-
Notifications
You must be signed in to change notification settings - Fork 2
/
README.html
881 lines (650 loc) · 26.2 KB
/
README.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<title>README</title>
<style type="text/css">
body {
font-family: Helvetica, arial, sans-serif;
font-size: 14px;
line-height: 1.6;
padding-top: 10px;
padding-bottom: 10px;
background-color: white;
padding: 30px; }
body > *:first-child {
margin-top: 0 !important; }
body > *:last-child {
margin-bottom: 0 !important; }
a {
color: #4183C4; }
a.absent {
color: #cc0000; }
a.anchor {
display: block;
padding-left: 30px;
margin-left: -30px;
cursor: pointer;
position: absolute;
top: 0;
left: 0;
bottom: 0; }
h1, h2, h3, h4, h5, h6 {
margin: 20px 0 10px;
padding: 0;
font-weight: bold;
-webkit-font-smoothing: antialiased;
cursor: text;
position: relative; }
h1:hover a.anchor, h2:hover a.anchor, h3:hover a.anchor, h4:hover a.anchor, h5:hover a.anchor, h6:hover a.anchor {
background: url() no-repeat 10px center;
text-decoration: none; }
h1 tt, h1 code {
font-size: inherit; }
h2 tt, h2 code {
font-size: inherit; }
h3 tt, h3 code {
font-size: inherit; }
h4 tt, h4 code {
font-size: inherit; }
h5 tt, h5 code {
font-size: inherit; }
h6 tt, h6 code {
font-size: inherit; }
h1 {
font-size: 28px;
color: black; }
h2 {
font-size: 24px;
border-bottom: 1px solid #cccccc;
color: black; }
h3 {
font-size: 18px; }
h4 {
font-size: 16px; }
h5 {
font-size: 14px; }
h6 {
color: #777777;
font-size: 14px; }
p, blockquote, ul, ol, dl, li, table, pre {
margin: 15px 0; }
hr {
background: transparent url() repeat-x 0 0;
border: 0 none;
color: #cccccc;
height: 4px;
padding: 0;
}
body > h2:first-child {
margin-top: 0;
padding-top: 0; }
body > h1:first-child {
margin-top: 0;
padding-top: 0; }
body > h1:first-child + h2 {
margin-top: 0;
padding-top: 0; }
body > h3:first-child, body > h4:first-child, body > h5:first-child, body > h6:first-child {
margin-top: 0;
padding-top: 0; }
a:first-child h1, a:first-child h2, a:first-child h3, a:first-child h4, a:first-child h5, a:first-child h6 {
margin-top: 0;
padding-top: 0; }
h1 p, h2 p, h3 p, h4 p, h5 p, h6 p {
margin-top: 0; }
li p.first {
display: inline-block; }
li {
margin: 0; }
ul, ol {
padding-left: 30px; }
ul :first-child, ol :first-child {
margin-top: 0; }
dl {
padding: 0; }
dl dt {
font-size: 14px;
font-weight: bold;
font-style: italic;
padding: 0;
margin: 15px 0 5px; }
dl dt:first-child {
padding: 0; }
dl dt > :first-child {
margin-top: 0; }
dl dt > :last-child {
margin-bottom: 0; }
dl dd {
margin: 0 0 15px;
padding: 0 15px; }
dl dd > :first-child {
margin-top: 0; }
dl dd > :last-child {
margin-bottom: 0; }
blockquote {
border-left: 4px solid #dddddd;
padding: 0 15px;
color: #777777; }
blockquote > :first-child {
margin-top: 0; }
blockquote > :last-child {
margin-bottom: 0; }
table {
padding: 0;border-collapse: collapse; }
table tr {
border-top: 1px solid #cccccc;
background-color: white;
margin: 0;
padding: 0; }
table tr:nth-child(2n) {
background-color: #f8f8f8; }
table tr th {
font-weight: bold;
border: 1px solid #cccccc;
margin: 0;
padding: 6px 13px; }
table tr td {
border: 1px solid #cccccc;
margin: 0;
padding: 6px 13px; }
table tr th :first-child, table tr td :first-child {
margin-top: 0; }
table tr th :last-child, table tr td :last-child {
margin-bottom: 0; }
img {
max-width: 100%; }
span.frame {
display: block;
overflow: hidden; }
span.frame > span {
border: 1px solid #dddddd;
display: block;
float: left;
overflow: hidden;
margin: 13px 0 0;
padding: 7px;
width: auto; }
span.frame span img {
display: block;
float: left; }
span.frame span span {
clear: both;
color: #333333;
display: block;
padding: 5px 0 0; }
span.align-center {
display: block;
overflow: hidden;
clear: both; }
span.align-center > span {
display: block;
overflow: hidden;
margin: 13px auto 0;
text-align: center; }
span.align-center span img {
margin: 0 auto;
text-align: center; }
span.align-right {
display: block;
overflow: hidden;
clear: both; }
span.align-right > span {
display: block;
overflow: hidden;
margin: 13px 0 0;
text-align: right; }
span.align-right span img {
margin: 0;
text-align: right; }
span.float-left {
display: block;
margin-right: 13px;
overflow: hidden;
float: left; }
span.float-left span {
margin: 13px 0 0; }
span.float-right {
display: block;
margin-left: 13px;
overflow: hidden;
float: right; }
span.float-right > span {
display: block;
overflow: hidden;
margin: 13px auto 0;
text-align: right; }
code, tt {
margin: 0 2px;
padding: 0 5px;
white-space: nowrap;
border: 1px solid #eaeaea;
background-color: #f8f8f8;
border-radius: 3px; }
pre code {
margin: 0;
padding: 0;
white-space: pre;
border: none;
background: transparent; }
.highlight pre {
background-color: #f8f8f8;
border: 1px solid #cccccc;
font-size: 13px;
line-height: 19px;
overflow: auto;
padding: 6px 10px;
border-radius: 3px; }
pre {
background-color: #f8f8f8;
border: 1px solid #cccccc;
font-size: 13px;
line-height: 19px;
overflow: auto;
padding: 6px 10px;
border-radius: 3px; }
pre code, pre tt {
background-color: transparent;
border: none; }
sup {
font-size: 0.83em;
vertical-align: super;
line-height: 0;
}
kbd {
display: inline-block;
padding: 3px 5px;
font-size: 11px;
line-height: 10px;
color: #555;
vertical-align: middle;
background-color: #fcfcfc;
border: solid 1px #ccc;
border-bottom-color: #bbb;
border-radius: 3px;
box-shadow: inset 0 -1px 0 #bbb
}
* {
-webkit-print-color-adjust: exact;
}
@media screen and (min-width: 914px) {
body {
width: 854px;
margin:0 auto;
}
}
@media print {
table, pre {
page-break-inside: avoid;
}
pre {
word-wrap: break-word;
}
}
</style>
</head>
<body>
<h1 id="toc_0">Reinforcement Learning for Traffic Signal Control</h1>
<p>The aim of this repository is to offering comprehensive <strong>dataset</strong>, <strong>simulator</strong>, relevant <strong>papers</strong> and <strong>survey</strong> to anyone who may wish to start investigation or evaluate a new algorithm.</p>
<h2 id="toc_1">Table of contents</h2>
<ul>
<li><a href="#key-paper-list">Key paper list</a></li>
<li><a href="#open-datasets">Open Datasets</a></li>
<li><a href="#traffic-simulator">Traffic Simulator</a></li>
<li><a href="#survey">A comprehensive survey</a></li>
</ul>
<h2 id="toc_2">Key paper list</h2>
<!--### Single intersection
| Method | Paper | Published | Notes |
| :------------- | :------------- | :-------- | :-----: |
| MetaLight | [MetaLight: Value-based Meta-reinforcement Learning for Online Universal Traffic Signal Control]() |AAAI'2020 | |
|DemoLight|[Learning Traffic Signal Control from Demonstrations]() |CIKM'19 | |
| FRAP | [Learning Phase Competition for Traffic Signal Control]() | CIKM'19 | |
| IntelliLight|[IntelliLight: A Reinforcement Learning Approach for Intelligent Traffic Light Control]() | KDD'18|First try on RL signal control. The base of all the methods|
### Multi-intersection-->
<table>
<thead>
<tr>
<th style="text-align: left">Method</th>
<th style="text-align: left">Paper</th>
<th style="text-align: left">Published</th>
<th style="text-align: center">Notes</th>
<th style="text-align: center">Code</th>
<th style="text-align: center">Demo video</th>
<th style="text-align: center">Poster</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align: left">MPLight</td>
<td style="text-align: left"><a href="https://traffic-signal-control.github.io/a-thousand-lights.html">Toward A Thousand Lights: Decentralized Deep Reinforcement Learning for Large-Scale Traffic Signal Control</a></td>
<td style="text-align: left">AAAI'2020</td>
<td style="text-align: center">A combination of PressLight and FRAP</td>
<td style="text-align: center">-</td>
<td style="text-align: center"><a href="https://traffic-signal-control.github.io/a-thousand-lights.html">Demo</a></td>
<td style="text-align: center">-</td>
</tr>
<tr>
<td style="text-align: left">CoLight</td>
<td style="text-align: left"><a href="https://sites.psu.edu/huawei/2019/09/15/colight-cikm-2019/">CoLight: Learning Network-level Cooperation for Traffic Signal Control</a></td>
<td style="text-align: left">CIKM'19</td>
<td style="text-align: center">Attention-based coordination</td>
<td style="text-align: center"><a href="https://github.com/wingsweihua/colight">Code</a></td>
<td style="text-align: center">N/A</td>
<td style="text-align: center">-</td>
</tr>
<tr>
<td style="text-align: left">PressLight</td>
<td style="text-align: left"><a href="">PressLight: Learning Max Pressure Control to Coordinate Traffic Signals in Arterial Network</a></td>
<td style="text-align: left">KDD'19</td>
<td style="text-align: center">Pressure-based coordination</td>
<td style="text-align: center"><a href="https://github.com/wingsweihua/presslight">Code</a></td>
<td style="text-align: center"><a href="https://www.kdd.org/kdd2019/accepted-papers/view/presslight-learning-max-pressure-control-for-signalized-intersections-in-ar">Demo</a></td>
<td style="text-align: center">-</td>
</tr>
<tr>
<td style="text-align: left">FRAP</td>
<td style="text-align: left"><a href="http://www.personal.psu.edu/%7Egjz5038/paper/cikm2019_frap/cikm2019_frap_paper.pdf">Learning Phase Competition for Traffic Signal Control</a></td>
<td style="text-align: left">CIKM'19</td>
<td style="text-align: center">Our most powerful single intersectiton control model</td>
<td style="text-align: center">-</td>
<td style="text-align: center">N/A</td>
<td style="text-align: center"><a href="https://github.com/traffic-signal-control/RL_signals/blob/master/posters/cikm2019_frap.pdf">poster</a></td>
</tr>
<tr>
<td style="text-align: left">MetaLight</td>
<td style="text-align: left">MetaLight: Value-based Meta-reinforcement Learning for Online Universal Traffic Signal Control</td>
<td style="text-align: left">AAAI'2020</td>
<td style="text-align: center">Meta learning for universal traffic signal control</td>
<td style="text-align: center">-</td>
<td style="text-align: center">-</td>
<td style="text-align: center">-</td>
</tr>
<tr>
<td style="text-align: left">DemoLight</td>
<td style="text-align: left"><a href="https://dl.acm.org/citation.cfm?id=3357384.3358079">Learning Traffic Signal Control from Demonstrations</a></td>
<td style="text-align: left">CIKM'19</td>
<td style="text-align: center">Learn from expert demonstrations</td>
<td style="text-align: center">-</td>
<td style="text-align: center">N/A</td>
<td style="text-align: center"><a href="https://github.com/traffic-signal-control/RL_signals/blob/master/posters/cikm-demolight.pdf">poster</a></td>
</tr>
<tr>
<td style="text-align: left">IntelliLight</td>
<td style="text-align: left"><a href="https://www.kdd.org/kdd2018/accepted-papers/view/intellilight-a-reinforcement-learning-approach-for-intelligent-traffic-ligh">IntelliLight: A Reinforcement Learning Approach for Intelligent Traffic Light Control</a></td>
<td style="text-align: left">KDD'18</td>
<td style="text-align: center">First try on RL signal control. The base of all the methods</td>
<td style="text-align: center">N/A</td>
<td style="text-align: center"><a href="https://www.kdd.org/kdd2018/accepted-papers/view/intellilight-a-reinforcement-learning-approach-for-intelligent-traffic-ligh">Demo</a></td>
<td style="text-align: center"><a href="https://github.com/traffic-signal-control/RL_signals/blob/master/posters/KDD18-intelliLight.pdf">poster</a></td>
</tr>
<tr>
<td style="text-align: left">CityFlow</td>
<td style="text-align: left"><a href="https://arxiv.org/abs/1905.05217">CityFlow: A Multi-Agent Reinforcement Learning Environment for Large Scale City Traffic Scenario</a></td>
<td style="text-align: left">WWW'19 Demo</td>
<td style="text-align: center">Simulator</td>
<td style="text-align: center"><a href="https://github.com/cityflow-project/CityFlow">Code</a></td>
<td style="text-align: center"><a href="https://cityflow-project.github.io/">Demo</a></td>
<td style="text-align: center">N/A</td>
</tr>
</tbody>
</table>
<h2 id="toc_3">Open datasets</h2>
<p>We provide different traffic datasets, each includes both road network (roadnet.json) and traffic flow file (flow.json), whose formats are defined in <a href="https://cityflow.readthedocs.io/en/latest/roadnet.html">Roadnet File Format</a> and <a href="https://cityflow.readthedocs.io/en/latest/flow.html">Flow File Format</a> respectively.</p>
<p><section class="content-section " id="datasets"></p>
<div class="container">
<div class="caption-content">
</div>
<div class="table-responsive" data-example-id="simple-table" style="overflow:scroll;">
<table class="table">
<caption>*All methods are measured in <a href="https://traffic-signal-control.github.io/TSCC2019/evaluation.html"> Average Travel Time</a> (in seconds) under <a href="https://cityflow-project.github.io/"> CityFlow</a> simulator.</caption>
<thead>
<tr>
<th>#</th>
<th>Dataset name</th>
<th>
Number of
Intersections
</th>
<th>Time Span
(Seconds)</th>
<th>Description</th>
<th>Referred result*</th>
<th>Referred method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><a
href="https://github.com/traffic-signal-control/sample-code/tree/master/data/hangzhou_1x1_bc-tyc_18041607_1h"><span>hangzhou_1x1_bc-tyc_18041607_1h</span></a></td>
<td>1</td>
<td>3600</td>
<td rowspan="11">These datasets are based on camera data in Hangzhou.
Due to the lack of records about turning vehicles, the turning ratios of each dataset are fixed, with 10% as turning left, 60% as going straight, and 30% as turning right. The turning-right vehicles are discarded since they are not under the control of traffic lights.
There are one left-turn lane and one straight lane in each direction in each roadnet.</td>
<td>221.03</td>
<td ><a class="nav-link js-scroll-trigger" href="https://traffic-signal-control.github.io/code.html">SOTL</a></td>
</tr>
<tr height="30">
<td>2</td>
<td><a
href="https://github.com/traffic-signal-control/sample-code/tree/master/data/hangzhou_1x1_bc-tyc_18041608_1h"><span>hangzhou_1x1_bc-tyc_18041608_1h</span></a></td>
<td>1</td>
<td>3600</td>
<td>334.72</td>
<td ><a class="nav-link js-scroll-trigger" href="https://traffic-signal-control.github.io/code.html">SOTL</a></td>
</tr>
<tr height="30">
<td>3</td>
<td>
<a href="https://github.com/traffic-signal-control/sample-code/tree/master/data/hangzhou_1x1_bc-tyc_18041610_1h"><span >hangzhou_1x1_bc-tyc_18041610_1h</span></a></td>
<td>1</td>
<td>3600</td>
<td>213.20</td>
<td ><a class="nav-link js-scroll-trigger" href="https://traffic-signal-control.github.io/code.html">SOTL</a></td>
</tr>
<tr height="30">
<td>4</td>
<td><a href="https://github.com/traffic-signal-control/sample-code/tree/master/data/hangzhou_1x1_kn-hz_18041607_1h"><span>hangzhou_1x1_kn-hz_18041607_1h</span></a></td>
<td>1</td>
<td>3600</td>
<td>72.48</td>
<td ><a class="nav-link js-scroll-trigger" href="https://traffic-signal-control.github.io/code.html">SOTL</a></td>
</tr>
<tr height="30">
<td>5</td>
<td><a href="https://github.com/traffic-signal-control/sample-code/tree/master/data/hangzhou_1x1_kn-hz_18041608_1h"><span>hangzhou_1x1_kn-hz_18041608_1h</span></a></td>
<td>1</td>
<td>3600</td>
<td>64.10</td>
<td ><a class="nav-link js-scroll-trigger" href="https://traffic-signal-control.github.io/code.html">SOTL</a></td>
</tr>
<tr height="30">
<td>6</td>
<td><a href="https://github.com/traffic-signal-control/sample-code/tree/master/data/hangzhou_1x1_qc-yn_18041607_1h"><span>hangzhou_1x1_qc-yn_18041607_1h</span></a></td>
<td>1</td>
<td>3600</td>
<td>117.24</td>
<td ><a class="nav-link js-scroll-trigger" href="https://traffic-signal-control.github.io/code.html">SOTL</a></td>
</tr>
<tr height="30">
<td>7</td>
<td><a href="https://github.com/traffic-signal-control/sample-code/tree/master/data/hangzhou_1x1_qc-yn_18041608_1h"><span>hangzhou_1x1_qc-yn_18041608_1h</span></a></td>
<td>1</td>
<td>3600</td>
<td>131.99</td>
<td ><a class="nav-link js-scroll-trigger" href="https://traffic-signal-control.github.io/code.html">SOTL</a></td>
</tr>
<tr height="30">
<td>8</td>
<td><a href="https://github.com/traffic-signal-control/sample-code/tree/master/data/hangzhou_1x1_sb-sx_18041607_1h"><span>hangzhou_1x1_sb-sx_18041607_1h</span></a></td>
<td>1</td>
<td>3600</td>
<td>173.85</td>
<td ><a class="nav-link js-scroll-trigger" href="https://traffic-signal-control.github.io/code.html">SOTL</a></td>
</tr>
<tr height="30">
<td>9</td>
<td><a
href="https://github.com/traffic-signal-control/sample-code/tree/master/data/hangzhou_1x1_sb-sx_18041608_1h"><span>hangzhou_1x1_sb-sx_18041608_1h</span></a></td>
<td>1</td>
<td>3600</td>
<td>290.00</td>
<td ><a class="nav-link js-scroll-trigger" href="https://traffic-signal-control.github.io/code.html">SOTL</a></td>
</tr>
<tr height="30">
<td>10</td>
<td><a href="https://github.com/traffic-signal-control/sample-code/tree/master/data/hangzhou_1x1_tms-xy_18041607_1h"><span>hangzhou_1x1_tms-xy_18041607_1h</span></a></td>
<td>1</td>
<td>3600</td>
<td>214.77</td>
<td ><a class="nav-link js-scroll-trigger" href="https://traffic-signal-control.github.io/code.html">SOTL</a></td>
</tr>
<tr height="30">
<td>11</td>
<td><a href="https://github.com/traffic-signal-control/sample-code/tree/master/data/hangzhou_1x1_tms-xy_18041608_1h"><span>hangzhou_1x1_tms-xy_18041608_1h</span></a></td>
<td>1</td>
<td>3600</td>
<td>325.32</td>
<td ><a class="nav-link js-scroll-trigger" href="https://traffic-signal-control.github.io/code.html">SOTL</a></td>
</tr>
<tr height="30">
<td>12</td>
<td><a href="https://github.com/traffic-signal-control/sample-code/tree/master/data/syn_1x1_uniform_200_1h"><span>syn_1x1_uniform_200_1h</span></a></td>
<td>1</td>
<td>3600</td>
<td rowspan="3">These datasets are generated artificially. The vehicles enter the road network uniformly with a fixed entering ratio chosen from 200, 400 and 600 vehicles per hour.</td>
<td>61.44</td>
<td ><a class="nav-link js-scroll-trigger" href="https://traffic-signal-control.github.io/code.html">SOTL</a></td>
</tr>
<tr height="30">
<td>13</td>
<td><a
href="https://github.com/traffic-signal-control/sample-code/tree/master/data/syn_1x1_uniform_400_1h"><span>syn_1x1_uniform_400_1h</span></a></td>
<td>1</td>
<td>3600</td>
<td>133.40</td>
<td ><a class="nav-link js-scroll-trigger" href="https://traffic-signal-control.github.io/code.html">SOTL</a></td>
</tr>
<tr height="30">
<td>14</td>
<td><a
href="https://github.com/traffic-signal-control/sample-code/tree/master/data/syn_1x1_uniform_600_1h"><span>syn_1x1_uniform_600_1h</span></a></td>
<td>1</td>
<td>3600</td>
<td>189.11</td>
<td ><a class="nav-link js-scroll-trigger" href="https://traffic-signal-control.github.io/code.html">SOTL</a></td>
</tr>
<tr height="30">
<td>15</td>
<td><a
href="https://github.com/traffic-signal-control/sample-code/tree/master/data/hangzhou_4x4_gudang_18010207_1h"><span>hangzhou_4x4_gudang_18010207_1h</span></a></td>
<td>16</td>
<td>3600</td>
<td>The road network contains 16 intersections in a 4x4 grid. Each intersection has four incoming approaches and four outgping approaches, and each approach has three lanes (left-turn, through and right-turn respectively).
The traffic flow data is based on camera data in Hangzhou. Necessary simplification is done due to the low quality of the real-world data.
• Traffic volume: the traffic volume is derived from camera data at Hangzhou.
• Turning ratio: 10% (turning left), 60%(going straight) and 30% (turning right). This is synthesized from the statistics of taxi GPS data.</td>
<td>240.97</td>
<td>MaxPressure</td>
</tr>
<tr height="30">
<td>16</td>
<td><a
href="https://github.com/traffic-signal-control/sample-code/tree/master/data/syn_1x3_gaussian_500_1h"><span>syn_1x3_gaussian_500_1h</span></a></td>
<td>3</td>
<td>3600</td>
<td rowspan="4">The road network contains 16 intersections in a 4x4 grid. Each intersection has four incoming approaches and four outgping approaches, and each approach has three lanes (left-turn, through and right-turn respectively).
• Traffic volume: All the vehicles enter and leave the network from the rim edges.For each entering edge, the number of the vehicles generated is sampled from a Gaussian distribution with mean as 500 vehicles/hour/lane.
• Turning ratio: 10% (turning left), 60%(going straight) and 30% (turning right)</td>
<td>422.95</td>
<td>MaxPressure</td>
</tr>
<tr height="30">
<td>17</td>
<td><a
href="https://github.com/traffic-signal-control/sample-code/tree/master/data/syn_2x2_gaussian_500_1h"><span>syn_2x2_gaussian_500_1h</span></a></td>
<td>4</td>
<td>3600</td>
<td>477.71</td>
<td>MaxPressure</td>
</tr>
<tr height="30">
<td>18</td>
<td><a href="https://github.com/traffic-signal-control/sample-code/tree/master/data/syn_3x3_gaussian_500_1h"><span>syn_3x3_gaussian_500_1h</span></a></td>
<td>9</td>
<td>3600</td>
<td>631.75</td>
<td>MaxPressure</td>
</tr>
<tr height="30">
<td>19</td>
<td><a
href="https://github.com/traffic-signal-control/sample-code/tree/master/data/syn_4x4_gaussian_500_1h"><span>syn_4x4_gaussian_500_1h</span></a></td>
<td>16</td>
<td>3600</td>
<td>689.68</td>
<td>MaxPressure</td>
</tr>
</tbody>
</table>
</div>
<p></div></p>
<p></section></p>
<h2 id="toc_4">Survey</h2>
<p><a href="https://arxiv.org/abs/1904.08117">A Survey on traffic signal control</a></p>
<!--## How to contribute
-->
<h2 id="toc_5">Team</h2>
<div class="row">
<!-- Header -->
<div class="col-xl-12 col-md-6 mb-5">
<div class="card border-0">
<div class="card-body text-center">
<h3 class="card-title mb-0">Faculty Members</h3>
</div>
</div>
</div>
</div>
<div class="row">
<!-- Team Member 1 -->
<div class="col-xl-4 col-md-6 mb-5">
<div class="card border-0">
<div class="card-body text-center">
</div>
</div>
</div>
<!-- Team Member 1 -->
<div class="col-xl-4 col-md-6 mb-5">
<div class="card border-0">
<a href="https://faculty.ist.psu.edu/jessieli/Site/index.html">
<img src="img/jessie-li.png" class="card-img-top" alt="...">
<div class="card-body text-center">
<h5 class="card-title mb-0">Zhenhui (Jessie) Li </h5>
<div class="card-text text-black-50">Penn State</div>
</div>
</a>
</div>
</div>
<!-- Team Member 1 -->
<div class="col-xl-4 col-md-6 mb-5">
<div class="card border-0">
<div class="card-body text-center">
</div>
</div>
</div>
<ul>
<li><a href="http://www.personal.psu.edu/%7Egjz5038/">Guanjie Zheng</a> (PhD, Penn State University)</li>
<li><a href="http://personal.psu.edu/hzw77/index.html">Hua Wei</a> (PhD, Penn State University)</li>
<li><a href="https://chacha-chen.github.io/">Chacha Chen</a> (PhD, Penn State University)</li>
<li><a href="https://sites.google.com/site/xunannancy/home">Nan Xu</a> (PhD, University of Southern California)</li>
<li><a href="https://xyh97.github.io/">Yuanhao Xiong</a> (PhD, University of Los Angelos)</li>
<li>Kan Wu (PhD, Penn State University)</li>
<li>Xinshi Zang (Bachelor, Shanghai Jiao Tong University)</li>
<li>Huichu Zhang (PhD, Shanghai Jiao Tong University)</li>
<li>Jie Feng (PhD, Tsinghua University)</li>
</ul>
</body>
</html>