forked from ezrakilty/sn-stlc-de-bruijn-coq
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRewrites.v
540 lines (479 loc) · 14.9 KB
/
Rewrites.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
Require Import Arith.
Require Import List.
Add LoadPath "Listkit" as Listkit.
Require Import NthError.
Require Import Term.
Require Import Shift.
Require Import Subst.
Inductive RewritesTo : Term -> Term -> Type :=
| Rw_beta : forall N M V,
V = unshift 0 1 (subst_env 0 (shift 0 1 M :: nil) N) ->
RewritesTo (TmApp (TmAbs N) M) V
| Rw_App_left : forall m1 m2 n,
RewritesTo m1 m2 ->
RewritesTo (TmApp m1 n) (TmApp m2 n)
| Rw_App_right : forall m n1 n2,
RewritesTo n1 n2 ->
RewritesTo (TmApp m n1) (TmApp m n2)
| Rw_Abs_body : forall n n',
RewritesTo n n' ->
RewritesTo (TmAbs n) (TmAbs n')
| Rw_Pair_left : forall m1 m2 n,
RewritesTo m1 m2 ->
RewritesTo (TmPair m1 n) (TmPair m2 n)
| Rw_Pair_right : forall m n1 n2,
RewritesTo n1 n2 ->
RewritesTo (TmPair m n1) (TmPair m n2)
| Rw_Proj : forall m1 m2 b,
RewritesTo m1 m2 ->
RewritesTo (TmProj b m1) (TmProj b m2)
| Rw_Proj_beta1 : forall m n,
RewritesTo (TmProj false (TmPair m n)) m
| Rw_Proj_beta2 : forall m n,
RewritesTo (TmProj true (TmPair m n)) n
.
Hint Constructors RewritesTo.
Notation "M ~> M'" := (RewritesTo M M') (at level 100).
(** Reflexive, transitive closure of RewritesTo *)
Inductive RewritesTo_rt : Term -> Term -> Type :=
| Rw_rt_refl : forall m n, m = n -> RewritesTo_rt m n
| Rw_rt_step : forall m n, RewritesTo m n -> RewritesTo_rt m n
| Rw_rt_trans : forall l m n, RewritesTo_rt l m -> RewritesTo_rt m n
-> RewritesTo_rt l n.
Notation "M ~>> M'" := (RewritesTo_rt M M') (at level 100).
Hint Constructors RewritesTo_rt.
(** Recognizes an empty reduction sequence. *)
Fixpoint Is_empty_Rw_rt (a z : Term) (redn : a ~>> z) :=
match redn with
| Rw_rt_refl _ _ _ => True
| Rw_rt_step _ _ _ => False
| Rw_rt_trans a b z r1 r2 =>
Is_empty_Rw_rt a b r1 /\ Is_empty_Rw_rt b z r2
end.
(** When we know a reduction sequence "is empty," we know its start
and end terms are equal. *)
Lemma empty_Rw_rt_elim:
forall l m redn,
Is_empty_Rw_rt l m redn -> l = m.
Proof.
intros l m redn H. induction redn.
auto.
simpl in H.
contradiction.
simpl in H.
intuition.
congruence.
Qed.
(** A transitive reduction sequence is either empty or decomposable
into a first step and the remainder. *)
Lemma Rw_rt_destruct:
forall a z,
forall redn: a ~>> z,
sum (Is_empty_Rw_rt a z redn) ({x : Term & ((a ~> x) * (x ~>> z))%type}).
(* TODO: A bit ugly! *)
Proof.
intros.
induction redn.
left.
simpl.
auto.
right.
exists n; auto.
destruct (IHredn1);
destruct (IHredn2).
left; simpl; auto.
assert (l = m) by (eapply empty_Rw_rt_elim; eauto).
subst. right; auto.
assert (m = n) by (eapply empty_Rw_rt_elim; eauto).
subst. right; auto.
destruct s as [x [l_x x__m]].
right; exists x.
destruct s0 as [y [m_y y__n]].
split; eauto.
Qed.
(** Any reduction sequence with a last step also has a first step,
which we can construct. *)
Lemma last_step_first_step_lemma:
forall a y,
(a ~>> y) -> forall z, (y ~> z) -> {x : Term & ((a ~> x) * (x ~>> z))%type}.
Proof.
intros a y H_a_downto_y.
intros.
pose (redn := Rw_rt_trans a y z H_a_downto_y (Rw_rt_step _ _ H)).
destruct (Rw_rt_destruct a z redn).
subst redn.
simpl in *.
intuition.
auto.
Qed.
(** Beta reduction preserves types:
[E |- N{M/k} : T] when
[E, x:S |- N : T] and
[E |- M : S]
*)
Lemma Rw_beta_preserves_types_general:
forall S env' N T M env k,
k = length env ->
Typing env' M S ->
Typing (env++(S::env')) N T ->
Typing (env++env')
(unshift k 1 (subst_env k (shift 0 (k+1) M :: nil) N))
T.
Proof.
induction N; intros T M env k k_def M_tp N_tp; simpl; inversion N_tp; eauto.
(* TmConst--handled by eauto *)
(* TmVar *)
subst.
assert (H: x < length (env++(S::env'))).
eapply nth_error_to_length; eauto.
rewrite app_length in H.
simpl in H.
destruct (le_gt_dec (length env) x).
destruct (eq_nat_dec x (length env)).
(* 'x' points to the type 'S' *)
subst x.
replace (length env - length env) with 0 by omega.
replace (nth_error (shift 0 1 M :: nil) 0)
with (value (shift 0 1 M)); auto.
simpl.
rewrite fancy_unshift_shift; auto; [|omega].
replace (length env+1-1) with (length env); auto; [|omega].
replace (env++env') with (nil++env++env'); auto.
eapply shift_preserves_typing with env'; auto.
apply nth_error_app in H0; auto.
replace (length env - length env) with 0 in H0 by omega.
simpl in H0.
inversion H0.
auto.
(* 'x' is in the second environment. *)
assert (length env < x) by omega.
assert (0 < x-length env) by omega.
replace (nth_error (shift 0 (length env + 1) M::nil) (x-length env))
with (error : option Term).
simpl.
apply TVar.
unfold unshift_var.
destruct (le_gt_dec (1 + length env) x); [ | omega].
apply nth_error_app in H0; auto.
replace (S::env') with ((S::nil)++env') in H0; auto.
apply nth_error_app in H0; auto.
simpl in H0.
rewrite rewrite_nth_error_app.
replace (x - 1 - length env) with (x - length env - 1) by omega.
auto.
omega.
(* Prove that nth_error (_::nil) z = error when z > 0. *)
symmetry; apply nth_error_overflow.
simpl.
omega.
(* x is in the first environment *)
apply TVar.
replace (unshift_var (length env) 1 x) with x.
rewrite <- nth_error_ext_length; auto.
rewrite <- nth_error_ext_length in H0; auto.
rewrite unshift_var_lo; auto.
(* TmPair *)
(* handled by eauto *)
(* TmProj *)
(* handled by eauto *)
(* TmAbs *)
apply TAbs.
replace (s::env++env') with ((s::env)++env') by auto.
replace (shift 0 1 (shift 0 (k+1) M)) with (shift 0 (Datatypes.S k+1) M)
by (rewrite shift_shift; auto).
apply IHN; simpl; auto.
(* TmApp *)
(* handled by [eauto] at the top. *)
Qed.
(** Beta reduction preserves types, specialized to reduce at the head
of the environment. *)
Lemma Rw_beta_preserves_types:
forall S env' N T M,
Typing env' M S ->
Typing (S::env') N T ->
Typing env' (unshift 0 1 (subst_env 0 (shift 0 1 M :: nil) N)) T.
Proof.
intros.
replace env' with (nil++env'); auto.
eapply Rw_beta_preserves_types_general; eauto.
Qed.
(** The rewrite relation preserves the [Typing] judgment. *)
Lemma Rw_preserves_types:
forall M M',
(M ~> M') -> forall env T,
Typing env M T -> Typing env M' T.
Proof.
intros M M' red.
induction red;
intros env T T_tp;
inversion T_tp as [| | | ? ? S T' TmAbs_N_tp | | |]; eauto.
(* Case Beta_reduction -> *)
inversion TmAbs_N_tp.
subst.
eapply Rw_beta_preserves_types; eauto.
(* Case Beta reduction TPair (1) *)
subst T.
inversion H0; auto.
(* Case Beta reduction TPair (2) *)
subst T.
inversion H0; auto.
Qed.
(** The reflexive-transitive rewrite relation preserves the [Typing] judgment. *)
Lemma Rw_rt_preserves_types:
forall env M M' T,
Typing env M T -> (M ~>> M') -> Typing env M' T.
Proof.
intros env M M' T M_tp M_red_M'.
induction M_red_M'; eauto using Rw_preserves_types; try congruence.
Qed.
Hint Resolve Rw_rt_preserves_types.
Require Import Listkit.All.
Require Import Listkit.AllType.
Require Import Listkit.Sets.
Require Import OutsideRange.
Lemma subst_env_compat_rw:
forall M M',
(M ~> M') ->
forall n env,
(subst_env n env M ~> subst_env n env M').
Proof.
intros M M' H.
induction H as [ | M1 M2 N
| M N1 N2
| N N'
| M1 M2 N
| M N1 N2
| M1 M2 b
| M N
| M N ];
intros n env.
(* Case BetaRed *)
(* Write out the beta reduction: *)
simpl.
apply Rw_beta.
(* Now we only have to show that certain complex substitutions are equal.
The situation at this point can be summarized as:
(1) -----------> (2) -----------> (4)
subst 0 {M''} unshift 0 1
^ ^
| |
| subst n+1 env' | subst n env
| |
N -----------> (3) -----------> V
subst 0 {M'} unshift 0 1
where
env' = map shift01 env
M' = shift01 M
M'' = shift01 (subst n env M)
*)
subst V.
(* Push subst_env inside unshift. *)
rewrite subst_unshift (*if this used outside_range, how would it be different? *);
[ | omega | ].
f_equal.
(* From here on we're just working with the left-hand square of the above diagram,
(1) -----------> (2)
subst 0 {M''}
^ ^
| |
| subst n+1 env' | subst n+1 env'
| |
N ------------> (3)
subst 0 {M'}
*)
replace (n+1) with (S n) by omega.
remember (shift 0 1 M) as M'.
remember (shift 0 1 (subst_env n env M)) as M''.
remember (map (shift 0 1) env) as env'.
(* Push shift inside subst_env in M''. *)
rewrite shift_subst_commute_lo in HeqM'' by omega.
replace (n+1) with (S n) in HeqM'' by omega.
(* We have reduced the problem to subst_factor and some obligations. *)
rewrite <- subst_factor. (* with m:= 0, n:= S n *)
subst; sauto.
(* Obligations of subst_factor: *)
(* Obl 1: All freevars of every term in [map (shift 0 1) env] are not in
the env_domain of _::nil, i.e. the interval [0,1). *)
unfold in_env_domain.
simpl.
subst env'.
apply all_map_image.
intros X.
pose (shift_freevars X 0).
firstorder.
(* Obl 2: Substitutions do not overlap:
(0, [_]) does not overlap (S n, _). *)
simpl.
solve [omega].
(* Obligations of subst_unshift: *)
(* Obl 1: That fvs of N{[shift 0 1 M]/0} are all outside [0,1). *)
(* TODO some redundancy with the above obl 1 *)
pose (fvs_M := freevars (shift 0 1 M)).
pose (fvs_N := freevars N).
remember (freevars (subst_env 0 (shift 0 1 M :: nil) N)) as fvs.
(* Assert: fvs ⊆ (fvs_N ∖ {0}) ∪ fvs_M *)
assert (H : incl_sets _
fvs
(set_union eq_nat_dec
fvs_M
(set_filter _
(fun x => outside_range 0 (1+0) x) fvs_N))).
subst fvs fvs_M fvs_N.
replace (freevars (shift 0 1 M))
with (set_unions _ eq_nat_dec (map freevars (shift 0 1 M :: nil)))
by auto.
apply subst_Freevars; sauto.
(* Now we have H : fvs ⊆ (fvs_N ∖ {0}) ∪ fvs_M *)
(* TODO: From here out, basically just set math, plus shift_freevars *)
eapply all_Type_incl.
apply H.
apply all_Type_union_fwd.
split.
subst fvs_M.
pose (shift_freevars M 0). (* only need another step because all /= all_Type. *)
firstorder.
apply all_Type_filter.
apply outside_range_elim.
(* Case Reduction in lhs of apply *)
simpl.
apply Rw_App_left.
apply IHRewritesTo.
(* Case Reduction in rhs of apply *)
simpl.
apply Rw_App_right.
apply IHRewritesTo.
(* Case Reduction in Abs body. *)
simpl.
apply Rw_Abs_body. (* TODO: Can we somehow set up a congruence to obviate this step? *)
apply IHRewritesTo.
(* Case: Reduction in left side of pair *)
simpl.
apply Rw_Pair_left.
eauto.
(* Case: Reduction in right side of pair *)
simpl.
apply Rw_Pair_right.
eauto.
(* Case: Reduction under a TmProj *)
simpl.
apply Rw_Proj. (* eauto works fine! *)
eauto.
(* Case: Beta reduction of TmProj false *)
simpl.
apply Rw_Proj_beta1.
(* Case: Beta reduction of TmProj false *)
simpl.
apply Rw_Proj_beta2.
Qed.
Lemma subst_env_compat_Rw_trans:
forall M M' n env,
(M ~>> M') -> (subst_env n env M ~>> subst_env n env M').
Proof.
intros M M' n env H.
induction H.
apply Rw_rt_refl.
subst m.
auto.
apply Rw_rt_step.
apply subst_env_compat_rw.
auto.
apply Rw_rt_trans with (subst_env n env m); auto.
Qed.
Import Setoid.
Require Import Listkit.Foreach.
(** If [shift k 1 N] reduces, then that reduct is equal to the
[shift k 1] of some term which is a reduct of [N]. *)
Lemma shift_Rw_inversion:
forall N M k,
(shift k 1 N ~> M) ->
{N' : Term & ((M = shift k 1 N') * (N ~> N')) %type}.
Proof.
induction N; simpl; intros M k red.
(* Case TmConst *)
inversion red.
(* Case TmVar *)
inversion red.
(* Case TmPair *)
inversion red.
destruct (IHN1 m2 k) as [x [e r]]; [auto | ].
exists (TmPair x N2).
simpl.
subst m2.
eauto.
destruct (IHN2 n2 k) as [x [? ?]]; [auto | ].
exists (TmPair N1 x).
simpl.
subst n2.
eauto.
(* Case TmProj *)
inversion red; subst.
destruct (IHN m2 k) as [N' [? ?]]; [auto|].
exists (TmProj b N').
simpl.
subst m2.
eauto.
descrim N (* must be pair *).
simpl in *.
exists N1.
simpl.
intuition (congruence ||auto).
descrim N.
simpl in *.
exists N2.
simpl.
intuition (congruence || auto).
(* Case TmAbs *)
inversion red.
subst.
destruct (IHN n' (S k) H0) as [N' N'_def].
exists (TmAbs N').
destruct (N'_def) as [N'_def N_red_N'].
simpl.
subst.
eauto.
(* Case TmApp *)
(* Take cases on the reductions: *)
inversion red.
(* Case: Beta reduction. *)
(* Show that N1 is an abstraction. *)
destruct N1; simpl in H; unfold shift_var; try discriminate.
(* Now the old N1 is (TmAbs N1) *)
simpl in red.
inversion H.
subst N.
exists (unshift 0 1 (subst_env 0 (shift 0 1 N2::nil) N1)).
subst M.
subst V.
split; [ | auto].
rewrite shift_unshift_commute; [ | | solve[omega]].
rewrite shift_subst_commute_hi ; [ | simpl; omega].
simpl.
rewrite shift_shift_commute; [ | omega].
solve [trivial]...
(* Obligation of shift_unshift_commute: that 0 \not\in subst_env 0 [shift 0 1 N2] N1. *)
clear red H H1 M0 k IHN2 IHN1.
rewrite subst_Freevars by auto.
simpl.
intro H0.
apply set_union_elim in H0.
destruct H0.
apply shift_freevars in H.
omega.
apply set_filter_elim in H.
destruct H.
unfold outside_range in *.
revert H0.
break; try break; intros; (try omega; try discriminate).
(* Case: reduction in left part of application. *)
destruct (IHN1 m2 k) as [m2' [m2'_def m2'_red]]; [auto | ].
exists (m2'@N2).
simpl.
subst m2.
eauto.
(* Case: reduction in right part of application. *)
destruct (IHN2 n2 k) as [n2' [n2'_def n2'_red]]; [auto | ].
exists (N1@n2').
simpl.
subst n2.
eauto.
Qed.