forked from nachiket92/P2T
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate_sdd.py
152 lines (122 loc) · 5.88 KB
/
evaluate_sdd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
from __future__ import print_function
import torch
from torch.utils.data import DataLoader
from models.traj_generator import TrajGenerator
from models.reward_model import RewardModel
import models.rl as rl
import yaml
import utils as u
import numpy as np
from datasets.sdd import SDD as DS
import multiprocessing as mp
import scipy.io as scp
# Read config file
config_file = 'configs/sdd.yml'
with open(config_file, 'r') as yaml_file:
config = yaml.safe_load(yaml_file)
# Initialize device:
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Initialize dataset:
ts_set = DS(config['dataroot'],
config['test'],
t_h=config['t_h'],
t_f=4.8,
grid_dim=config['args_mdp']['grid_dim'][0],
img_size=config['img_size'],
horizon=config['args_mdp']['horizon'],
grid_extent=config['grid_extent'],
num_actions=config['args_mdp']['actions'])
# Initialize data loader:
ts_dl = DataLoader(ts_set,
batch_size=4,
shuffle=True,
num_workers=config['num_workers'])
or_lbls = scp.loadmat(config['dataroot'] + '/' + config['or_labels'])
or_lbls = or_lbls['img_lbls']
# Initialize Models:
net_r = RewardModel(config['args_r']).float().to(device)
net_r.load_state_dict(torch.load(config['opt_r']['checkpt_dir'] + '/' + 'best.tar')['model_state_dict'])
for param in net_r.parameters():
param.requires_grad = False
net_r.eval()
net_t = TrajGenerator(config['args_t']).float().to(device)
net_t.load_state_dict(torch.load(config['opt_finetune']['checkpt_dir'] + '/' + 'best.tar')['model_state_dict'])
net_t.eval()
mdp = rl.MDP(config['args_mdp']['grid_dim'],
horizon=config['args_mdp']['horizon'],
gamma=config['args_mdp']['gamma'],
actions=config['args_mdp']['actions'])
initial_state = config['args_mdp']['initial_state']
# Sampling parameters for policy roll-outs:
num_samples = 1000
K = [5, 20]
# Variables to track metrics
agg_min_ade_k = torch.zeros(len(K))
agg_min_fde_k = torch.zeros(len(K))
agg_or_k = torch.zeros(len(K))
counts = 0
with mp.Pool(8) as process_pool:
# Load batch
for i, data in enumerate(ts_dl):
# Process inputs
hist, fut, img, svf_e, motion_feats, waypts_e, agents, grid_idcs, _, img_vis, ref_pos, ds_ids, _ = data
img = img.float().to(device)
motion_feats = motion_feats.float().to(device)
agents = agents.float().to(device)
hist = hist.permute(1, 0, 2).float().to(device)
fut = fut.float().to(device)
# Calculate reward:
r, scene_tensor = net_r(motion_feats, img)
r_detached = r.detach()
svf, pi = rl.solve(mdp, r_detached, initial_state)
# Sample policy:
waypts, scene_feats, agent_feats = rl.sample_policy(pi, mdp, num_samples, config['grid_extent'],
initial_state, scene_tensor, agents)
# Generate trajectories:
horizon = config['args_mdp']['horizon']
waypts_stacked = waypts.view(-1, horizon, 2)
waypts_stacked = waypts_stacked.permute(1, 0, 2).to(device)
scene_feats_stacked = scene_feats.view(-1, horizon, config['args_t']['scene_feat_size'])
scene_feats_stacked = scene_feats_stacked.permute(1, 0, 2).to(device)
agent_feats_stacked = agent_feats.view(-1, horizon, config['args_t']['agent_feat_size'])
agent_feats_stacked = agent_feats_stacked.permute(1, 0, 2).to(device)
hist_stacked = hist.reshape(hist.shape[0], hist.shape[1], 1, hist.shape[2])
hist_stacked = hist_stacked.repeat(1, 1, num_samples, 1)
hist_stacked = hist_stacked.view(hist_stacked.shape[0], -1, hist_stacked.shape[3])
traj = net_t(hist_stacked, waypts_stacked, scene_feats_stacked, agent_feats_stacked)
traj = traj.reshape(-1, num_samples, traj.shape[1], traj.shape[2])
# Cluster
for n in range(len(K)):
traj_vec = traj.reshape(traj.shape[0], traj.shape[1], -1).detach().cpu().numpy()
params = [(traj_vec[i], K[n]) for i in range(len(traj_vec))]
labels = process_pool.starmap(u.km_cluster, params)
traj_clustered = torch.zeros(traj.shape[0], K[n], traj.shape[2], traj.shape[3])
counts_clustered = torch.zeros(traj.shape[0], K[n])
for m in range(traj.shape[0]):
clusters = set(labels[m])
tmp1 = torch.zeros(len(clusters), traj.shape[2], traj.shape[3])
tmp2 = torch.zeros(len(clusters))
for idx, c in enumerate(clusters):
tmp = np.where(labels[m] == c)
tmp1[idx] = torch.mean(traj[m, tmp[0]], dim=0)
tmp2[idx] = len(tmp[0])
traj_clustered[m, :len(tmp2)] = tmp1
counts_clustered[m, :len(tmp2)] = tmp2
# 4.8s horizon
masks = torch.zeros_like(counts_clustered).to(device)
masks[counts_clustered == 0] = np.inf
traj_clustered = traj_clustered.to(device)
agg_min_ade_k[n] += u.min_ade_k(traj_clustered[:, :, 0:12, :], fut, masks).item() * fut.shape[0]
agg_min_fde_k[n] += u.min_fde_k(traj_clustered[:, :, 0:12, :], fut, masks).item() * fut.shape[0]
agg_or_k[n] += u.offroad_rate(traj_clustered[:, :, 0:12, :], or_lbls, ref_pos, ds_ids, fut, masks) \
* fut.shape[0]
counts += fut.shape[0]
print("Batch " + str(i) + " of " + str(len(ts_dl)))
print('Results for K=5: \n' +
'MinADEK: ' + str(agg_min_ade_k[0].item()/counts) +
' MinFDEK: ' + str(agg_min_fde_k[0].item()/counts) +
'Offroad rate: ' + str(agg_or_k[0].item()/counts))
print('Results for K=20: \n' +
'MinADEK: ' + str(agg_min_ade_k[1].item()/counts) +
' MinFDEK: ' + str(agg_min_fde_k[1].item()/counts) +
'Offroad rate: ' + str(agg_or_k[1].item()/counts))