forked from ezrakilty/sn-stlc-de-bruijn-coq
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNormalize.v
113 lines (106 loc) · 2.85 KB
/
Normalize.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
Require Import List.
Require Import Term.
(* TODO: Shift and Subst are needed only to appease the final line
where I offer a beta-reduced term for Coq's benefit. It should really
be able to deduce that term by itself, and I wouldn't need to name
these crotchety details. *)
Require Import Shift.
Require Import Subst.
Require Import Rewrites.
Require Import Norm.
Require Import sn3.
Definition Rewrites M := { Z : Term & M ~> Z }.
Definition Normal M := notT (Rewrites M).
(* Notation "M ~/" := (Normal M) (at level 100). *)
Inductive IsPair M :=
is_pair_of A B : TmPair A B = M -> IsPair M.
Lemma Normal_decidable:
forall M env T,
Typing env M T -> Rewrites M + {Normal M}.
Proof.
intros M.
unfold Normal.
induction M; simpl; intros env T tp; inversion tp; subst.
right; intros [? r]; inversion r.
right; intros [? r]; inversion r.
(* Case TmPair *)
specialize (IHM1 env s H1).
specialize (IHM2 env t H3).
destruct IHM1. (* Favor the first pair component; reduce it first. *)
left.
destruct r.
exists (TmPair x M2); eauto.
destruct IHM2.
left.
destruct r.
exists (TmPair M1 x); eauto.
right; intro H; destruct H; inversion r; firstorder.
(* Case TmProj false *)
specialize (IHM env (TyPair T t) H2).
unfold Rewrites.
destruct IHM.
left.
destruct r.
eauto.
destruct M; try (solve [right; intros [? r]; inversion r; firstorder]).
left; eauto.
(* Case TmProj true *)
specialize (IHM env (TyPair s T) H2).
unfold Rewrites.
destruct IHM.
left.
destruct r.
eauto.
destruct M; try (solve [right; intros [? r]; inversion r; firstorder]).
left; eauto.
(* Case TmAbs *)
destruct (IHM (s::env) t H0).
left; unfold Rewrites in *.
destruct r as [M' H].
eauto.
right.
contrapose n.
destruct n.
unfold Rewrites.
inversion r.
eauto.
(* Case TmApp *)
destruct (IHM1 env _ H1).
left.
destruct r.
exists (TmApp x M2); eauto.
destruct (IHM2 env _ H3).
left.
destruct r.
exists (TmApp M1 x); eauto.
unfold Rewrites.
destruct M1; try (solve [right; intros [? r]; inversion r; firstorder]).
left.
(* TODO: I shouldn't have to give this explicitly. Coq should be able to deduce it. :-( *)
set (Z := unshift 0 1 (subst_env 0 (shift 0 1 M2 :: nil) M1)).
exists Z.
eauto.
Qed.
Lemma normalization_algorithm:
forall M T,
Typing nil M T ->
{ Z : Term & ((M ~>> Z) * Normal Z) %type}.
Proof.
intros.
assert (SN M).
apply normalization with T; auto.
redseq_induction M.
assert (H2 : Typing nil M0 T) by eauto.
assert (SN M0).
eapply Rw_trans_preserves_SN; eauto. (* TODO: Hint Resolve *)
destruct (Normal_decidable M0 nil T H2).
destruct H3 as [s].
destruct r as [M1 r].
pose (s M1 r).
pose (IHM M1 r).
lapply s1; [intro| eauto].
destruct H3 as [Z [H4 H5]].
exists Z.
intuition (eauto).
eauto.
Qed.