-
Notifications
You must be signed in to change notification settings - Fork 111
/
Copy pathmlp.py
executable file
·70 lines (55 loc) · 2.18 KB
/
mlp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import math
import os
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
# Define the model
input_units = 784
hidden1_units = 10
hidden2_units = 20
output_units = 10
x = tf.placeholder("float", [None, 784])
y = tf.placeholder("float", [None, 10])
# Hidden 1
with tf.name_scope('hidden1'):
weights = tf.Variable(
tf.truncated_normal([input_units, hidden1_units],
stddev=1.0 / math.sqrt(float(input_units))),
name='weights')
biases = tf.Variable(tf.zeros([hidden1_units]), name='biases')
hidden1 = tf.nn.relu(tf.matmul(x, weights) + biases)
# Hidden 2
with tf.name_scope('hidden2'):
weights = tf.Variable(
tf.truncated_normal([hidden1_units, hidden2_units],
stddev=1.0 / math.sqrt(float(hidden1_units))),
name='weights')
biases = tf.Variable(tf.zeros([hidden2_units]), name='biases')
hidden2 = tf.nn.relu(tf.matmul(hidden1, weights) + biases)
# Linear
with tf.name_scope('softmax_linear'):
weights = tf.Variable(
tf.truncated_normal([hidden2_units, output_units],
stddev=1.0 / math.sqrt(float(hidden2_units))),
name='weights')
biases = tf.Variable(tf.zeros([output_units]), name='biases')
logits = tf.matmul(hidden2, weights) + biases
# Define loss and train op
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits, y))
learning_rate = 0.01
batch_size = 10
optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)
global_step = tf.Variable(0, name='global_step', trainable=False)
train_op = optimizer.minimize(loss, global_step=global_step)
init_op = tf.initialize_all_variables()
with tf.Session() as sess:
sess.run(init_op)
total_batch = int(mnist.train.num_examples / batch_size)
for i in range(total_batch):
batch_x, batch_y = mnist.train.next_batch(batch_size)
_, loss_value = sess.run([train_op, loss],
feed_dict={x: batch_x,
y: batch_y})
print(loss_value)