forked from rs-dl/TSAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
alexnet_train.py
278 lines (245 loc) · 13.8 KB
/
alexnet_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
import sys
import random
import os
import torch.nn as nn
import torch
import math
import torch.backends.cudnn as cudnn
import torch.optim as optim
import torch.utils.data
from torch.autograd import Variable
from torchvision import datasets
from torchvision import transforms
from models.model import *
import numpy as np
from tqdm import tqdm
import torch.nn.functional as F
from vat import VATLoss
from utils import LinePlotter
from dataset.data_loader import get_loader,get_cluster_loader,get_provided_cluster_loader,get_noshuffle_loader
from alex_function import *
import shutil
import time
time = str(time.strftime('%Y_%m_%d %H:%M:%S',time.localtime(time.time())))
import argparse
sys.path.append("../IDEC")
from idecRS import *
#2: initialize hyper-parameter and environment
parser = argparse.ArgumentParser()
parser.add_argument("--dataset_name", help="set dataset name, MTRS", default="MTRS")
parser.add_argument("--model_name", help="model name", default="alexnet")
parser.add_argument("--source_name", help="set source domain, form MTRS:(A,N,P,R,U,W)", default="A")
parser.add_argument("--batch_size", help="set batch size", type=int, default=32)
parser.add_argument("--update_meta_iter", help="set update meta iter number", type=int, default=2000)
parser.add_argument("--test_iter", help="set test iter number", type=int, default=400)
parser.add_argument("--snapshot", help="set which folder to save model and result", default="/data/zjp/MUDO-RSD/snapshot/btdaVATEntropy/")
parser.add_argument("--lr", help="set learning rate", type=int, default=1e-3)
parser.add_argument("--gpu_id", help="set gpu id", type=int, default=0)
parser.add_argument("--is_in", help="whether use ", type=int, default=0)
parser.add_argument("--image_size", help="set input image size", type=int, default=227)
parser.add_argument("--max_iter", help="set max iter times", type=int, default = 40000)
parser.add_argument("--beta_val", help="set beta value", type=int, default= 0.01 )
parser.add_argument("--lambda_val", help="set lambda value", type=int, default= 0.1)
parser.add_argument("--gamma_val", help="set gamma value", type=int, default= 0.01)
parser.add_argument("--rho_val", help="set rho value", type=int, default= 0.01)
parser.add_argument("--is_initialize", help="whether initialize cluster labels or use provided cluster labels", type=int,default=1)
parser.add_argument("--data_root", help="set dataset file", default=('dataset/'+parser.parse_args().dataset_name+'/imgs/'))
parser.add_argument("--task_name", help="generate this task's name", \
default= parser.parse_args().source_name+'_2_all')
parser.add_argument("--snapshot_file", help="generate folder to save models and result", \
default='/data/zjp/MUDO-RSD/snapshot/btdaVATEntropy/' + 'alexnet_' + parser.parse_args().source_name+'_VATENT_' + parser.parse_args().dataset_name + time )
parser.add_argument("--update_list_file", \
default= parser.parse_args().snapshot_file+'/update_list/' )
parser.add_argument("--snapshot_model_file", \
default= parser.parse_args().snapshot_file+'/model/' )
parser.add_argument("--snapshot_model_name", \
default= parser.parse_args().snapshot_model_file+parser.parse_args().task_name+'_current_model.pth')
parser.add_argument("--snapshot_max_accuracy_model_name", \
default= parser.parse_args().snapshot_model_file+parser.parse_args().task_name+'_max_accuracy_model.pth')
parser.add_argument("--result_file_folder", \
default= parser.parse_args().snapshot_file+'/result/')
parser.add_argument("--result_file_name", \
default= parser.parse_args().snapshot_file+'/result/result.txt')
parser.add_argument("--image_npz_file", help="pack images to npz flie", \
default= '/data/zjp/MUDO-RSD/dataset/image_npz/'+parser.parse_args().source_name+'.npz' )
parser.add_argument("--image_test_npz_file", help="pack test images to npz flie to boost test", \
default= '/data/zjp/MUDO-RSD/dataset/image_npz/'+parser.parse_args().source_name+'_test.npz' )
parser.add_argument("--image_npz_update_file", \
default= parser.parse_args().update_list_file+parser.parse_args().source_name+'_alexnet_update.npz' )
parser.add_argument("--max_accuracy", help="max accuracy on test data", default= 0.0 )
parser.add_argument("--max_accuracy_iter", help="max accuracy's iter num", default= 0 )
parser.add_argument("--tmp_accuracy", help="current accuracy on test data", default= 0.0 )
args = parser.parse_args()
os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu_id)
# ploter = LinePlotter(args)
cuda = True
cudnn.benchmark = True
manual_seed = random.randint(1, 10000)
random.seed(manual_seed)
torch.manual_seed(manual_seed)
# creat snapshot
if os.path.exists(args.snapshot_file)==False:
os.makedirs(args.snapshot_file)
os.makedirs(args.update_list_file)
os.makedirs(args.snapshot_model_file)
os.makedirs(args.result_file_folder)
#load source trianing, target testing loader
dataloader_source_train, dataloader_target_test = get_loader(args)
#1: pack test imgs to npz file
if os.path.exists(args.image_test_npz_file)==False:
make_test_npz_file(dataloader_target_test,args)
print ("loading test images")
dataset = Test_Dataset(args.image_test_npz_file)
t_loader_test = DataLoader(dataset, batch_size=args.batch_size, shuffle=False)
#load cluster label loader
#1: pack imgs to npz file
if os.path.exists(args.image_npz_file)==False:
make_npz_file(args)
#2: initialize cluster label
if args.is_initialize == 1:
print ("initialize cluster label")
initialize_MTRS_meta_learner(parser)
#3: load initialize cluster label loader
dataloader_cluster_label = get_cluster_loader(args)
else:
#3: load provided cluster label loader
dataloader_cluster_label = get_provided_cluster_loader(args)
dataloader_no_shuffle = get_noshuffle_loader(args)
if args.dataset_name == "MTRS":
my_net = Alex_Model_MTRS().cuda()
else:
my_net = Alex_Model_Office31().cuda()
my_net.load_state_dict(torch.load("bvlc_model/bvlc_model.pth"),strict=False)
loss_class = torch.nn.CrossEntropyLoss().cuda()
loss_domain = torch.nn.BCEWithLogitsLoss().cuda()
count = 0
my_net.train()
for p in my_net.parameters():
p.requires_grad = True
s_loader = iter(dataloader_source_train)
t_loader = iter(dataloader_cluster_label)
gamma =0.001
power = 0.75
try:
with tqdm(total=args.max_iter, dynamic_ncols=True) as pbar:
for iter_count in range(args.max_iter):
try:
pbar.update(1)
except IOError:
pbar.update(1)
try:
t_imgs, t_labels = t_loader.next()
except StopIteration:
t_loader = iter(dataloader_cluster_label)
t_imgs, t_labels = t_loader.next()
except OSError:
t_loader = iter(dataloader_cluster_label)
t_imgs, t_labels = t_loader.next()
try:
s_imgs, s_labels = s_loader.next()
except StopIteration:
s_loader = iter(dataloader_source_train)
s_imgs, s_labels = s_loader.next()
except OSError:
s_loader = iter(dataloader_source_train)
s_imgs, s_labels = s_loader.next()
s_imgs, s_labels = Variable(s_imgs.cuda()), Variable(s_labels.cuda())
t_imgs, t_labels = Variable(t_imgs.cuda()), Variable(t_labels.cuda())
t_labels = t_labels.long()
p = min(1.0,float(iter_count*1.0) / (20000.0))
alpha = 2. / (1. + np.exp(-10 * p)) - 1
c_lr = args.lr*(1+gamma*iter_count)**(-power)
#set optim
optim_net = optim.SGD([
{'params': my_net.feature.conv1.weight , 'lr': 1.0*c_lr },
{'params': my_net.feature.conv1.bias , 'lr': 2.0*c_lr },
{'params': my_net.feature.conv2.weight , 'lr': 1.0*c_lr },
{'params': my_net.feature.conv2.bias , 'lr': 2.0*c_lr },
{'params': my_net.feature.conv3.weight , 'lr': 1.0*c_lr },
{'params': my_net.feature.conv3.bias , 'lr': 2.0*c_lr },
{'params': my_net.feature.conv4.weight , 'lr': 1.0*c_lr },
{'params': my_net.feature.conv4.bias , 'lr': 2.0*c_lr },
{'params': my_net.feature.conv5.weight , 'lr': 1.0*c_lr },
{'params': my_net.feature.conv5.bias , 'lr': 2.0*c_lr },
{'params': my_net.feature.fc6.weight , 'lr': 1.0*c_lr },
{'params': my_net.feature.fc6.bias , 'lr': 2.0*c_lr },
{'params': my_net.feature.fc7.weight , 'lr': 1.0*c_lr },
{'params': my_net.feature.fc7.bias , 'lr': 2.0*c_lr },
{'params': my_net.bottleneck.weight , 'lr': 10.0*c_lr },
{'params': my_net.bottleneck.bias , 'lr': 20.0*c_lr },
{'params': my_net.class_classifier.fc8.weight , 'lr': 10.0*c_lr },
{'params': my_net.class_classifier.fc8.bias , 'lr': 20.0*c_lr },
{'params': my_net.domain_classifier.dc_ip1.weight , 'lr': 10.0*c_lr },
{'params': my_net.domain_classifier.dc_ip1.bias , 'lr': 20.0*c_lr },
{'params': my_net.domain_classifier.dc_ip2.weight , 'lr': 10.0*c_lr },
{'params': my_net.domain_classifier.dc_ip2.bias , 'lr': 20.0*c_lr },
{'params': my_net.dc_ip3_st.weight , 'lr': 10.0*c_lr },
{'params': my_net.dc_ip3_st.bias , 'lr': 20.0*c_lr },
{'params': my_net.dc_ip3_mt.weight , 'lr': 10.0*c_lr },
{'params': my_net.dc_ip3_mt.bias , 'lr': 20.0*c_lr }
], lr=c_lr,momentum= 0.9)
my_net.zero_grad()
# training model using source data
batch_size = len(s_labels)
domain_s_label = torch.zeros(batch_size)
domain_s_label = domain_s_label.float()
domain_s_label = Variable(domain_s_label.cuda())
class_output, _ , _,_ = my_net(input_data=s_imgs, alpha=alpha)
#calculate Vst
#calculate Classification loss
Classification_loss = loss_class(class_output, s_labels)
# training model using target data
batch_size = len(t_imgs)
domain_t_label = torch.ones(batch_size)
domain_t_label = domain_t_label.float()
domain_t_label = Variable(domain_t_label.cuda())
imgs = torch.cat((s_imgs, t_imgs,), 0)
labels = torch.cat((domain_s_label,domain_t_label,), 0)
_, domain_output, _,_ = my_net(input_data=imgs, alpha=alpha)
#calculate Adversarial DA loss
labels = torch.unsqueeze(labels, 1)
Adversarial_DA_loss = loss_domain(domain_output, labels)
#calculate Vst
Vst = Classification_loss + args.lambda_val * Adversarial_DA_loss
t_class_output,_, domain_output_mt,_ = my_net(t_imgs,alpha=alpha)
#calculate Vmt
Vmt = loss_class(domain_output_mt, t_labels)
#calculate Lent
Lent = loss_entropy(t_class_output)
#calculate Lvir
vat_loss = VATLoss(xi=10.0, eps=1.0, ip=1)
s_vat_loss = vat_loss(my_net,s_imgs)
t_vat_loss = vat_loss(my_net,t_imgs)
Lvir = s_vat_loss + args.rho_val * t_vat_loss
loss = Vst + args.gamma_val*Vmt + args.beta_val*Lent + Lvir
loss.backward()
optim_net.step()
if iter_count%10 == 0:
tqdm.write("iter is : {} Classification loss is :{:.3f} Lent is :{:.3f} Adversarial DA loss is :{:.3f} Vmt is:{:.3f} gamma_val is:{:.3f}".format(iter_count,Classification_loss.item(), Lent.item(), Adversarial_DA_loss.item(),Vmt.item(), args.gamma_val))
# Meta-update
if (iter_count%args.update_meta_iter == 0)and(iter_count>1):
torch.save(my_net.state_dict(), args.snapshot_model_name)
dataloader_cluster_label = update_teacher(dataloader_no_shuffle,parser)
t_loader = iter(dataloader_cluster_label)
if (iter_count%args.test_iter == 0)and(iter_count>1):
torch.save(my_net.state_dict(), args.snapshot_model_name)
args.tmp_accuracy = test_model(t_loader_test,iter_count,args)
#save max accuracy model
if args.tmp_accuracy > args.max_accuracy:
args.max_accuracy = args.tmp_accuracy
args.max_accuracy_iter = iter_count
torch.save(my_net.state_dict(), args.snapshot_max_accuracy_model_name)
result = open(args.result_file_name,"a")
result.write("temp accuracy is:" + str("%.5f" % (args.tmp_accuracy * 100.0)) + " max accuracy is :"+str("%.5f" % (args.max_accuracy*100.0)) + " iter is :"+str(iter_count)+"\n")
result.close()
except OSError:
print("OSError")
except KeyboardInterrupt:
pbar.close()
raise
pbar.close()
print ("max accuracy is : ",str(args.max_accuracy))
print ("max equal weight accuracy is : ",str(test_model_equal_weight(args)))
shutil.copy(args.snapshot_max_accuracy_model_name,\
args.snapshot_model_file+args.task_name+'_accuracy_is_'+str("%.3f" % (args.max_accuracy*100.0))+'.pth')
sys.exit()