-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathquickdrawGen.py
204 lines (150 loc) · 5.57 KB
/
quickdrawGen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import torch
import torchvision
from torchvision import datasets, transforms
from torchvision.utils import save_image
import os
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import random
from PIL import Image
from PIL import ImageFilter
import nibabel as nib
import SimpleITK as sitk
import pylab
from numpy import zeros, newaxis
from scipy import ndimage
import shutil
def color_grayscale_img(img, color):
img = torch.stack([img,img,img],2)
for c in range(3):
if c != color:
img[:,:,c] = 0
return img
def save_torch_img(img, save_path):
im = Image.fromarray((img.detach().cpu().numpy() * 255).astype(np.uint8))
# im = im.filter(ImageFilter.SMOOTH)
im = im.filter(ImageFilter.GaussianBlur(radius = 1))
im = im.resize(newsize)
im.save(save_path, dpi=(200, 200))
datapath = 'datasets/quickdraw'
newsize = (224, 224)
classes = [0, 1, 2]
lbl_map = {0:0, 1:1, 2:2}
class_count = np.zeros(3)
train = 700
val = 850
test = 1000
for keyword in ['train1', 'train2', 'val', 'test']:
for c in classes:
fpath = os.path.join(datapath, keyword, str(c))
if not os.path.exists(fpath):
os.mkdir(fpath)
rootdir = 'datasets/mhd'
data = []
targets = []
for subdir, dirs, files in os.walk(rootdir):
for file in files:
file_path = os.path.join(subdir, file)
# print(file_path)
if '.mhd' in file_path:
img = sitk.ReadImage(file_path)
img_array = sitk.GetArrayFromImage(img)
data.append(img_array)
if 'circle' in file_path:
targets.append(0)
elif 'square' in file_path:
targets.append(1)
else:
targets.append(2)
data = torch.Tensor(data)
targets = torch.Tensor(targets)
print(data.shape, targets.shape)
train_img = []
train_lbl = []
test_img = []
test_lbl = []
val_img = []
val_lbl = []
for i in range(targets.shape[0]):
img = data[i].detach().cpu().numpy()
img = (img - img.min())/(img.max() - img.min())
lbl = int(targets[i].detach().cpu())
if lbl in lbl_map:
lbl = lbl_map[lbl]
if class_count[lbl] < train:
train_img.append(img)
train_lbl.append(lbl)
class_count[lbl] += 1
elif class_count[lbl] < val:
val_img.append(img)
val_lbl.append(lbl)
class_count[lbl] += 1
elif class_count[lbl] < test:
test_img.append(img)
test_lbl.append(lbl)
class_count[lbl] += 1
print(len(train_img), len(train_lbl), len(val_img), len(val_lbl), len(test_img), len(test_lbl))
train_img = torch.tensor(train_img)
test_img = torch.tensor(test_img)
val_img = torch.tensor(val_img)
train_lbl = torch.tensor(train_lbl)
test_lbl = torch.tensor(test_lbl)
val_lbl = torch.tensor(val_lbl)
def save_environment_multiclass(save_folder, images, labels, color_prob, label_prob, n_classes=2):
print(save_folder)
def torch_bernoulli(p, size):
return (torch.rand(size) < p).float()
def collapse_labels(labels, n_classes):
assert n_classes in [2, 3, 5, 10]
bin_width = 3 // n_classes
return (labels / bin_width).clamp(max=n_classes - 1)
def corrupt(labels, n_classes, prob):
is_corrupt = torch_bernoulli(prob, len(labels)).bool()
return torch.where(is_corrupt, (labels + 1) % n_classes, labels)
# Assign a label based on the digit
labels = collapse_labels(labels, n_classes).float()
# *Corrupt* label with probability 0.25 (default)
labels = corrupt(labels, n_classes, label_prob)
# Assign a color based on the label; flip the color with probability e
colors = corrupt(labels, n_classes, color_prob)
for i in range(len(images)):
img = images[i]
lbl = labels[i]
color = colors[i]
save_path = os.path.join(save_folder, str(int(lbl.numpy())), f'{i}_{int(color.numpy())}.png')
save_torch_img(img, save_path)
n_classes = 3
label_flip = 0.25
save_environment_multiclass(os.path.join(datapath, 'train1'), train_img, train_lbl, 0.2, label_flip, n_classes=n_classes)
save_environment_multiclass(os.path.join(datapath, 'train2'), train_img, train_lbl, 0.1, label_flip, n_classes=n_classes)
save_environment_multiclass(os.path.join(datapath, 'val'), val_img, val_lbl, 0.2, label_flip, n_classes=n_classes)
save_environment_multiclass(os.path.join(datapath, 'test'), test_img, test_lbl, 0.9, label_flip, n_classes=n_classes)
import SimpleITK as sitk
import os, glob
import json
import numpy as np
### Select pre-defined/learned templates ###
class_templates = {
# '0':'...',
# '1':'...',
# '2':'...',
}
template_path = os.path.join(datapath, 'train1')
for ct in class_templates:
if not os.path.exists(os.path.join(template_path, class_templates[ct])):
print(f'template for {ct} does not exists')
for keyword in ['train1', 'train2', 'test', 'val']:
dictout = {keyword:[]}
for c in class_templates.keys():
class_path = os.path.join(datapath, keyword, c)
for fname in os.listdir(class_path):
if not fname.endswith('.png'):
continue
smalldict = {}
smalldict['source_img'] = os.path.join(template_path, class_templates[c])
smalldict['target_img'] = os.path.join(class_path, fname)
dictout[keyword].append(smalldict)
savefilename = os.path.join(datapath, f'quickdraw_{keyword}.json')
with open(savefilename, 'w') as fp:
json.dump(dictout, fp)