-
Notifications
You must be signed in to change notification settings - Fork 47
/
EWD998_proof.tla
52 lines (42 loc) · 1.6 KB
/
EWD998_proof.tla
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
---------------------- MODULE EWD998_proof ---------------------
EXTENDS EWD998, TLAPS
USE NIsPosNat DEF
Color, Node,
Init, Spec,
Next, vars,
System, InitiateProbe, PassToken,
Environment, SendMsg, RecvMsg, Deactivate,
TypeOK
LEMMA TypeCorrect == Spec => []TypeOK
<1>1. Init => TypeOK OBVIOUS
<1>2. TypeOK /\ [Next]_vars => TypeOK'
<1>3. QED BY <1>1, <1>2, PTL
THEOREM TerminationDetection == Spec => []IInv
<1> USE TypeCorrect DEF IInv, Inv, Sum
<1>1. Init => IInv
<1>2. IInv /\ [Next]_vars => IInv'
<1>3. QED BY <1>1, <1>2, PTL
\* TODO Have fun and prove TerminationDetection above! When done, file a PR
\* TODO for the TLA+ examples at https://examples.tlapl.us :-)
=============================================================================
\* The <1>1 proof obligation is not OBVIOUS, but the failed proof obligation
\* nicely shows the equivalence of the special syntax for recursive functions
\* F[e \in S] == ... and CHOOSE.
\* Below is an excerpt of what TLAPS returns for <1>1:
ASSUME NEW CONSTANT N,
NEW VARIABLE active,
NEW VARIABLE pending,
NEW VARIABLE color,
NEW VARIABLE counter,
NEW VARIABLE token,
N \in Nat \ {0}
PROVE (/\ ...
=> ...
/\ /\ P0::(B
= (CHOOSE sum :
sum
= [i \in 0..N - 1 |->
IF i = 0
THEN counter[i]
ELSE sum[i - 1] + counter[i]])[N - 1])
/\ \/ P1:: ...