-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
211 lines (167 loc) · 6.08 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
from dataclasses import dataclass, field, InitVar
from enum import Enum
from functools import partial
from pathlib import Path
from typing import Optional, Union
import torch
import torch.nn as nn
REPO_ROOT = Path(__file__).absolute().parent.parent
class ModelAttributes(Enum):
FNN = ("fnn", (50,))
SMALL_CNN = ("small_cnn", (1, 10, 10))
MNIST = ("mnist", (1, 28, 28))
LENET5 = ("lenet5", (1, 32, 32))
VGG11 = ("vgg11", (3, 224, 224))
def __init__(self, name: str, shape: tuple[int, ...]) -> None:
self.model_name = name
self.input_shape = shape
@dataclass
class ModelPaths:
name: InitVar[str]
root: InitVar[Union[Path, None]] = None
onnx: Path = field(init=False)
calibration_data: Path = field(init=False)
inference_data: Path = field(init=False)
settings: Path = field(init=False)
compiled_circuit: Path = field(init=False)
witness: Path = field(init=False)
verifier_key: Path = field(init=False)
proofer_key: Path = field(init=False)
proof: Path = field(init=False)
metrics: Path = field(init=False)
def __post_init__(self, name: str, root: Union[Path, None]):
root = root or REPO_ROOT
output_dir = root / "output" / name
data_dir = root / "data"
self.onnx = root / "models" / f"{name}.onnx"
self.calibration_data = data_dir / "2-calibration" / f"{name}.json"
self.inference_data = data_dir / "3-inference" / f"{name}.json"
self.settings = output_dir / "settings.json"
self.compiled_circuit = output_dir / "compiled"
self.witness = output_dir / "witness.json"
self.verifier_key = output_dir / "vk"
self.proofer_key = output_dir / "pk"
self.proof = output_dir / "proof.json"
self.metrics = output_dir / "metrics.json"
def __getitem__(self, key: str) -> Path:
return getattr(self, key)
@dataclass
class Model:
name: str
input_shape: tuple[int, ...]
polynomial: bool = True
_model: Union[nn.Module, None] = field(default=None, init=False)
paths: ModelPaths = field(init=False, repr=False)
root: InitVar[Union[Path, None]] = None
def __post_init__(self, root: Union[Path, None]):
self.paths = ModelPaths(self.name, root)
@property
def model(self) -> nn.Module:
if self._model is None:
if self.name == ModelAttributes.FNN.model_name:
self._model = Fnn()
elif self.name == ModelAttributes.SMALL_CNN.model_name:
self._model = SmallCnn()
elif self.name == ModelAttributes.MNIST.model_name:
self._model = Mnist()
elif self.name == ModelAttributes.LENET5.model_name:
self._model = Lenet5(self.polynomial)
elif self.name == ModelAttributes.VGG11.model_name:
from torchvision.models import vgg11
self._model = vgg11()
else:
raise ValueError(f"model '{self.name}' not supported")
return self._model
class Fnn(nn.Module):
def __init__(self):
super().__init__()
self.classifier = nn.Sequential(
nn.Linear(in_features=ModelAttributes.FNN.input_shape[0], out_features=25),
nn.Linear(in_features=25, out_features=2),
)
def forward(self, x):
x = self.classifier(x)
return x
class SmallCnn(nn.Module):
def __init__(self):
super().__init__()
self.conv = nn.Conv2d(
in_channels=ModelAttributes.SMALL_CNN.input_shape[0],
out_channels=6,
kernel_size=3,
)
def forward(self, x):
x = self.conv(x)
return x
def polynomial_activation(a: float, x):
"""https://arxiv.org/abs/2011.05530"""
return x * x + a * x
class Mnist(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(
in_channels=ModelAttributes.MNIST.input_shape[0],
out_channels=4,
kernel_size=3,
)
self.conv2 = nn.Conv2d(in_channels=4, out_channels=8, kernel_size=3)
self.pool = nn.AvgPool2d(kernel_size=2, stride=2)
self.dense = nn.Linear(200, 10)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.conv1(x)
x = polynomial_activation(1, x)
# SumPool: AvgPool multiplied by number of elements (4)
x = self.pool(x) * 4
x = self.conv2(x)
x = polynomial_activation(1, x)
# SumPool: AvgPool multiplied by number of elements (4)
x = self.pool(x) * 4
x = x.flatten(start_dim=1)
x = self.dense(x)
return x
class Lenet5(nn.Module):
def __init__(self, polynomial=True):
super().__init__()
if polynomial:
self.activation = partial(polynomial_activation, 1)
else:
self.activation = nn.functional.relu
self.conv1 = nn.Conv2d(
in_channels=ModelAttributes.LENET5.input_shape[0],
out_channels=6,
kernel_size=5,
)
self.conv2 = nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5)
self.pool = nn.AvgPool2d(kernel_size=2, stride=2)
self.classifier = nn.Sequential(
nn.Linear(400, 120),
nn.Linear(120, 84),
nn.Linear(84, 10),
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
# Feature extraction
x = self.conv1(x)
x = self.activation(x)
x = self.pool(x)
x = self.conv2(x)
x = self.activation(x)
x = self.pool(x)
x = x.flatten(start_dim=1)
x = self.classifier(x)
return x
def export(model: Model, path: Optional[Path] = None):
input_ = torch.rand(1, *model.input_shape)
torch.onnx.export(
model.model, # Actual nn.Module object
input_,
str(path or model.paths.onnx),
export_params=True,
opset_version=10,
do_constant_folding=True,
input_names=["input"],
output_names=["output"],
dynamic_axes={
"input": {0: "batch_size"},
"output": {0: "batch_size"},
},
)