-
Notifications
You must be signed in to change notification settings - Fork 1
/
dsmc.t
224 lines (201 loc) · 7.29 KB
/
dsmc.t
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
-- SPDX-FileCopyrightText: 2024 René Hiemstra <[email protected]>
-- SPDX-FileCopyrightText: 2024 Torsten Keßler <[email protected]>
--
-- SPDX-License-Identifier: MIT
local alloc = require("alloc")
local base = require("base")
local concepts = require("concepts")
local template = require("template")
local random = require("random")
local dvector = require("dvector")
local svector = require("svector")
local vecbase = require("vector")
local random = require("random")
local io = terralib.includec("stdio.h")
local mathfun = require("mathfuns")
local err = require("assert")
local ParticleSystem = terralib.memoize(function(T)
assert(concepts.Real(T))
local Allocator = alloc.Allocator
local DVec = dvector.DynamicVector(T)
local struct particle_system(base.AbstractBase) {
n: int64
v: DVec
}
particle_system.eltype = T
particle_system.staticmethods.new = terra(alloc: Allocator, n: int64)
return particle_system {n, DVec.new(alloc, 3 * n)}
end
terra particle_system:size()
return self.n
end
terra particle_system:getvelocities()
return self.v
end
local Vec = vecbase.Vector
local SVec = svector.StaticVector(T, 3)
particle_system.templates.collision_transform = template.Template:new("collision_transform")
particle_system.templates.collision_transform[{&particle_system.Self, &Vec, &Vec, &Vec} -> {}]
= function(Self, V1, V2, V3)
local terra impl(self: Self, v: V1, w: V2, e: V3)
err.assert(v:size() == 3)
err.assert(w:size() == 3)
err.assert(e:size() == 3)
var u = SVec.new()
u:copy(w)
u:axpy(T(-1.0), v)
var scatter = u:dot(e)
v:axpy(scatter, e)
w:axpy(-scatter, e)
end
return impl
end
terra particle_system:max_relative_velocity_bound()
var mean = SVec.new()
for j = 0, 3 do
mean(j) = [T](0)
for i = 0, self.n do
mean(j) = self.v(3 * i + j) + i * mean(j)
mean(j) = mean(j) / (i + 1)
end
end
var umax = [T](-1)
for i = 0, self.n do
var u = SVec.new()
for j = 0, 3 do
u(j) = self.v(3 * i + j) - mean(j)
end
umax = mathfun.max(umax, mathfun.sqrt(u:dot(&u)))
end
return 2 * umax
end
terra particle_system:time_counter(umax: T)
-- The time counter depends on the majorant for the collision kernel.
-- When using the maximal relative velocity it follows this simple
-- expression.
return [T](2) / (umax * (self.n - 1))
end
local Rand = random.RandomDistributer(T)
terra particle_system:jump_time(rand: Rand, umax: T)
-- As a Markovian jump process, state jumps are exponentially
-- distributed.
var tau = self:time_counter(umax)
return rand:rand_exp(1 / tau)
end
local terra rand_sphere(rand: Rand, e: &SVec)
-- To uniformly sample from the sphere we first sample from an
-- isotropic normal distribution in 3D and then normalize the result
-- to unit length.
for i = 0, 3 do
e(i) = rand:rand_normal([T](0), [T](1))
end
var nrm = mathfun.sqrt(e:dot(e))
e:scal(1 / nrm)
end
terra particle_system:collide(rand: Rand, dt: T)
-- For a list of collision processes, see
-- Rjasanow, Wagner: On time counting procedures in the DSMC method for rarefied gases,
-- https://doi.org/10.1016/S0378-4754(98)00142-6
-- Compute an upper bound for the largest relative velocity in the gas
var umax = self:max_relative_velocity_bound()
var t = [T](0)
var v = SVec.new()
var w = SVec.new()
var u = SVec.new()
var e = SVec.new()
-- Time step size is really just observation time of a Markovian
-- process.
-- For the 0d Boltzmann equation, DSMC doesn't introduce a time
-- discretization.
while t < dt do
-- Sample collision partners
var i: int64 = self. n * rand:rand_uniform()
var j: int64
repeat
j = self. n * rand:rand_uniform()
until i ~= j
-- Compute hard sphere collision kernel for sampled particles
var unrm = [T](0)
for k = 0, 3 do
var diff = self.v(3 * i + k) - self.v(3 * j + k)
unrm = unrm + diff * diff
end
unrm = mathfun.sqrt(unrm)
-- Rejection sampling.
-- Since we sampled the collision partners from a uniform
-- distribution we can only accept those that follow the real
-- distribution according to the collision kernel.
if rand:rand_uniform() < unrm / umax then
-- If accepted, sample a scattering direction.
-- For hard spheres, it is uniformly distributed on the unit
-- sphere.
rand_sphere(rand, &e)
for k = 0, 3 do
v(k) = self.v(3 * i + k)
w(k) = self.v(3 * j + k)
end
self:collision_transform(&v, &w, &e)
for k = 0, 3 do
self.v(3 * i + k) = v(k)
self.v(3 * j + k) = w(k)
end
end
-- A collision has an exponentially distributed probability to
-- happen within a certain time.
-- Hence, each collision increases our observation time.
t = t + self:jump_time(rand, umax)
end
end
terra particle_system:maxwellian(rand: Rand, u: &SVec, theta: T)
for i = 0, self.n do
for j = 0, 3 do
self.v(3 * i + j) = rand:rand_normal(u(j), mathfun.sqrt(theta))
end
end
end
terra particle_system:mixture(rand: Rand, alpha: T,
u1: &SVec, theta1: T,
u2: &SVec, theta2: T)
for i = 0, self.n do
for j = 0, 3 do
if rand:rand_uniform() < alpha then
self.v(3 * i + j)
= rand:rand_normal(u1(j), mathfun.sqrt(theta1))
else
self.v(3 * i + j)
= rand:rand_normal(u2(j), mathfun.sqrt(theta2))
end
end
end
end
return particle_system
end)
local ParticleSystem = ParticleSystem(double)
local SVec = svector.StaticVector(double, 3)
local DefaultAllocator = alloc.DefaultAllocator()
local Rand = random.MinimalPCG(double)
terra main()
var rand = Rand.from()
var alloc: DefaultAllocator
var n = [int64](1e5)
var tend = 10.0
var dt = 1e-1
var nt = [int64](tend / dt)
var p = ParticleSystem.new(&alloc, n)
var u1 = SVec.zeros()
u1(0) = -3.0
var u2 = SVec.zeros()
u2(0) = 3.0
var theta = 1.0
p:mixture(&rand, 0.5, &u1, theta, &u2, theta)
-- Time stepping is only necessary if intermediate values of the particle
-- density function are wanted.
for i = 0, nt do
p:collide(&rand, dt)
end
for i = 0, n do
io.printf("%.7e %.7e %.7e\n",
p.v(3 * i), p.v(3 * i + 1), p.v(3 * i + 2))
end
end
main()