forked from rowanz/grover
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcontextual_generate.py
173 lines (150 loc) · 6.48 KB
/
contextual_generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
#import tensorflow as tf
import numpy as np
import sys
import json
sys.path.append('../')
from lm.modeling import GroverModel, GroverConfig, _top_p_sample, sample
from sample.encoder import get_encoder, format_context, _tokenize_article_pieces, extract_generated_target
from tqdm import tqdm
import argparse
parser = argparse.ArgumentParser(description='Contextual generation (aka given some metadata we will generate articles')
parser.add_argument(
'-metadata_fn',
dest='metadata_fn',
type=str,
help='Path to a JSONL containing metadata',
)
parser.add_argument(
'-out_fn',
dest='out_fn',
type=str,
help='Out jsonl, which will contain the completed jsons',
)
parser.add_argument(
'-model_config_fn',
dest='model_config_fn',
default='../lm/configs/base.json',
type=str,
help='Configuration JSON for the model',
)
parser.add_argument(
'-model_ckpt',
dest='model_ckpt',
default='../models/base/model.ckpt',
type=str,
help='checkpoint file for the model',
)
parser.add_argument(
'-target',
dest='target',
default='article',
type=str,
help='What to generate for each item in metadata_fn. can be article (body), title, etc.',
)
parser.add_argument(
'-batch_size',
dest='batch_size',
default=1,
type=int,
help='How many things to generate per context. will split into chunks if need be',
)
parser.add_argument(
'-num_folds',
dest='num_folds',
default=1,
type=int,
help='Number of folds. useful if we want to split up a big file into multiple jobs.',
)
parser.add_argument(
'-fold',
dest='fold',
default=0,
type=int,
help='which fold we are on. useful if we want to split up a big file into multiple jobs.'
)
parser.add_argument(
'-max_batch_size',
dest='max_batch_size',
default=None,
type=int,
help='max batch size. You can leave this out and we will infer one based on the number of hidden layers',
)
parser.add_argument(
'-top_p',
dest='top_p',
default=0.95,
type=float,
help='p to use for top p sampling. if this isn\'t none, use this for everthing'
)
args = parser.parse_args()
encoder = get_encoder()
news_config = GroverConfig.from_json_file(args.model_config_fn)
# We might have to split the batch into multiple chunks if the batch size is too large
default_mbs = {12: 32, 24: 16, 48: 3}
max_batch_size = args.max_batch_size if args.max_batch_size is not None else default_mbs[news_config.num_hidden_layers]
# factorize args.batch_size = (num_chunks * batch_size_per_chunk) s.t. batch_size_per_chunk < max_batch_size
num_chunks = int(np.ceil(args.batch_size / max_batch_size))
batch_size_per_chunk = int(np.ceil(args.batch_size / num_chunks))
print("\n~~\nbatch size={}, max batch size={}, num chunks={}, batch size per chunk={}\n~~\n".format(
args.batch_size, max_batch_size, num_chunks, batch_size_per_chunk), flush=True)
# This controls the top p for each generation.
top_p = np.ones((num_chunks, batch_size_per_chunk), dtype=np.float32) * args.top_p
with open(args.metadata_fn, 'r') as f:
articles = [json.loads(l) for i, l in enumerate(f) if i % args.num_folds == args.fold]
tf_config = tf.ConfigProto(allow_soft_placement=True)
with tf.Session(config=tf_config, graph=tf.Graph()) as sess, \
open(args.out_fn, 'w') as f_out:
initial_context = tf.placeholder(tf.int32, [batch_size_per_chunk, None])
p_for_topp = tf.placeholder(tf.float32, [batch_size_per_chunk])
eos_token = tf.placeholder(tf.int32, [])
ignore_ids = tf.placeholder(tf.bool, [news_config.vocab_size])
tokens, probs = sample(news_config=news_config, initial_context=initial_context,
eos_token=eos_token, ignore_ids=ignore_ids, p_for_topp=p_for_topp,
do_topk=False)
saver = tf.train.Saver()
saver.restore(sess, args.model_ckpt)
# Let's go!
for i, article in enumerate(tqdm(articles)):
article_pieces = _tokenize_article_pieces(encoder, article)
context_formatted = []
for key in ['domain', 'date', 'authors', 'title', 'article']:
if key != args.target:
context_formatted.extend(article_pieces.pop(key, []))
if len(context_formatted) >= 1020:
print(
"WARNING: the provided context is {} tokens, but the maximum length Grover was trained on was 1024 tokens.".format(
len(context_formatted)), flush=True)
context_formatted = context_formatted[:1020]
context_formatted.append(encoder.__dict__['begin_{}'.format(args.target)])
# Format context end
# Indices we definitely DONT WANT TO PREDICT
ignore_ids_np = np.array(encoder.special_tokens_onehot)
ignore_ids_np[encoder.__dict__['end_{}'.format(args.target)]] = 0
gens = []
gens_raw = []
gen_probs = []
article['top_ps'] = top_p.reshape(-1).tolist()
for chunk_i in range(num_chunks):
tokens_out, probs_out = sess.run([tokens, probs],
feed_dict={initial_context: [context_formatted] * batch_size_per_chunk,
eos_token: encoder.__dict__['end_{}'.format(args.target)],
ignore_ids: ignore_ids_np,
p_for_topp: top_p[chunk_i]})
for t_i, p_i in zip(tokens_out, probs_out):
extraction = extract_generated_target(output_tokens=t_i, encoder=encoder, target=args.target)
gens.append(extraction['extraction'])
# NOTE: Originally I didn't add the +1 which meant that end article was being cut off. whoops.
# better add that!
gens_raw.append(t_i[extraction['start_ind']:extraction['end_ind'] + 1].tolist())
assert extraction['start_ind'] == len(context_formatted)
gen_probs.append(p_i[:extraction['end_ind'] - len(context_formatted) + 1].tolist())
article['gens_{}'.format(args.target)] = gens
article['gensraw_{}'.format(args.target)] = gens_raw
article['probs_{}'.format(args.target)] = gen_probs
# these were in there for whatever reason...
article.pop('input_ids_conditional', None)
article.pop('input_ids_unconditional', None)
f_out.write(json.dumps(article) + '\n')
print("Written {}/{} articles".format(i, len(articles)), flush=True)