-
Notifications
You must be signed in to change notification settings - Fork 2
/
image.cc
816 lines (617 loc) · 21.2 KB
/
image.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
/*
* H.265 video codec.
* Copyright (c) 2013-2014 struktur AG, Dirk Farin <[email protected]>
*
* This file is part of libde265.
*
* libde265 is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* libde265 is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with libde265. If not, see <http://www.gnu.org/licenses/>.
*/
#include "image.h"
#include "decctx.h"
#include "en265.h"
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <limits>
#ifdef HAVE_MALLOC_H
#include <malloc.h>
#endif
#if defined HAVE_SSE4_1 || defined WASM_SIMD
// SSE code processes 128bit per iteration and thus might read more data
// than is later actually used.
#define MEMORY_PADDING 16
#else
#define MEMORY_PADDING 0
#endif
#define STANDARD_ALIGNMENT 16
#ifdef HAVE___MINGW_ALIGNED_MALLOC
#define ALLOC_ALIGNED(alignment, size) __mingw_aligned_malloc((size), (alignment))
#define FREE_ALIGNED(mem) __mingw_aligned_free((mem))
#elif _WIN32
#define ALLOC_ALIGNED(alignment, size) _aligned_malloc((size), (alignment))
#define FREE_ALIGNED(mem) _aligned_free((mem))
#elif defined(HAVE_POSIX_MEMALIGN)
static inline void *ALLOC_ALIGNED(size_t alignment, size_t size) {
void *mem = NULL;
if (posix_memalign(&mem, alignment, size) != 0) {
return NULL;
}
return mem;
};
#define FREE_ALIGNED(mem) free((mem))
#else
#define ALLOC_ALIGNED(alignment, size) memalign((alignment), (size))
#define FREE_ALIGNED(mem) free((mem))
#endif
#define ALLOC_ALIGNED_16(size) ALLOC_ALIGNED(16, size)
static const int alignment = 16;
LIBDE265_API void* de265_alloc_image_plane(struct de265_image* img, int cIdx,
void* inputdata, int inputstride, void *userdata)
{
int alignment = STANDARD_ALIGNMENT;
int stride = (img->get_width(cIdx) + alignment-1) / alignment * alignment;
int height = img->get_height(cIdx);
uint8_t* p = (uint8_t *)ALLOC_ALIGNED_16(stride * height + MEMORY_PADDING);
if (p==NULL) { return NULL; }
img->set_image_plane(cIdx, p, stride, userdata);
// copy input data if provided
if (inputdata != NULL) {
if (inputstride == stride) {
memcpy(p, inputdata, stride*height);
}
else {
for (int y=0;y<height;y++) {
memcpy(p+y*stride, ((char*)inputdata) + inputstride*y, inputstride);
}
}
}
return p;
}
LIBDE265_API void de265_free_image_plane(struct de265_image* img, int cIdx)
{
uint8_t* p = (uint8_t*)img->get_image_plane(cIdx);
assert(p);
FREE_ALIGNED(p);
}
static int de265_image_get_buffer(de265_decoder_context* ctx,
de265_image_spec* spec, de265_image* img, void* userdata)
{
const int rawChromaWidth = spec->width / img->SubWidthC;
const int rawChromaHeight = spec->height / img->SubHeightC;
int luma_stride = (spec->width + spec->alignment-1) / spec->alignment * spec->alignment;
int chroma_stride = (rawChromaWidth + spec->alignment-1) / spec->alignment * spec->alignment;
assert(img->BitDepth_Y >= 8 && img->BitDepth_Y <= 16);
assert(img->BitDepth_C >= 8 && img->BitDepth_C <= 16);
int luma_bpl = luma_stride * ((img->BitDepth_Y+7)/8);
int chroma_bpl = chroma_stride * ((img->BitDepth_C+7)/8);
int luma_height = spec->height;
int chroma_height = rawChromaHeight;
bool alloc_failed = false;
uint8_t* p[3] = { 0,0,0 };
p[0] = (uint8_t *)ALLOC_ALIGNED_16(luma_height * luma_bpl + MEMORY_PADDING);
if (p[0]==NULL) { alloc_failed=true; }
if (img->get_chroma_format() != de265_chroma_mono) {
p[1] = (uint8_t *)ALLOC_ALIGNED_16(chroma_height * chroma_bpl + MEMORY_PADDING);
p[2] = (uint8_t *)ALLOC_ALIGNED_16(chroma_height * chroma_bpl + MEMORY_PADDING);
if (p[1]==NULL || p[2]==NULL) { alloc_failed=true; }
}
else {
p[1] = NULL;
p[2] = NULL;
chroma_stride = 0;
}
if (alloc_failed) {
for (int i=0;i<3;i++)
if (p[i]) {
FREE_ALIGNED(p[i]);
}
return 0;
}
img->set_image_plane(0, p[0], luma_stride, NULL);
img->set_image_plane(1, p[1], chroma_stride, NULL);
img->set_image_plane(2, p[2], chroma_stride, NULL);
return 1;
}
static void de265_image_release_buffer(de265_decoder_context* ctx,
de265_image* img, void* userdata)
{
for (int i=0;i<3;i++) {
uint8_t* p = (uint8_t*)img->get_image_plane(i);
if (p) {
FREE_ALIGNED(p);
}
}
}
de265_image_allocation de265_image::default_image_allocation = {
de265_image_get_buffer,
de265_image_release_buffer
};
void de265_image::set_image_plane(int cIdx, uint8_t* mem, int stride, void *userdata)
{
pixels[cIdx] = mem;
plane_user_data[cIdx] = userdata;
if (cIdx==0) { this->stride = stride; }
else { this->chroma_stride = stride; }
}
uint32_t de265_image::s_next_image_ID = 0;
de265_image::de265_image()
{
ID = -1;
removed_at_picture_id = 0; // picture not used, so we can assume it has been removed
decctx = NULL;
//encctx = NULL;
//encoder_image_release_func = NULL;
//alloc_functions.get_buffer = NULL;
//alloc_functions.release_buffer = NULL;
for (int c=0;c<3;c++) {
pixels[c] = NULL;
pixels_confwin[c] = NULL;
plane_user_data[c] = NULL;
}
width=height=0;
pts = 0;
user_data = NULL;
ctb_progress = NULL;
integrity = INTEGRITY_NOT_DECODED;
picture_order_cnt_lsb = -1; // undefined
PicOrderCntVal = -1; // undefined
PicState = UnusedForReference;
PicOutputFlag = false;
nThreadsQueued = 0;
nThreadsRunning = 0;
nThreadsBlocked = 0;
nThreadsFinished = 0;
nThreadsTotal = 0;
de265_mutex_init(&mutex);
de265_cond_init(&finished_cond);
}
de265_error de265_image::alloc_image(int w,int h, enum de265_chroma c,
std::shared_ptr<const seq_parameter_set> sps, bool allocMetadata,
decoder_context* dctx,
//encoder_context* ectx,
de265_PTS pts, void* user_data,
bool useCustomAllocFunc)
{
//if (allocMetadata) { assert(sps); }
if (allocMetadata) { assert(sps); }
if (sps) { this->sps = sps; }
release(); /* TODO: review code for efficient allocation when arrays are already
allocated to the requested size. Without the release, the old image-data
will not be freed. */
ID = s_next_image_ID++;
removed_at_picture_id = std::numeric_limits<int32_t>::max();
decctx = dctx;
//encctx = ectx;
// --- allocate image buffer ---
chroma_format= c;
width = w;
height = h;
chroma_width = w;
chroma_height= h;
this->user_data = user_data;
this->pts = pts;
de265_image_spec spec;
int WinUnitX, WinUnitY;
switch (chroma_format) {
case de265_chroma_mono: WinUnitX=1; WinUnitY=1; break;
case de265_chroma_420: WinUnitX=2; WinUnitY=2; break;
case de265_chroma_422: WinUnitX=2; WinUnitY=1; break;
case de265_chroma_444: WinUnitX=1; WinUnitY=1; break;
default:
assert(0);
}
switch (chroma_format) {
case de265_chroma_420:
spec.format = de265_image_format_YUV420P8;
chroma_width = (chroma_width +1)/2;
chroma_height = (chroma_height+1)/2;
SubWidthC = 2;
SubHeightC = 2;
break;
case de265_chroma_422:
spec.format = de265_image_format_YUV422P8;
chroma_width = (chroma_width+1)/2;
SubWidthC = 2;
SubHeightC = 1;
break;
case de265_chroma_444:
spec.format = de265_image_format_YUV444P8;
SubWidthC = 1;
SubHeightC = 1;
break;
case de265_chroma_mono:
spec.format = de265_image_format_mono8;
chroma_width = 0;
chroma_height= 0;
SubWidthC = 1;
SubHeightC = 1;
break;
default:
assert(false);
break;
}
if (chroma_format != de265_chroma_mono && sps) {
assert(sps->SubWidthC == SubWidthC);
assert(sps->SubHeightC == SubHeightC);
}
spec.width = w;
spec.height = h;
spec.alignment = STANDARD_ALIGNMENT;
// conformance window cropping
int left = sps ? sps->conf_win_left_offset : 0;
int right = sps ? sps->conf_win_right_offset : 0;
int top = sps ? sps->conf_win_top_offset : 0;
int bottom = sps ? sps->conf_win_bottom_offset : 0;
width_confwin = width - (left+right)*WinUnitX;
height_confwin= height- (top+bottom)*WinUnitY;
chroma_width_confwin = chroma_width -left-right;
chroma_height_confwin= chroma_height-top-bottom;
spec.crop_left = left *WinUnitX;
spec.crop_right = right*WinUnitX;
spec.crop_top = top *WinUnitY;
spec.crop_bottom= bottom*WinUnitY;
spec.visible_width = width_confwin;
spec.visible_height= height_confwin;
BitDepth_Y = (sps==NULL) ? 8 : sps->BitDepth_Y;
BitDepth_C = (sps==NULL) ? 8 : sps->BitDepth_C;
bpp_shift[0] = (BitDepth_Y <= 8) ? 0 : 1;
bpp_shift[1] = (BitDepth_C <= 8) ? 0 : 1;
bpp_shift[2] = bpp_shift[1];
// allocate memory and set conformance window pointers
void* alloc_userdata = NULL;
if (decctx) alloc_userdata = decctx->param_image_allocation_userdata;
// if (encctx) alloc_userdata = encctx->param_image_allocation_userdata; // actually not needed
/*
if (encctx && useCustomAllocFunc) {
encoder_image_release_func = encctx->release_func;
// if we do not provide a release function, use our own
if (encoder_image_release_func == NULL) {
image_allocation_functions = de265_image::default_image_allocation;
}
else {
image_allocation_functions.get_buffer = NULL;
image_allocation_functions.release_buffer = NULL;
}
}
else*/ if (decctx && useCustomAllocFunc) {
image_allocation_functions = decctx->param_image_allocation_functions;
}
else {
image_allocation_functions = de265_image::default_image_allocation;
}
bool mem_alloc_success = true;
if (image_allocation_functions.get_buffer != NULL) {
mem_alloc_success = image_allocation_functions.get_buffer(decctx, &spec, this,
alloc_userdata);
pixels_confwin[0] = pixels[0] + left*WinUnitX + top*WinUnitY*stride;
if (chroma_format != de265_chroma_mono) {
pixels_confwin[1] = pixels[1] + left + top*chroma_stride;
pixels_confwin[2] = pixels[2] + left + top*chroma_stride;
}
else {
pixels_confwin[1] = NULL;
pixels_confwin[2] = NULL;
}
// check for memory shortage
if (!mem_alloc_success)
{
return DE265_ERROR_OUT_OF_MEMORY;
}
}
//alloc_functions = *allocfunc;
//alloc_userdata = userdata;
// --- allocate decoding info arrays ---
if (allocMetadata) {
// intra pred mode
mem_alloc_success &= intraPredMode.alloc(sps->PicWidthInMinPUs, sps->PicHeightInMinPUs,
sps->Log2MinPUSize);
mem_alloc_success &= intraPredModeC.alloc(sps->PicWidthInMinPUs, sps->PicHeightInMinPUs,
sps->Log2MinPUSize);
// cb info
mem_alloc_success &= cb_info.alloc(sps->PicWidthInMinCbsY, sps->PicHeightInMinCbsY,
sps->Log2MinCbSizeY);
// pb info
int puWidth = sps->PicWidthInMinCbsY << (sps->Log2MinCbSizeY -2);
int puHeight = sps->PicHeightInMinCbsY << (sps->Log2MinCbSizeY -2);
mem_alloc_success &= pb_info.alloc(puWidth,puHeight, 2);
// tu info
mem_alloc_success &= tu_info.alloc(sps->PicWidthInTbsY, sps->PicHeightInTbsY,
sps->Log2MinTrafoSize);
// deblk info
int deblk_w = (sps->pic_width_in_luma_samples +3)/4;
int deblk_h = (sps->pic_height_in_luma_samples+3)/4;
mem_alloc_success &= deblk_info.alloc(deblk_w, deblk_h, 2);
// CTB info
if (ctb_info.data_size != sps->PicSizeInCtbsY)
{
delete[] ctb_progress;
mem_alloc_success &= ctb_info.alloc(sps->PicWidthInCtbsY, sps->PicHeightInCtbsY,
sps->Log2CtbSizeY);
ctb_progress = new de265_progress_lock[ ctb_info.data_size ];
}
// check for memory shortage
if (!mem_alloc_success)
{
return DE265_ERROR_OUT_OF_MEMORY;
}
}
return DE265_OK;
}
de265_image::~de265_image()
{
release();
// free progress locks
if (ctb_progress) {
delete[] ctb_progress;
}
de265_cond_destroy(&finished_cond);
de265_mutex_destroy(&mutex);
}
void de265_image::release()
{
// free image memory
if (pixels[0])
{
/*
if (encoder_image_release_func != NULL) {
encoder_image_release_func(encctx, this,
encctx->param_image_allocation_userdata);
}
else*/ {
image_allocation_functions.release_buffer(decctx, this,
decctx ?
decctx->param_image_allocation_userdata :
NULL);
}
for (int i=0;i<3;i++)
{
pixels[i] = NULL;
pixels_confwin[i] = NULL;
}
}
// free slices
for (int i=0;i<slices.size();i++) {
delete slices[i];
}
slices.clear();
}
void de265_image::fill_image(int y,int cb,int cr)
{
if (y>=0) {
memset(pixels[0], y, stride * height);
}
if (cb>=0) {
memset(pixels[1], cb, chroma_stride * chroma_height);
}
if (cr>=0) {
memset(pixels[2], cr, chroma_stride * chroma_height);
}
}
de265_error de265_image::copy_image(const de265_image* src)
{
/* TODO: actually, since we allocate the image only for internal purpose, we
do not have to call the external allocation routines for this. However, then
we have to track for each image how to release it again.
Another option would be to safe the copied data not in an de265_image at all.
*/
de265_error err = alloc_image(src->width, src->height, src->chroma_format, src->sps, false,
src->decctx, /*src->encctx,*/ src->pts, src->user_data, false);
if (err != DE265_OK) {
return err;
}
copy_lines_from(src, 0, src->height);
return err;
}
// end = last line + 1
void de265_image::copy_lines_from(const de265_image* src, int first, int end)
{
if (end > src->height) end=src->height;
assert(first % 2 == 0);
assert(end % 2 == 0);
int luma_bpp = (sps->BitDepth_Y+7)/8;
int chroma_bpp = (sps->BitDepth_C+7)/8;
if (src->stride == stride) {
memcpy(pixels[0] + first*stride * luma_bpp,
src->pixels[0] + first*src->stride * luma_bpp,
(end-first)*stride * luma_bpp);
}
else {
for (int yp=first;yp<end;yp++) {
memcpy(pixels[0]+yp*stride * luma_bpp,
src->pixels[0]+yp*src->stride * luma_bpp,
src->width * luma_bpp);
}
}
int first_chroma = first / src->SubHeightC;
int end_chroma = end / src->SubHeightC;
if (src->chroma_format != de265_chroma_mono) {
if (src->chroma_stride == chroma_stride) {
memcpy(pixels[1] + first_chroma*chroma_stride * chroma_bpp,
src->pixels[1] + first_chroma*chroma_stride * chroma_bpp,
(end_chroma-first_chroma) * chroma_stride * chroma_bpp);
memcpy(pixels[2] + first_chroma*chroma_stride * chroma_bpp,
src->pixels[2] + first_chroma*chroma_stride * chroma_bpp,
(end_chroma-first_chroma) * chroma_stride * chroma_bpp);
}
else {
for (int y=first_chroma;y<end_chroma;y++) {
memcpy(pixels[1]+y*chroma_stride * chroma_bpp,
src->pixels[1]+y*src->chroma_stride * chroma_bpp,
src->chroma_width * chroma_bpp);
memcpy(pixels[2]+y*chroma_stride * chroma_bpp,
src->pixels[2]+y*src->chroma_stride * chroma_bpp,
src->chroma_width * chroma_bpp);
}
}
}
}
void de265_image::exchange_pixel_data_with(de265_image& b)
{
for (int i=0;i<3;i++) {
std::swap(pixels[i], b.pixels[i]);
std::swap(pixels_confwin[i], b.pixels_confwin[i]);
std::swap(plane_user_data[i], b.plane_user_data[i]);
}
std::swap(stride, b.stride);
std::swap(chroma_stride, b.chroma_stride);
std::swap(image_allocation_functions, b.image_allocation_functions);
}
void de265_image::thread_start(int nThreads)
{
de265_mutex_lock(&mutex);
//printf("nThreads before: %d %d\n",nThreadsQueued, nThreadsTotal);
nThreadsQueued += nThreads;
nThreadsTotal += nThreads;
//printf("nThreads after: %d %d\n",nThreadsQueued, nThreadsTotal);
de265_mutex_unlock(&mutex);
}
void de265_image::thread_run(const thread_task* task)
{
//printf("run thread %s\n", task->name().c_str());
de265_mutex_lock(&mutex);
nThreadsQueued--;
nThreadsRunning++;
de265_mutex_unlock(&mutex);
}
void de265_image::thread_blocks()
{
de265_mutex_lock(&mutex);
nThreadsRunning--;
nThreadsBlocked++;
de265_mutex_unlock(&mutex);
}
void de265_image::thread_unblocks()
{
de265_mutex_lock(&mutex);
nThreadsBlocked--;
nThreadsRunning++;
de265_mutex_unlock(&mutex);
}
void de265_image::thread_finishes(const thread_task* task)
{
//printf("finish thread %s\n", task->name().c_str());
de265_mutex_lock(&mutex);
nThreadsRunning--;
nThreadsFinished++;
assert(nThreadsRunning >= 0);
if (nThreadsFinished==nThreadsTotal) {
de265_cond_broadcast(&finished_cond, &mutex);
}
de265_mutex_unlock(&mutex);
}
void de265_image::wait_for_progress(thread_task* task, int ctbx,int ctby, int progress)
{
const int ctbW = sps->PicWidthInCtbsY;
wait_for_progress(task, ctbx + ctbW*ctby, progress);
}
void de265_image::wait_for_progress(thread_task* task, int ctbAddrRS, int progress)
{
if (task==NULL) { return; }
de265_progress_lock* progresslock = &ctb_progress[ctbAddrRS];
if (progresslock->get_progress() < progress) {
thread_blocks();
assert(task!=NULL);
task->state = thread_task::Blocked;
/* TODO: check whether we are the first blocked task in the list.
If we are, we have to conceal input errors.
Simplest concealment: do not block.
*/
progresslock->wait_for_progress(progress);
task->state = thread_task::Running;
thread_unblocks();
}
}
void de265_image::wait_for_completion()
{
de265_mutex_lock(&mutex);
while (nThreadsFinished!=nThreadsTotal) {
de265_cond_wait(&finished_cond, &mutex);
}
de265_mutex_unlock(&mutex);
}
bool de265_image::debug_is_completed() const
{
return nThreadsFinished==nThreadsTotal;
}
void de265_image::clear_metadata()
{
// TODO: maybe we could avoid the memset by ensuring that all data is written to
// during decoding (especially log2CbSize), but it is unlikely to be faster than the memset.
cb_info.clear();
//tu_info.clear(); // done on the fly
ctb_info.clear();
deblk_info.clear();
// --- reset CTB progresses ---
for (int i=0;i<ctb_info.data_size;i++) {
ctb_progress[i].reset(CTB_PROGRESS_NONE);
}
}
void de265_image::set_mv_info(int x,int y, int nPbW,int nPbH, const PBMotion& mv)
{
int log2PuSize = 2;
int xPu = x >> log2PuSize;
int yPu = y >> log2PuSize;
int wPu = nPbW >> log2PuSize;
int hPu = nPbH >> log2PuSize;
int stride = pb_info.width_in_units;
for (int pby=0;pby<hPu;pby++)
for (int pbx=0;pbx<wPu;pbx++)
{
pb_info[ xPu+pbx + (yPu+pby)*stride ] = mv;
}
}
bool de265_image::available_zscan(int xCurr,int yCurr, int xN,int yN) const
{
if (xN<0 || yN<0) return false;
if (xN>=sps->pic_width_in_luma_samples ||
yN>=sps->pic_height_in_luma_samples) return false;
int minBlockAddrN = pps->MinTbAddrZS[ (xN>>sps->Log2MinTrafoSize) +
(yN>>sps->Log2MinTrafoSize) * sps->PicWidthInTbsY ];
int minBlockAddrCurr = pps->MinTbAddrZS[ (xCurr>>sps->Log2MinTrafoSize) +
(yCurr>>sps->Log2MinTrafoSize) * sps->PicWidthInTbsY ];
if (minBlockAddrN > minBlockAddrCurr) return false;
int xCurrCtb = xCurr >> sps->Log2CtbSizeY;
int yCurrCtb = yCurr >> sps->Log2CtbSizeY;
int xNCtb = xN >> sps->Log2CtbSizeY;
int yNCtb = yN >> sps->Log2CtbSizeY;
if (get_SliceAddrRS(xCurrCtb,yCurrCtb) !=
get_SliceAddrRS(xNCtb, yNCtb)) {
return false;
}
if (pps->TileIdRS[xCurrCtb + yCurrCtb*sps->PicWidthInCtbsY] !=
pps->TileIdRS[xNCtb + yNCtb *sps->PicWidthInCtbsY]) {
return false;
}
return true;
}
bool de265_image::available_pred_blk(int xC,int yC, int nCbS, int xP, int yP,
int nPbW, int nPbH, int partIdx, int xN,int yN) const
{
logtrace(LogMotion,"C:%d;%d P:%d;%d N:%d;%d size=%d;%d\n",xC,yC,xP,yP,xN,yN,nPbW,nPbH);
int sameCb = (xC <= xN && xN < xC+nCbS &&
yC <= yN && yN < yC+nCbS);
bool availableN;
if (!sameCb) {
availableN = available_zscan(xP,yP,xN,yN);
}
else {
availableN = !(nPbW<<1 == nCbS && nPbH<<1 == nCbS && // NxN
partIdx==1 &&
yN >= yC+nPbH && xN < xC+nPbW); // xN/yN inside partIdx 2
}
if (availableN && get_pred_mode(xN,yN) == MODE_INTRA) {
availableN = false;
}
return availableN;
}