-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig_simulate.yml
32 lines (24 loc) · 1.18 KB
/
config_simulate.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
### GLOBAL VARS ###
rules_to_run: 'all_simulated'
# one of the following: 'all_rw', 'all_simulated', 'preprocess', 'simulate', 'data_integration', 'evaluation', 'visualization'
data_source: 'MIDASim'
# it has to be 'microbiomeHD', 'CMD', or 'MIDASim'
sim_output_root: './trial_simulation'
### SIMULATION PHASE ###
# or_l: [1, 1.25, 1.5]
# cond_effect_val_l: [0, 0.25, 0.5, 0.75, 1]
# batch_effect_val_l: [0, 0.25, 0.5, 0.75, 1]
or_l: [1.25]
cond_effect_val_l: [0.5]
batch_effect_val_l: [0.5]
iter: 1
# list of covariates to be used in the final stage of data cleaning/complete confounding calculations + data saving
# in our case, only ['disease', 'gender', 'age_category'] for CMD/IBD datasets are used, otherwise all empty
### BENCHMARK PHASE ###
# used_R_methods_count: ["combat_seq", "limma", "MMUPHin", 'ConQuR', 'ConQuR_libsize']
used_R_methods_count: ["combat_seq", "limma", "MMUPHin"]
# used_R_methods_relab: ["combat", "limma", "MMUPHin", 'ConQuR_rel']
used_R_methods_relab: ["combat", "limma", "MMUPHin"]
used_Python_methods: ['harmony', "percentile_norm"]
### EVALUATION PHASE ###
binarizing_agent: 'cond_1' # for two microbiomeHD datasets or 'IBD' for ibd or 'adenoma' for the CRC dataset