forked from noameshed/novelty-detection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_category_distribution.py
178 lines (147 loc) · 5.67 KB
/
plot_category_distribution.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import csv
import json
import numpy as np
import os
import seaborn as sns
import matplotlib.pyplot as plt
from collections import OrderedDict
def get_categories(filename):
# Open the file with list of categories and the imagenet classes
# in each category
# Return a dictionary of category names to the list of classes in the category
# and a reverse lookup dictionary
cat_to_lab = OrderedDict()
lab_to_cat = OrderedDict()
with open(filename) as csvfile:
freader = csv.reader(csvfile)
rownum = 0
for row in freader:
# Skip header row
if rownum == 0:
rownum += 1
continue
row = np.array(row)
row = row[row!=''] # get rid of empty cells
# The category is the first element in the row
# the rest are the labels in that category
cat = row[0]
labs = row[1:]
assert(1+len(labs) == len(row))
# Store values in dictionaries if not yet there
cat_to_lab[cat] = list(labs)
for l in labs:
lab_to_cat[l] = cat
return cat_to_lab, lab_to_cat
def kurtosis(data):
"""
Compute the kurtosis for the given distribution
k = (SUM((Yi-Ybar)^4/N)/s^2)
"""
Y = np.array(data)
s = np.std(Y)
N = len(Y)
Ybar = np.mean(Y)
k = (np.sum(((Y-Ybar)**4)/N)/(1e-15+s**4))
return k
def entropy(data):
"""
Compute the Shannon entropy for the given distribution
H = -sum(Pi*log2*Pi)
"""
H = -np.sum((data*np.log2(data)))
return H
def plotfig(ys, labels, title, savepath):
# Plot the most common labels by category
if len(ys)>50:
plt.figure(figsize=[10,7])
elif len(ys)>75:
plt.figure(figsize=[13,7])
else:
plt.figure()
ax = sns.scatterplot(range(len(ys)), ys, zorder=2)
plt.title(title, fontsize=14)
plt.xlabel('Label Categories', fontsize=12)
plt.ylabel('Label frequency', fontsize=12)
plt.ylim(bottom=0, top=1.)
ylocs, _ = plt.yticks()
plt.hlines(np.arange(0,1.0, 0.1), xmin=0, xmax=len(labels)-1, colors='lightgrey', linestyles='dashed', zorder=1, linewidth=0.5)
plt.xticks(range(len(ys)), labels, rotation='vertical', fontsize=10)
plt.tight_layout()
#plt.show()
# Save resulting plot
fig = ax.get_figure()
fig.savefig(savepath, dpi=200)
plt.close()
if __name__ == "__main__":
# Create the category-label dictionaries
cat_to_lab, lab_to_cat = get_categories(os.getcwd() + '/imagenet_categories.csv')
all_cats = list(cat_to_lab.keys())
total_count = np.zeros(len(all_cats))
savepath = os.getcwd() + '/plots_category_dist_alexnet/'
# Looking at the category distribution of CNN labels for a test class
with open(os.getcwd() + '/alexnet_inat_results/inat_results_top_choice.json') as f:
cnn_results = json.load(f)
organism_groups = cnn_results.keys() # Amphibia, Fungi, Mammalia, etc.
for curclass in organism_groups:
# Create save folder for the organism
try:
os.mkdir(savepath + curclass)
except:
pass
if curclass != 'Aves':
continue
all_distros = {} # Stores category distribution, kurtosis, and entropy
# Get data on each test class
test_classes = cnn_results[curclass].keys()
for c in test_classes:
# Get all of the cnn labels for that creature
cnn_labels = cnn_results[curclass][c]['labels']
cnn_counts = cnn_results[curclass][c]['counts']
# Get categories for the labels of each image in the class
result_cats = [] # A non-unique list of the categories, e.g. [hat, bug, hat, clothing]
if cnn_labels is None: #or len(cnn_labels) < 50: # Optionally, skip any classes with under 50 images
continue
for r in cnn_labels:
result_cats.append(lab_to_cat[r])
# Make a new distribution of categories rather than labels, based on the counts
result_cats_labels = [] # A unique list of the categories, e.g. [hat, bug, clothing]
result_cats_count = [] # The number of occurrences of each unique category
for i,r in enumerate(result_cats):
# for i, r in enumerate(np.random.choice(result_cats, 50, replace=False)): # select 50 random images
# Add to unique list of categories
if r not in result_cats_labels:
result_cats_labels.append(r)
result_cats_count.append(0)
# Count how many times it appears over all images
idx = result_cats_labels.index(r)
count = cnn_counts[i] # How many times has the category appeared because of this label
result_cats_count[idx] += count
# Add that count to the total count for this organism group (i.e. Aves)
idx = all_cats.index(r)
total_count[idx] += count
# Sort in ascending order of frequency
order = np.argsort(result_cats_count)[::-1]
result_cats_labels = np.array(result_cats_labels)[order]
result_cats_count = np.array(result_cats_count)[order]
result_cats_freq = result_cats_count/np.sum(result_cats_count)
# Calculate kurtosis and entropy
k = kurtosis(list(result_cats_freq))
H = entropy(result_cats_freq)
title = 'Test Class: '+c #+ ' (k=' + str(round(k,1)) + ', H=' + str(round(H,1)) + ')'
plotfig(result_cats_freq, result_cats_labels, title, savepath+curclass+'/'+c+'.png')
# Store information on kurtosis, entropy, and categories
all_distros[c] = {}
all_distros[c]['labels'] = list(result_cats_labels)
all_distros[c]['counts'] = [int(i) for i in result_cats_count]
all_distros[c]['kurtosis'] = str(k)
all_distros[c]['entropy'] = str(H)
# Plot the most common labels by animal group
total_freq = total_count/sum(total_count)
order = np.argsort(total_freq)[::-1]
total_freq_sorted = np.array(total_freq)[order]
all_cats_sorted = np.array(all_cats)[order]
title = 'Average categories: '+curclass
plotfig(total_freq_sorted, all_cats_sorted, title, savepath+curclass+'.png')
# Save distribution data as json
with open(savepath+curclass+'_distros.json', 'w') as outfile:
json.dump(all_distros, outfile)