forked from SaschaWillems/Vulkan
-
Notifications
You must be signed in to change notification settings - Fork 0
/
multisampling.cpp
740 lines (624 loc) · 26.1 KB
/
multisampling.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
/*
* Vulkan Example - Multisampling using resolve attachments
*
* Copyright (C) 2016 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <vector>
#define GLM_FORCE_RADIANS
#define GLM_FORCE_DEPTH_ZERO_TO_ONE
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <vulkan/vulkan.h>
#include "vulkanexamplebase.h"
#include "VulkanBuffer.hpp"
#include "VulkanTexture.hpp"
#include "VulkanModel.hpp"
#define VERTEX_BUFFER_BIND_ID 0
#define ENABLE_VALIDATION false
#define SAMPLE_COUNT VK_SAMPLE_COUNT_4_BIT
struct {
struct {
VkImage image;
VkImageView view;
VkDeviceMemory memory;
} color;
struct {
VkImage image;
VkImageView view;
VkDeviceMemory memory;
} depth;
} multisampleTarget;
class VulkanExample : public VulkanExampleBase
{
public:
bool useSampleShading = false;
struct {
vks::Texture2D colorMap;
} textures;
// Vertex layout for the models
vks::VertexLayout vertexLayout = vks::VertexLayout({
vks::VERTEX_COMPONENT_POSITION,
vks::VERTEX_COMPONENT_NORMAL,
vks::VERTEX_COMPONENT_UV,
vks::VERTEX_COMPONENT_COLOR,
});
struct {
vks::Model example;
} models;
struct {
VkPipelineVertexInputStateCreateInfo inputState;
std::vector<VkVertexInputBindingDescription> bindingDescriptions;
std::vector<VkVertexInputAttributeDescription> attributeDescriptions;
} vertices;
vks::Buffer uniformBuffer;
struct UBOVS {
glm::mat4 projection;
glm::mat4 model;
glm::vec4 lightPos = glm::vec4(5.0f, 5.0f, 5.0f, 1.0f);
} uboVS;
struct {
VkPipeline MSAA;
VkPipeline MSAASampleShading;
} pipelines;
VkPipelineLayout pipelineLayout;
VkDescriptorSet descriptorSet;
VkDescriptorSetLayout descriptorSetLayout;
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
{
zoom = -7.5f;
zoomSpeed = 2.5f;
rotation = { 0.0f, -90.0f, 0.0f };
cameraPos = glm::vec3(2.5f, 2.5f, 0.0f);
title = "Vulkan Example - Multisampling";
}
~VulkanExample()
{
// Clean up used Vulkan resources
// Note : Inherited destructor cleans up resources stored in base class
vkDestroyPipeline(device, pipelines.MSAA, nullptr);
vkDestroyPipeline(device, pipelines.MSAASampleShading, nullptr);
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
models.example.destroy();
// Destroy MSAA target
vkDestroyImage(device, multisampleTarget.color.image, nullptr);
vkDestroyImageView(device, multisampleTarget.color.view, nullptr);
vkFreeMemory(device, multisampleTarget.color.memory, nullptr);
vkDestroyImage(device, multisampleTarget.depth.image, nullptr);
vkDestroyImageView(device, multisampleTarget.depth.view, nullptr);
vkFreeMemory(device, multisampleTarget.depth.memory, nullptr);
textures.colorMap.destroy();
uniformBuffer.destroy();
}
// Creates a multi sample render target (image and view) that is used to resolve
// into the visible frame buffer target in the render pass
void setupMultisampleTarget()
{
// Check if device supports requested sample count for color and depth frame buffer
assert((deviceProperties.limits.framebufferColorSampleCounts >= SAMPLE_COUNT) && (deviceProperties.limits.framebufferDepthSampleCounts >= SAMPLE_COUNT));
// Color target
VkImageCreateInfo info = vks::initializers::imageCreateInfo();
info.imageType = VK_IMAGE_TYPE_2D;
info.format = swapChain.colorFormat;
info.extent.width = width;
info.extent.height = height;
info.extent.depth = 1;
info.mipLevels = 1;
info.arrayLayers = 1;
info.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
info.tiling = VK_IMAGE_TILING_OPTIMAL;
info.samples = SAMPLE_COUNT;
// Image will only be used as a transient target
info.usage = VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
info.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
VK_CHECK_RESULT(vkCreateImage(device, &info, nullptr, &multisampleTarget.color.image));
VkMemoryRequirements memReqs;
vkGetImageMemoryRequirements(device, multisampleTarget.color.image, &memReqs);
VkMemoryAllocateInfo memAlloc = vks::initializers::memoryAllocateInfo();
memAlloc.allocationSize = memReqs.size;
// We prefer a lazily allocated memory type
// This means that the memory gets allocated when the implementation sees fit, e.g. when first using the images
VkBool32 lazyMemTypePresent;
memAlloc.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT, &lazyMemTypePresent);
if (!lazyMemTypePresent)
{
// If this is not available, fall back to device local memory
memAlloc.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
}
VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &multisampleTarget.color.memory));
vkBindImageMemory(device, multisampleTarget.color.image, multisampleTarget.color.memory, 0);
// Create image view for the MSAA target
VkImageViewCreateInfo viewInfo = vks::initializers::imageViewCreateInfo();
viewInfo.image = multisampleTarget.color.image;
viewInfo.viewType = VK_IMAGE_VIEW_TYPE_2D;
viewInfo.format = swapChain.colorFormat;
viewInfo.components.r = VK_COMPONENT_SWIZZLE_R;
viewInfo.components.g = VK_COMPONENT_SWIZZLE_G;
viewInfo.components.b = VK_COMPONENT_SWIZZLE_B;
viewInfo.components.a = VK_COMPONENT_SWIZZLE_A;
viewInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
viewInfo.subresourceRange.levelCount = 1;
viewInfo.subresourceRange.layerCount = 1;
VK_CHECK_RESULT(vkCreateImageView(device, &viewInfo, nullptr, &multisampleTarget.color.view));
// Depth target
info.imageType = VK_IMAGE_TYPE_2D;
info.format = depthFormat;
info.extent.width = width;
info.extent.height = height;
info.extent.depth = 1;
info.mipLevels = 1;
info.arrayLayers = 1;
info.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
info.tiling = VK_IMAGE_TILING_OPTIMAL;
info.samples = SAMPLE_COUNT;
// Image will only be used as a transient target
info.usage = VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT | VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT;
info.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
VK_CHECK_RESULT(vkCreateImage(device, &info, nullptr, &multisampleTarget.depth.image));
vkGetImageMemoryRequirements(device, multisampleTarget.depth.image, &memReqs);
memAlloc = vks::initializers::memoryAllocateInfo();
memAlloc.allocationSize = memReqs.size;
memAlloc.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT, &lazyMemTypePresent);
if (!lazyMemTypePresent)
{
memAlloc.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
}
VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &multisampleTarget.depth.memory));
vkBindImageMemory(device, multisampleTarget.depth.image, multisampleTarget.depth.memory, 0);
// Create image view for the MSAA target
viewInfo.image = multisampleTarget.depth.image;
viewInfo.viewType = VK_IMAGE_VIEW_TYPE_2D;
viewInfo.format = depthFormat;
viewInfo.components.r = VK_COMPONENT_SWIZZLE_R;
viewInfo.components.g = VK_COMPONENT_SWIZZLE_G;
viewInfo.components.b = VK_COMPONENT_SWIZZLE_B;
viewInfo.components.a = VK_COMPONENT_SWIZZLE_A;
viewInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT;
viewInfo.subresourceRange.levelCount = 1;
viewInfo.subresourceRange.layerCount = 1;
VK_CHECK_RESULT(vkCreateImageView(device, &viewInfo, nullptr, &multisampleTarget.depth.view));
}
// Setup a render pass for using a multi sampled attachment
// and a resolve attachment that the msaa image is resolved
// to at the end of the render pass
void setupRenderPass()
{
// Overrides the virtual function of the base class
std::array<VkAttachmentDescription, 4> attachments = {};
// Multisampled attachment that we render to
attachments[0].format = swapChain.colorFormat;
attachments[0].samples = SAMPLE_COUNT;
attachments[0].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
// No longer required after resolve, this may save some bandwidth on certain GPUs
attachments[0].storeOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attachments[0].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attachments[0].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attachments[0].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
attachments[0].finalLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
// This is the frame buffer attachment to where the multisampled image
// will be resolved to and which will be presented to the swapchain
attachments[1].format = swapChain.colorFormat;
attachments[1].samples = VK_SAMPLE_COUNT_1_BIT;
attachments[1].loadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attachments[1].storeOp = VK_ATTACHMENT_STORE_OP_STORE;
attachments[1].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attachments[1].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attachments[1].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
attachments[1].finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
// Multisampled depth attachment we render to
attachments[2].format = depthFormat;
attachments[2].samples = SAMPLE_COUNT;
attachments[2].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
attachments[2].storeOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attachments[2].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attachments[2].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attachments[2].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
attachments[2].finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
// Depth resolve attachment
attachments[3].format = depthFormat;
attachments[3].samples = VK_SAMPLE_COUNT_1_BIT;
attachments[3].loadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attachments[3].storeOp = VK_ATTACHMENT_STORE_OP_STORE;
attachments[3].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attachments[3].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attachments[3].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
attachments[3].finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
VkAttachmentReference colorReference = {};
colorReference.attachment = 0;
colorReference.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
VkAttachmentReference depthReference = {};
depthReference.attachment = 2;
depthReference.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
// Two resolve attachment references for color and depth
std::array<VkAttachmentReference,2> resolveReferences = {};
resolveReferences[0].attachment = 1;
resolveReferences[0].layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
resolveReferences[1].attachment = 3;
resolveReferences[1].layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
VkSubpassDescription subpass = {};
subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
subpass.colorAttachmentCount = 1;
subpass.pColorAttachments = &colorReference;
// Pass our resolve attachments to the sub pass
subpass.pResolveAttachments = resolveReferences.data();
subpass.pDepthStencilAttachment = &depthReference;
std::array<VkSubpassDependency, 2> dependencies;
dependencies[0].srcSubpass = VK_SUBPASS_EXTERNAL;
dependencies[0].dstSubpass = 0;
dependencies[0].srcStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;
dependencies[0].dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
dependencies[0].srcAccessMask = VK_ACCESS_MEMORY_READ_BIT;
dependencies[0].dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
dependencies[0].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT;
dependencies[1].srcSubpass = 0;
dependencies[1].dstSubpass = VK_SUBPASS_EXTERNAL;
dependencies[1].srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
dependencies[1].dstStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;
dependencies[1].srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
dependencies[1].dstAccessMask = VK_ACCESS_MEMORY_READ_BIT;
dependencies[1].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT;
VkRenderPassCreateInfo renderPassInfo = vks::initializers::renderPassCreateInfo();
renderPassInfo.attachmentCount = attachments.size();
renderPassInfo.pAttachments = attachments.data();
renderPassInfo.subpassCount = 1;
renderPassInfo.pSubpasses = &subpass;
renderPassInfo.dependencyCount = 2;
renderPassInfo.pDependencies = dependencies.data();
VK_CHECK_RESULT(vkCreateRenderPass(device, &renderPassInfo, nullptr, &renderPass));
}
// Frame buffer attachments must match with render pass setup,
// so we need to adjust frame buffer creation to cover our
// multisample target
void setupFrameBuffer()
{
// Overrides the virtual function of the base class
std::array<VkImageView, 4> attachments;
setupMultisampleTarget();
attachments[0] = multisampleTarget.color.view;
// attachment[1] = swapchain image
attachments[2] = multisampleTarget.depth.view;
attachments[3] = depthStencil.view;
VkFramebufferCreateInfo frameBufferCreateInfo = {};
frameBufferCreateInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
frameBufferCreateInfo.pNext = NULL;
frameBufferCreateInfo.renderPass = renderPass;
frameBufferCreateInfo.attachmentCount = attachments.size();
frameBufferCreateInfo.pAttachments = attachments.data();
frameBufferCreateInfo.width = width;
frameBufferCreateInfo.height = height;
frameBufferCreateInfo.layers = 1;
// Create frame buffers for every swap chain image
frameBuffers.resize(swapChain.imageCount);
for (uint32_t i = 0; i < frameBuffers.size(); i++)
{
attachments[1] = swapChain.buffers[i].view;
VK_CHECK_RESULT(vkCreateFramebuffer(device, &frameBufferCreateInfo, nullptr, &frameBuffers[i]));
}
}
void reBuildCommandBuffers()
{
if (!checkCommandBuffers())
{
destroyCommandBuffers();
createCommandBuffers();
}
buildCommandBuffers();
}
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
VkClearValue clearValues[3];
// Clear to a white background for higher contrast
clearValues[0].color = { { 1.0f, 1.0f, 1.0f, 1.0f } };
clearValues[1].color = { { 1.0f, 1.0f, 1.0f, 1.0f } };
clearValues[2].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 3;
renderPassBeginInfo.pClearValues = clearValues;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
// Set target frame buffer
renderPassBeginInfo.framebuffer = frameBuffers[i];
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, useSampleShading ? pipelines.MSAASampleShading : pipelines.MSAA);
VkDeviceSize offsets[1] = { 0 };
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &models.example.vertices.buffer, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], models.example.indices.buffer, 0, VK_INDEX_TYPE_UINT32);
vkCmdDrawIndexed(drawCmdBuffers[i], models.example.indexCount, 1, 0, 0, 0);
vkCmdEndRenderPass(drawCmdBuffers[i]);
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
}
}
void loadAssets()
{
models.example.loadFromFile(getAssetPath() + "models/voyager/voyager.dae", vertexLayout, 1.0f, vulkanDevice, queue);
if (deviceFeatures.textureCompressionBC) {
textures.colorMap.loadFromFile(getAssetPath() + "models/voyager/voyager_bc3_unorm.ktx", VK_FORMAT_BC3_UNORM_BLOCK, vulkanDevice, queue);
}
else if (deviceFeatures.textureCompressionASTC_LDR) {
textures.colorMap.loadFromFile(getAssetPath() + "models/voyager/voyager_astc_8x8_unorm.ktx", VK_FORMAT_ASTC_8x8_UNORM_BLOCK, vulkanDevice, queue);
}
else if (deviceFeatures.textureCompressionETC2) {
textures.colorMap.loadFromFile(getAssetPath() + "models/voyager/voyager_etc2_unorm.ktx", VK_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK, vulkanDevice, queue);
}
else {
vks::tools::exitFatal("Device does not support any compressed texture format!", "Error");
}
}
void setupVertexDescriptions()
{
// Binding description
vertices.bindingDescriptions.resize(1);
vertices.bindingDescriptions[0] =
vks::initializers::vertexInputBindingDescription(
VERTEX_BUFFER_BIND_ID,
vertexLayout.stride(),
VK_VERTEX_INPUT_RATE_VERTEX);
// Attribute descriptions
vertices.attributeDescriptions.resize(4);
// Location 0 : Position
vertices.attributeDescriptions[0] =
vks::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
0,
VK_FORMAT_R32G32B32_SFLOAT,
0);
// Location 1 : Normal
vertices.attributeDescriptions[1] =
vks::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
1,
VK_FORMAT_R32G32B32_SFLOAT,
sizeof(float) * 3);
// Location 2 : Texture coordinates
vertices.attributeDescriptions[2] =
vks::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
2,
VK_FORMAT_R32G32_SFLOAT,
sizeof(float) * 6);
// Location 3 : Color
vertices.attributeDescriptions[3] =
vks::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
3,
VK_FORMAT_R32G32B32_SFLOAT,
sizeof(float) * 8);
vertices.inputState = vks::initializers::pipelineVertexInputStateCreateInfo();
vertices.inputState.vertexBindingDescriptionCount = vertices.bindingDescriptions.size();
vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data();
vertices.inputState.vertexAttributeDescriptionCount = vertices.attributeDescriptions.size();
vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data();
}
void setupDescriptorPool()
{
// Example uses one ubo and one combined image sampler
std::vector<VkDescriptorPoolSize> poolSizes =
{
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1),
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1),
};
VkDescriptorPoolCreateInfo descriptorPoolInfo =
vks::initializers::descriptorPoolCreateInfo(
poolSizes.size(),
poolSizes.data(),
2);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
}
void setupDescriptorSetLayout()
{
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings =
{
// Binding 0 : Vertex shader uniform buffer
vks::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
VK_SHADER_STAGE_VERTEX_BIT,
0),
// Binding 1 : Fragment shader combined sampler
vks::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
VK_SHADER_STAGE_FRAGMENT_BIT,
1),
};
VkDescriptorSetLayoutCreateInfo descriptorLayout =
vks::initializers::descriptorSetLayoutCreateInfo(
setLayoutBindings.data(),
setLayoutBindings.size());
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout));
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo =
vks::initializers::pipelineLayoutCreateInfo(
&descriptorSetLayout,
1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout));
}
void setupDescriptorSet()
{
VkDescriptorSetAllocateInfo allocInfo =
vks::initializers::descriptorSetAllocateInfo(
descriptorPool,
&descriptorSetLayout,
1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet));
VkDescriptorImageInfo texDescriptor =
vks::initializers::descriptorImageInfo(
textures.colorMap.sampler,
textures.colorMap.view,
VK_IMAGE_LAYOUT_GENERAL);
std::vector<VkWriteDescriptorSet> writeDescriptorSets =
{
// Binding 0 : Vertex shader uniform buffer
vks::initializers::writeDescriptorSet(
descriptorSet,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
0,
&uniformBuffer.descriptor),
// Binding 1 : Color map
vks::initializers::writeDescriptorSet(
descriptorSet,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
1,
&texDescriptor)
};
vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL);
}
void preparePipelines()
{
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState =
vks::initializers::pipelineInputAssemblyStateCreateInfo(
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST,
0,
VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState =
vks::initializers::pipelineRasterizationStateCreateInfo(
VK_POLYGON_MODE_FILL,
VK_CULL_MODE_BACK_BIT,
VK_FRONT_FACE_CLOCKWISE,
0);
VkPipelineColorBlendAttachmentState blendAttachmentState =
vks::initializers::pipelineColorBlendAttachmentState(
0xf,
VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState =
vks::initializers::pipelineColorBlendStateCreateInfo(
1,
&blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState =
vks::initializers::pipelineDepthStencilStateCreateInfo(
VK_TRUE,
VK_TRUE,
VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState =
vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
std::vector<VkDynamicState> dynamicStateEnables = {
VK_DYNAMIC_STATE_VIEWPORT,
VK_DYNAMIC_STATE_SCISSOR
};
VkPipelineDynamicStateCreateInfo dynamicState =
vks::initializers::pipelineDynamicStateCreateInfo(
dynamicStateEnables.data(),
dynamicStateEnables.size(),
0);
VkGraphicsPipelineCreateInfo pipelineCreateInfo =
vks::initializers::pipelineCreateInfo(
pipelineLayout,
renderPass,
0);
VkPipelineMultisampleStateCreateInfo multisampleState{};
multisampleState.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
pipelineCreateInfo.pVertexInputState = &vertices.inputState;
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
pipelineCreateInfo.pRasterizationState = &rasterizationState;
pipelineCreateInfo.pColorBlendState = &colorBlendState;
pipelineCreateInfo.pMultisampleState = &multisampleState;
pipelineCreateInfo.pViewportState = &viewportState;
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
pipelineCreateInfo.pDynamicState = &dynamicState;
pipelineCreateInfo.stageCount = shaderStages.size();
pipelineCreateInfo.pStages = shaderStages.data();
// MSAA rendering pipeline
shaderStages[0] = loadShader(getAssetPath() + "shaders/mesh/mesh.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getAssetPath() + "shaders/mesh/mesh.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
// Setup multi sampling
multisampleState.rasterizationSamples = SAMPLE_COUNT; // Number of samples to use for rasterization
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.MSAA));
// MSAA with sample shading pipeline
// Sample shading enables per-sample shading to avoid shader aliasing and smooth out e.g. high frequency texture maps
// Note: This will trade performance for are more stable image
multisampleState.sampleShadingEnable = VK_TRUE; // Enable per-sample shading (instead of per-fragment)
multisampleState.minSampleShading = 0.25f; // Minimum fraction for sample shading
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.MSAASampleShading));
}
// Prepare and initialize uniform buffer containing shader uniforms
void prepareUniformBuffers()
{
// Vertex shader uniform buffer block
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&uniformBuffer,
sizeof(uboVS)));
// Map persistent
VK_CHECK_RESULT(uniformBuffer.map());
updateUniformBuffers();
}
void updateUniformBuffers()
{
// Vertex shader
glm::mat4 viewMatrix = glm::mat4();
uboVS.projection = glm::perspective(glm::radians(60.0f), (float)width / (float)height, 0.1f, 256.0f);
viewMatrix = glm::translate(viewMatrix, glm::vec3(0.0f, 0.0f, zoom));
float offset = 0.5f;
int uboIndex = 1;
uboVS.model = glm::mat4();
uboVS.model = viewMatrix * glm::translate(uboVS.model, cameraPos);
uboVS.model = glm::rotate(uboVS.model, glm::radians(rotation.x), glm::vec3(1.0f, 0.0f, 0.0f));
uboVS.model = glm::rotate(uboVS.model, glm::radians(rotation.y), glm::vec3(0.0f, 1.0f, 0.0f));
uboVS.model = glm::rotate(uboVS.model, glm::radians(rotation.z), glm::vec3(0.0f, 0.0f, 1.0f));
memcpy(uniformBuffer.mapped, &uboVS, sizeof(uboVS));
}
void draw()
{
VulkanExampleBase::prepareFrame();
// Command buffer to be sumitted to the queue
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
// Submit to queue
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
VulkanExampleBase::submitFrame();
}
void prepare()
{
VulkanExampleBase::prepare();
loadAssets();
setupVertexDescriptions();
prepareUniformBuffers();
setupDescriptorSetLayout();
preparePipelines();
setupDescriptorPool();
setupDescriptorSet();
buildCommandBuffers();
prepared = true;
}
virtual void render()
{
if (!prepared)
return;
draw();
}
virtual void viewChanged()
{
updateUniformBuffers();
}
void toggleSampleShading()
{
useSampleShading = !useSampleShading;
reBuildCommandBuffers();
}
virtual void keyPressed(uint32_t keyCode)
{
switch (keyCode)
{
case KEY_S:
case GAMEPAD_BUTTON_A:
toggleSampleShading();
break;
}
}
};
VULKAN_EXAMPLE_MAIN()