-
Notifications
You must be signed in to change notification settings - Fork 47
/
infer.py
223 lines (198 loc) · 8.54 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
# coding:utf-8
from __future__ import unicode_literals
import copy
import time
import os
import json
import logging
import numpy as np
import tensorflow as tf
from PIL import Image
from libs.label_converter import LabelConverter
from nets.crnn import CRNN
from libs.config import load_config
from libs.utils import ctc_label
from utils import image_to_pil
lexicon = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'data/chars/lexicon.txt')
BATCH_SIZE = 32
PAD_IMAGE = Image.new('L', (16, 32), color=255)
class Infer(object):
def __init__(self, model_path):
os.environ['CUDA_VISIBLE_DEVICES'] = '2'
self.cfg = load_config('resnet')
self.label_converter = LabelConverter(lexicon)
self.cfg.lr_boundaries = [10000]
self.cfg.lr_values = [self.cfg.lr * (self.cfg.lr_decay_rate ** i) for i in
range(len(self.cfg.lr_boundaries) + 1)]
config = tf.ConfigProto(allow_soft_placement=True)
config.gpu_options.allow_growth = True
config.gpu_options.per_process_gpu_memory_fraction = 0.5
self.graph = tf.Graph()
self.session = tf.Session(graph=self.graph, config=config)
with self.session.as_default():
with self.graph.as_default():
self.net = CRNN(self.cfg, num_classes=self.label_converter.num_classes)
saver = tf.train.Saver()
saver.restore(self.session, model_path)
logging.info('CRNN model initialized.')
def normalize_image(self, img):
"""
将图像归一化到高为32
:param img:
:return:
"""
img = img.convert('L')
w, h = img.size
rio = h / 32.0
w0 = int(round(w / rio))
img = img.resize((max(w0, 1), 32), Image.BICUBIC)
return img
def predict(self, image, long_info=True):
"""
单张预测
:param image:
:return:
"""
start_time = time.time()
image = image_to_pil(image)
image_width = image.width
image = self.normalize_image(image)
if image.width <= 4:
text = ''
return text
image = np.reshape(image, (1, 32, image.width, 1))
image = (image.astype(np.float32) - 128.0) / 128.0
feed = {self.net.feeds()['inputs']: image,
self.net.feeds()['is_training']: False
}
predict_label, predict_prob, logits = self.session.run(self.net.fetches(), feed_dict=feed)
p, weights, positions = ctc_label(predict_label[0], predict_prob[0], image_width,
blank_index=self.label_converter.num_classes - 1)
txt = self.label_converter.decode(p, invalid_index=-1)
ret = dict()
ret['text'] = txt
ret['weights'] = [float(weight) for weight in weights[:len(txt)]]
ret['positions'] = [float(position) for position in positions[:len(txt)]]
ret['direction'] = 0
print('predict time is %.4f ms' % ((time.time() - start_time) * 1000))
if long_info:
return json.dumps(ret, ensure_ascii=False)
else:
return ret['text']
def normalize_batch(self, image_batch):
"""
将一个batch内的图像归一化到相同的尺寸
:param image_batch:
:return:
"""
input_batch_size = len(image_batch)
normalized_batch = []
chars_count = []
image_width_list = [int(img.width) for img in image_batch]
batch_image_width = max(image_width_list)
max_width_image_idx = np.argmax(image_width_list)
if input_batch_size == BATCH_SIZE:
for i in range(BATCH_SIZE):
base_image = copy.deepcopy(image_batch[max_width_image_idx])
base_image.paste(image_batch[i], (0, 0))
base_image.paste(PAD_IMAGE, (image_batch[i].width, 0))
normalized_image = np.reshape(base_image, (32, batch_image_width, 1))
normalized_image = normalized_image.astype(np.float32) / 128.0 - 1.0
normalized_batch.append(normalized_image)
chars_count.append(image_batch[i].width / 4)
else:
for i in range(input_batch_size):
base_image = copy.deepcopy(image_batch[max_width_image_idx])
base_image.paste(image_batch[i], (0, 0))
base_image.paste(PAD_IMAGE, (image_batch[i].width, 0))
normalized_image = np.reshape(base_image, (32, batch_image_width, 1))
normalized_image = normalized_image.astype(np.float32) / 128.0 - 1.0
normalized_batch.append(normalized_image)
chars_count.append(image_batch[i].width / 4)
return normalized_batch, chars_count
def predict_batch(self, batch_images, long_info=True):
"""
batch预测
:param batch_images:
:return:
"""
start_time = time.time()
batch_texts = []
batch_images_idx = []
invalid_images_idx = []
image_widths = []
image_heights = []
for i, image in enumerate(batch_images):
image = image_to_pil(image)
image_widths.append(image.width)
image_heights.append(image.height)
image = self.normalize_image(image)
if image.width <= 4:
invalid_images_idx.append(i)
batch_images_idx.append(i)
batch_images[i] = Image.new('L', (32, 32), color=255)
image_widths[i] = 32
image_heights[i] = 32
continue
batch_images[i] = image
batch_images_idx.append(i)
images_with_idx = zip(batch_images, image_widths, image_heights, batch_images_idx)
batch_images, image_widths, image_heights, batch_images_idx = zip(
*sorted(images_with_idx, key=lambda x: x[0].width))
rets = []
number_images = len(batch_images)
number_batches = number_images // BATCH_SIZE
number_remained = number_images % BATCH_SIZE
if number_remained == 0:
iters = number_batches
else:
iters = number_batches + 1
for step in range(iters):
offset = step * BATCH_SIZE
batch_array = batch_images[offset:min(offset + BATCH_SIZE, number_images)]
batch_array, chars_count = self.normalize_batch(batch_array)
feed = {self.net.feeds()['inputs']: batch_array,
self.net.feeds()['is_training']: False
}
predict_label, predict_prob, logits, cnn_out = self.session.run(self.net.fetches(), feed_dict=feed)
if number_remained > 0 and step == number_batches:
predict_label = predict_label[:number_remained]
predict_prob = predict_prob[:number_remained]
chars_count = chars_count[:number_remained]
for i in range(len(predict_label)):
width = image_widths[step * BATCH_SIZE + i]
height = image_heights[step * BATCH_SIZE + i]
count = int(chars_count[i])
label = predict_label[i][:count]
prob = predict_prob[i][:count]
p, weights, positions = ctc_label(label, prob, width,
blank_index=self.label_converter.num_classes - 1)
txt = self.label_converter.decode(p, invalid_index=-1)
ret = dict()
ret['label'] = label
ret['text'] = txt
ret['weights'] = [float(weight) for weight in weights[:len(txt)]]
ret['positions'] = [float(position) for position in positions[:len(txt)]]
ret['direction'] = 0
if ret['text'] != '':
ret['score'] = float(np.mean(ret['weights']))
else:
ret['score'] = 0
rets.append(ret)
for i in range(len(batch_images)):
ret = rets[batch_images_idx.index(i)]
batch_texts.append(ret)
for i in invalid_images_idx:
ret = dict()
ret['label'] = [0]
ret['weights'] = [0]
ret['positions'] = [0]
ret['direction'] = 0
ret['score'] = 0
ret['text'] = ''
batch_texts[i] = ret
print('predict_batch time is %.4f ms' % ((time.time() - start_time) * 1000))
if long_info:
return [json.dumps(text, ensure_ascii=False) for text in batch_texts]
else:
return [ret['text'] for ret in batch_texts]