_nudge(x = .5)) +
geom_step(data = filter(preprint_version, str_detect(area, "Human|Busine")),
aes(x = area, y = order, group = 1), direction = "hv",
position = position_nudge(x = -.5)) +
annotate("text", x = "Life Sciences & Earth Sciences", y = 1,
label = "Proportion of journals\nthat allow posting of preprints",
vjust = -.8, hjust = 1,
family = "Hind", size = 3) +
coord_flip() +
scale_fill_manual(values = p1_cols) +
scale_y_continuous(labels = scales::percent) +
theme(legend.position = "bottom", plot.margin = margin(25, 15, 30, 15)) +
guides(fill = guide_legend(reverse = T, nrow = 4)) +
labs(fill = NULL, x = NULL, y = NULL, tag = "A",
caption = "What version of a preprint can be posted?")
gt1 <- ggplot_gtable(ggplot_build(p1))
gt1$layout$clip[gt1$layout$name == "panel"] <- "off"
# grid::grid.draw(gt1)
# plot citing preprints
refined_with_areas <- refined_with_areas %>%
clean_preprint_citation()
preprint_citation <- refined_with_areas %>%
mutate(preprint_citation_clean =
fct_relevel(preprint_citation_clean,
"Yes, in the reference list", "Yes, but only in the text",
"Other", "No", "Unsure", "Not specified")) %>%
make_proportion(preprint_citation_clean, area,
order_string = "Yes|Other")
p2_cols <- c("Not specified" = not_spec_col, "Other" = "#666666", "Unsure" = unsure_col,
"Yes, in the reference list" = "#2A788E",
"Yes, but only in the text" = "#22A884",
"No" = "#7AD151"
)
p2 <- ggplot(preprint_citation, aes(fct_reorder(area, order), prop,
fill = fct_rev(preprint_citation_clean))) +
geom_chicklet(position = "fill", width = .6) +
geom_step(data = slice(preprint_citation, 1),
aes(x = area, y = order, group = 1), direction = "vh",
position = position_nudge(x = .5)) +
geom_step(data = filter(preprint_citation, str_detect(area, "Business|Social")),
aes(x = area, y = order, group = 1), direction = "hv",
position = position_nudge(x = -.5)) +
annotate("text", x = "Life Sciences & Earth Sciences", y = .55,
label = "Proportion of journals\nthat allow citation of preprints",
vjust = -.8,
family = "Hind", size = 3) +
coord_flip() +
scale_fill_manual(values = p2_cols) +
scale_y_continuous(labels = scales::percent) +
theme(legend.position = "bottom", plot.margin = margin(30, 30, 30, 30)) +
guides(fill = guide_legend(reverse = T)) +
labs(fill = NULL, x = NULL, y = NULL, tag = "B",
caption = "Can preprints be cited?")
gt2 <- ggplot_gtable(ggplot_build(p2))
gt2$layout$clip[gt2$layout$name == "panel"] <- "off"
# grid::grid.draw(gt2)
gridExtra::grid.arrange(gt1, gt2)
```
(A) Results on whether a preprint can be posted, and which version is allowed (n = 193).
(B) Results on whether preprints can be cited (n = 193)
```{r preprint-export, include=FALSE}
select_bivariate(preprint_version_clean, df = refined_with_areas) %>%
rename(preprint_version = preprint_version_clean) %>%
write_csv("data/figures/Fig6_A.csv")
select_bivariate(preprint_citation_clean, df = refined_with_areas) %>%
rename(preprint_citation = preprint_citation_clean) %>%
write_csv("data/figures/Fig6_B.csv")
```
```{r preprint-tables}
knitr::kable(preprint_version, caption = "Posting of prepritns")
knitr::kable(preprint_citation, caption = "Citing of prepritns")
```
Similar to our earlier results, preprint policies vary considerably between
disciplines (see fig. \@ref(fig:preprint-combined)A). While in the life sciences
& earth sciences
`r preprint_version %>% filter(str_detect(area, "Life Sciences")) %>% pull(order) %>% make_percent2(., "one")`
of all journals allow preprints in some way, in the Humanities only
`r preprint_version %>% filter(str_detect(area, "Humanities")) %>% pull(order) %>% make_percent2(., "one")`
do.
The natural sciences in general tend towards allowing preprints only on first submission
while the social sciences predominantly have no clear policy on which version of
a preprint is allowed.
The humanities and also journals from business, economics and management
generally have either no preprint policy at all or are more diverse in regard to
preprint version, also allowing preprints after peer review, which is less
common in the natural sciences.
```{r}
# compute percentages for those journals that allow citing preprints
preprint_citation_type <- preprint_citation %>%
filter(str_detect(preprint_citation_clean, "Yes|Other")) %>%
ungroup() %>%
select(-area, -prop, -order) %>%
group_by(preprint_citation_clean) %>%
summarise(n = sum(n)) %>%
mutate(prop = n/sum(n))
preprint_citation_references <- preprint_citation_type %>%
filter(str_detect(preprint_citation_clean, "reference")) %>%
pull(prop) %>%
make_percent2("one")
preprint_citation_text <- preprint_citation_type %>%
filter(str_detect(preprint_citation_clean, "text")) %>%
pull(prop) %>%
make_percent2("one")
```
A complementary aspect of using preprints is whether they can be cited. The
majority of journals
(`r preprint_citation_univariate[[2, 3]] %>% make_percent2("comma")`)
does not specify, whether this is possible. Unclear policies on how to cite
preprints are also quite
common (`r preprint_citation_univariate[[4, 3]] %>% make_percent2("comma")`). In case
citations of preprints are allowed, this is possible in the reference for
`r preprint_citation_references` of journals,
with some journals restricting citations of preprints to the text
`r preprint_citation_text`.
Disciplinary differences are again very apparent (see fig.
\@ref(fig:preprint-combined)B). Citing preprints is more common in the natural
sciences, with
`r preprint_citation %>% filter(str_detect(area, "Life")) %>% pull(order) %>% make_percent2("one")`
of all journals in the life and earth sciences allowing citations to preprints
either in the text or in the reference list. In contrast, the social sciences
and humanities largely have unclear or no policies regarding whether preprints
can be cited or not.
Besides posting and citing of preprints we surveyed other aspects of preprints
as well:
whether there is information on which licenses are permitted for the preprint,
or if there is scoop protection, e.g. if a preprint will still be considered for
publication even if a competing work is published in another journal after the
date of preprinting. Further aspects were whether a published paper includes a
link to the preprint version, what type of media coverage of the preprint is
permitted and if there is a policy on community review for preprints. Overall,
guidance on these issues is rarely provided:
```{r}
preprint_leftovers <- refined %>%
select(preprint_link:preprint_review) %>%
mutate(preprint_link = case_when(is.na(preprint_link) ~ "Unsure",
TRUE ~ preprint_link)) %>%
mutate_at(vars(-preprint_link), ~case_when(is.na(.) ~ "Not specified",
TRUE ~ .))
preprint_no_info <- preprint_leftovers %>%
gather(var, val) %>%
mutate(no_info = str_detect(val, "^Unsure|Not specified")) %>%
group_by(var) %>%
summarise(no_info_perc = mean(no_info) %>% scales::percent(accuracy = .1)) %>%
arrange(no_info_perc)
knitr::kable(preprint_no_info)
```
`r preprint_no_info %>% filter(var == "preprint_media") %>% pull(no_info_perc)`
of journals provide no information on permitted media coverage and
`r preprint_no_info %>% filter(var == "preprint_link") %>% pull(no_info_perc)`
of journals provide no information on whether the publication will include a
link to the preprint.
`r preprint_no_info %>% filter(var == "preprint_licensing") %>% pull(no_info_perc)`
of journals provide no guidance on which license is permitted for the preprint,
`r preprint_no_info %>% filter(var == "preprint_review") %>% pull(no_info_perc)`
give no information on scoop protection and
`r preprint_no_info %>% filter(var == "preprint_scoop") %>% pull(no_info_perc)`
of journals give no indication whether public comments on preprints will have
any effect on manuscript acceptance.
# The Landscape of Open Science Policies
Results so far have revealed that in many cases policies are unclear. But in
which ways are policies related to each other? Do journals that allow co-review
also allow preprints? Is there a gradient between journals that are pioneers in
regard to open science, and others that lag behind? Or are there certain groups
of journals, open in one area, reluctant in the second and maybe unclear in the
third?
To answer these question, we employ Multiple Correspondence Analysis (MCA).
The technique allows us to explore the different policies jointly
[@greenacre_multiple_2006] and thus paint
a landscape of open science practices among journals.
To facilitate interpration of the figures, variables had to be recoded.
We selectively recoded variables in regard to whether
certain policies were clear or not, thus omitting the subtle differences within
the policies (for example "which version of a preperint can be cited" was
simplified for whether the policy was clear (references allowed in text,
reference list or not allowed) versus unclear (unsure about policy, no policy
and other)). It should be noted that the procedure is strictly exploratory. We
are exploring possible associations between the policies, not testing any
hypothesis.
```{r recode-for-mca}
mca_data <- refined_with_areas %>%
mutate(
co_review = case_when(
coreview_email == "Yes" | coreview_email == "No" ~ "Coreview ++",
TRUE ~ "Coreview ??"
),
preprint_posting = case_when(
str_detect(preprint_version, "Unsure") ~ "Posting preprints ??",
str_detect(preprint_version, "Other|Unclear") ~ "Posting preprints ??",
str_detect(preprint_version, "None") ~ "Posting preprints ++",
str_detect(preprint_version, "First sub") ~ "Posting preprints ++",
str_detect(preprint_version, "After peer re") ~ "Posting preprints ++",
str_detect(preprint_version, "Any|any") ~ "Posting preprints ++",
str_detect(preprint_version, "No preprint policy") ~ "Posting preprints ??"
),
preprint_citing = case_when(
str_detect(preprint_citation, "Not spec") ~ "Citing preprints ??",
str_detect(preprint_citation, "Unsure") ~ "Citing preprints ??",
str_detect(preprint_citation, "No") ~ "Citing preprints ++",
str_detect(preprint_citation, "only in the text") ~ "Citing preprints ++",
str_detect(preprint_citation, "reference list") ~ "Citing preprints ++",
preprint_citation == "Yes" ~ "Citing preprints ++",
TRUE ~ "Citing preprints ??"
),
identities_revealed = case_when(
opr_indenties_author == "Not specified" ~ "Revealing reviewer\nidentities to authors ??",
TRUE ~ "Revealing reviewer\nidentities to authors ++"
),
pr_type_clean = case_when(pr_type_clean == "Unsure" ~ "Peer review ??",
TRUE ~ "Peer review ++"),
publisher_mca = case_when(
str_detect(publisher_clean, "Elsevier") ~ "Elsevier",
TRUE ~ publisher_clean
)
)
```
```{r compute-mca}
final_4 <- mca_data %>%
mutate(publisher_cat = fct_lump_min(publisher_mca, min = 6,
other_level = "Other publishers")) %>%
select(co_review, preprint_posting, preprint_citing, identities_revealed,
pr_type_clean, area, publisher_cat) %>%