-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLecture_Case-4.m
89 lines (71 loc) · 2.71 KB
/
Lecture_Case-4.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
(* ::Package:: *)
(*Developer:: adetokunbo adedoyin*)
(*contact:: [email protected]*)
(*material_model:: bcj*)
(*model_dimension:: 1D *)
(*BCJ Model - With Varying material parameters (Static/dynamic recovery terms) *)
\[Epsilon] = $MachineEpsilon;
(*Material parameters*)
E1 = 200000;
(*Yield parameters*)
y = 100; f = 0.001; v = 71.097195646;
(*Isotropic Hardening Parameters*)
H = 1300; Rs = 0.1; Rd = 0.001;
(*Kinematic Hardening Parameters*)
h = 200;
(*rs = 0.00250746; rd = 0.001;*)
(*Auxillary Equations*)
(*plastic flow*)
DEpsillonP[t_]:= f*Sinh[(Abs[Sigma[t]-Alpha[t]]-Kappa[t]-y)/v]*Sign[Sigma[t]-Alpha[t]];
eqns1=Thread[\!\(
\*SubscriptBox[\(\[PartialD]\), \({t}\)]\(Epsillon[t]\)\)==StrainRate];
eqns2=Thread[\!\(
\*SubscriptBox[\(\[PartialD]\), \({t}\)]\(Sigma[t]\)\)==E1*(\!\(
\*SubscriptBox[\(\[PartialD]\), \({t}\)]\(Epsillon[t]\)\)-DEpsillonP[t])];
eqns3=Thread[D[Alpha[t],t]==h*( DEpsillonP[t])-( rs*(Alpha[t])^2 )*Sign[ Alpha[t] ]-( rd*DEpsillonP[t]*(Alpha[t])^2 )*Sign[ Alpha[t] ]];
eqns4=Thread[\!\(
\*SubscriptBox[\(\[PartialD]\), \({t}\)]\(Kappa[t]\)\)==H*DEpsillonP[t]-Rd Kappa[t]^2*DEpsillonP[t]-Rs Kappa[t]^2];
eqns=Join[{eqns1},{eqns2},{eqns3},{eqns4}];
initc1=Thread[Epsillon[\[Epsilon]]==0.00001];
initc2=Thread[Sigma[\[Epsilon]]==0.0001];
initc3=Thread[Alpha[\[Epsilon]]==0.001];
initc4=Thread[Kappa[\[Epsilon]]==0.0000001];
initc=Join[{initc1},{initc2},{initc3},{initc4}];
func1=Thread[Epsillon[t]];
func2=Thread[Sigma[t]];
func3=Thread[Alpha[t]];
func4=Thread[Kappa[t]];
func=Join[{func1},{func2},{func3},{func4}];
intialT=0;
finalT=1;
BCJ[StrainRate_?NumericQ,rd_?NumericQ,rs_?NumericQ] := {NDSolve[{
Join[
{Thread[\!\(
\*SubscriptBox[\(\[PartialD]\), \(t\)]\(Epsillon[t]\)\) == StrainRate ]},
{eqns2},
{Thread[D[Alpha[t],t] == h*( DEpsillonP[t])-( rs*(Alpha[t])^2 )*Sign[ Alpha[t] ]-( rd*DEpsillonP[t]*(Alpha[t])^2 )*Sign[ Alpha[t] ]]},
{eqns4}],
initc},
func,{t,intialT,finalT},SolveDelayed->True][[1, 2, 2]]};
(*Hold rs = 0 and vary rd *)
h = 200; rs = 0.0;
P1=Plot[Evaluate[{BCJ[10,0.01,rs],BCJ[10,0.1,rs],BCJ[10,1,rs]}],{t, intialT, finalT},
PlotLabel->Style[Framed["Stress vs. Strain"],16,Black,Background->White],
AxesLabel->{t,Sigma},
ImageSize->Scaled[0.4],
AxesOrigin->{0,0},
GridLines->Automatic,
PlotStyle->{{Red,Thick},{Blue,Thick},{Black,Thick}}];
(*Hold rd = 0 and vary rs *)
intialT=0;finalT=0.4;
h = 200; rd = 0.0;
P2=Plot[Evaluate[{BCJ[10,rd,0.0001],BCJ[10,rd,0.01],BCJ[10,rd,0.1]}],{t, intialT, finalT},
PlotLabel->Style[Framed["Stress vs. Strain"],16,Black,Background->White],
AxesLabel->{t,Sigma},
ImageSize->Scaled[0.4],
AxesOrigin->{0,0},
GridLines->Automatic,
PlotStyle->{{Red,Thick},{Blue,Thick},{Black,Thick}}];
List[P1," ",P2]
(* ::InheritFromParent:: *)
(**)