Skip to content

Latest commit

 

History

History
 
 

hal

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

HAL

Object model

Generally, we adopt concept-based polymorphism, it's widely used in MLIR, and it provides:

  1. runtime polymorphism, just like other object oriented system.
  2. value semantic, aka, RAII semantic.

see here for more details.

Type system

Type could be modeled as a tuple <vistype, datatype, shape>

  • vistype, the visibility type, could be one of {Public, Secret}.
  • datatype, the data encoding type, could be on of FXP, INT.
  • shape, the shape.

Note

  • Share type (AShare/BShare/HShare) is not exposed to vm IR, so it's not exposed to IR type.
  • plaintext type (u8/i8/u32/i32/f32/f64/...) is 'readonly', we can only import/export them via buffer view objects.

Dispatching

Due to the complexity of MPC value types, the dispatch chain is complicated.

For example,

multiply :: (value<SFXP>, value<PINT>)         # multiply secret fxp to public integer.

should be firstly dispatched via encoding type, result in:

multiply :: (SFXP, PINT)         # multiply secret fxp to public integer.
  multiply :: (SINT, PINT) -> SINT
  truncate :: (SINT)

then dispatch via visibility type, result in:

multiply :: (SFXP, PINT)         # multiply secret fxp to public integer.
  multiply :: (SINT, PINT) -> SINT
    hess.mul :: (ASHR, PSHR) -> ASHR
  truncate :: (SINT)

Dispatching schema

To model the dispatching rule, we use the following schema,

  1. make one dispatch do one thing, i.e. either lowering datatype or visibility type.
  2. make the dispatch layered, so they could be moved to compile-time progressively.

Schema: [<dtype>_]op_name[_<Visibility::type>]

  • if <dtype> is missing, (op start with _), then dtype will be unchecked.
  • if [<dtype>_] not provided, then both fxp & int will be well handled.
  • if [_<Visibility::type>] not provided, then both secret/public will be well handled.

For example:

  • i_add_sp: int add between secret and public.
  • _add_sp: unchecked add between secret & public, works on ring (integer)
  • add_sp: add between secret&public, both int, fxp will be handled.
  • f_mul_pp: fxp mul between public and public.
  • f_mul: fxp mul, both secret&public will be handled.

If is well specified, then output dtype will be certain, otherwise output dtype will set to CtType::UNKNOWN.

  • i_add_sp: out dtype is int.
  • add_sp: out dtype is specified, according to inputs type.
  • _add_sp: out dtype is UNKNOWN.

A complicated example

secret reciprocal is a typical non-polynomial op, in this example, we use Newton-Raphson to find the approximated result.

The approximation progress depends on other exp/square/add/mul/div, the tracing result is listed below.

Note: secret reciprocal may depend on divide to public, while general divide depends on reciprocal, to break the dependent chain, the typed dispatch schema is import.

Please see [spu/modules/fxp.cc] for details.

make_secret(BufferView)                    # Value a = make_secret(&ctx, 3.14f);
  constant(BufferView)
  _cast_p2s(value<PFXP>)
f_reciprocal(value<SFXP>)                  # Value c = f_reciprocal(&ctx, a);
  constant(BufferView)                     #  constant(3f)
  constant(BufferView)                     #  constant(0.5f)
  f_sub(value<PFXP>, value<SFXP>)          #  %1 = 0.5 - a
    f_negate(value<SFXP>)                  #    f_negate(a)          # fxp negate
      _negate_s(value<SFXP>)               #      _negate_s(a)       # ring negate for secret
    f_add(value<PFXP>, value<SFXP>)        #    f_add(0.5, -a)       # fxp addition
      _add_sp(value<SFXP>, value<PFXP>)    #      _add_sp(-a, 0.5)   # ring add secret to public, commutative.
                                           # exp iteration begins, exp(x) = (1 + x / n) ^ n
  f_exp(value<SFXP>)                       #  %2 = f_exp(%1)
    constant(BufferView)                   #  constant(256)
    f_div(value<SFXP>, value<PFXP>)        #    f_div(%1, 256)           # fxp division
      reciprocal_p(value<PFXP>)            #      t = reciprocal(256)    # public reciprocal
      f_mul(value<SFXP>, value<PFXP>)      #      f_mul(%1, t)
        _mul_sp(value<SFXP>, value<PFXP>)  #        _mul_sp(%1, t)       # ring multiply secret to public
    constant(BufferView)
    f_add(value<SFXP>, value<PFXP>)
      _add_sp(value<SFXP>, value<PFXP>)
    f_square(value<SFXP>)
      f_mul(value<SFXP>, value<SFXP>)
        _mul_ss(value<SFXP>, value<SFXP>)
    ...
    f_square(value<SFXP>)
      f_mul(value<SFXP>, value<SFXP>)
        _mul_ss(value<SFXP>, value<SFXP>)
                                           # Newton-Rapson iteration begins, 1/x = 3 * exp(0.5 - x) + 0.003
  f_mul(value<PFXP>, value<SFXP>)
    _mul_sp(value<SFXP>, value<PFXP>)
  constant(BufferView)
  f_add(value<SFXP>, value<PFXP>)
    _add_sp(value<SFXP>, value<PFXP>)
  f_square(value<SFXP>)
    f_mul(value<SFXP>, value<SFXP>)
      _mul_ss(value<SFXP>, value<SFXP>)
  f_mul(value<SFXP>, value<SFXP>)
    _mul_ss(value<SFXP>, value<SFXP>)
  f_sub(value<SFXP>, value<SFXP>)
    f_negate(value<SFXP>)
      _negate_s(value<SFXP>)
    f_add(value<SFXP>, value<SFXP>)
      _add_ss(value<SFXP>, value<SFXP>)
  f_add(value<SFXP>, value<SFXP>)
    _add_ss(value<SFXP>, value<SFXP>)
  ...
_s2p(value<SFXP>)
dump_public(value<PFXP>)

Progressive lowering

The lowering could be done in runtime (dynamic) or compile-time (static), the final goal is to make a thin-runtime (secret protocol only) and fat-compile-time (all data computation, numeric approximations..), but currently it's hard to move all into compile-time, so we layering the runtime dispatch rule and try to move them one by one to compile-time.