forked from rs-dl/TSAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
alex_function.py
344 lines (300 loc) · 12.1 KB
/
alex_function.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
import sys
import random
import os
from PIL import Image
import tqdm
import torch.nn as nn
import torch
from torch.utils.data import DataLoader
import torch.backends.cudnn as cudnn
from dataset.data_loader import get_loader,get_cluster_loader
import torch.optim as optim
import torch.utils.data
from torch.autograd import Variable
from torchvision import datasets
from torchvision import transforms
from models.model import *
import numpy as np
from tqdm import tqdm
from torch.utils.data import Dataset
import shutil
import torch.nn.functional as F
from vat import VATLoss
from dataset.data_loader import *
# sys.path.append("../IDEC")
from idecRS import *
def make_npz_file(args):
target_name_dict = {
'A': 'NPRU',
'N': 'APRU',
'P': 'ANRU',
'R': 'ANPU',
'U': 'ANPR'
}
x_train = np.array([])
y_train = np.array([])
x_train_tmp = np.array([])
y_train_tmp = np.array([])
count = 0
print ("patch target traning set")
fin = open("dataset/"+args.dataset_name+"/"+target_name_dict[args.source_name]+"_domain_List.txt", "r")
for line in tqdm(fin):
data = line.strip().split(" ")
path = args.data_root+data[0]
imgs = Image.open(path).convert('RGB')
imgs = imgs.resize((64, 64),Image.ANTIALIAS)
img = np.asarray(imgs)
x_train_tmp = np.append(x_train_tmp,img)
y_train_tmp = np.append(y_train_tmp,int(data[1]))
count +=1
if count%100==0:
x_train = np.concatenate((x_train,x_train_tmp))
y_train = np.concatenate((y_train,y_train_tmp))
x_train_tmp = np.array([])
y_train_tmp = np.array([])
fin.close()
x_train = np.concatenate((x_train,x_train_tmp))
y_train = np.concatenate((y_train,y_train_tmp))
x_train= x_train.reshape(count,64,64,3)
y_train= y_train.reshape(count,-1)
print (count)
np.savez(args.image_npz_file, x_train=x_train,y_train=y_train)
def make_test_npz_file(dataloader_target_test,args):
x_train = np.array([])
y_train = np.array([])
x_train_tmp = np.array([])
y_train_tmp = np.array([])
count = 0
print ("patch target testing set")
# fin = open("dataset/" + args.dataset_name+"/"+target_name_dict[args.source_name]+"List.txt", "r")
for (imgs, labels) in tqdm(dataloader_target_test):
# for line in tqdm(fin):
# data = line.strip().split(" ")
# path = args.data_root+data[0]
# imgs = Image.open(path).convert('RGB')
# imgs = imgs.resize((227, 227), Image.ANTIALIAS)
# img = np.asarray(imgs)
imgs = imgs.data.cpu().numpy()
labels = labels.data.cpu().numpy()
x_train_tmp = np.append(x_train_tmp,imgs)
y_train_tmp = np.append(y_train_tmp,labels)
# y_train_tmp = np.append(y_train_tmp, int(data[1]))
count +=labels.shape[0]
# count += 1
if count%50==0:
x_train = np.concatenate((x_train,x_train_tmp))
y_train = np.concatenate((y_train,y_train_tmp))
x_train_tmp = np.array([])
y_train_tmp = np.array([])
x_train = np.concatenate((x_train,x_train_tmp))
y_train = np.concatenate((y_train,y_train_tmp))
print (x_train.shape)
print (y_train.shape)
print (count)
x_train= x_train.reshape(count,3,227,227)
y_train= y_train.reshape(count,-1)
print (x_train.shape)
print (y_train.shape)
np.savez(args.image_test_npz_file, x_train=x_train,y_train=y_train)
def print_log(epoch, Classification_loss, Lent,Adversarial_DA_loss,Adversarial_DA_loss_Dst,\
Lcf,Vmt,V_tilde_mt,tmp_accuracy,gamma_val, ploter, count):
ploter.plot("Classification_loss", "train", count, Classification_loss)
ploter.plot("Lent", "train", count, Lent)
ploter.plot("Adversarial_DA_loss", "train", count, Adversarial_DA_loss)
ploter.plot("Adversarial_DA_loss_Dst", "train", count, Adversarial_DA_loss_Dst)
ploter.plot("Lcf", "train", count, Lcf)
ploter.plot("Vmt", "train", count, Vmt)
ploter.plot("V_tilde_mt", "train", count, V_tilde_mt)
ploter.plot("tmp_accuracy", "train", count, tmp_accuracy)
ploter.plot("gamma_val", "train", count, gamma_val)
class Test_Dataset(Dataset):
def __init__(self,path):
self.x, self.y = load_all(path)
def __len__(self):
return self.x.shape[0]
def __getitem__(self, idx):
return torch.from_numpy(np.array(self.x[idx])), torch.from_numpy(
np.array(self.y[idx])), torch.from_numpy(np.array(idx))
def load_all(path):
print(path)
f = np.load(path)
x_train, y_train = f['x_train'], f['y_train']
y_train = y_train.reshape(-1)
y_train = y_train.astype(np.int32)
x_train = x_train.astype(np.float32)
f.close()
return x_train, y_train
def test_model(t_loader_test,iter_count,args):
test_net = Alex_Model_MTRS().cuda()
test_net.load_state_dict(torch.load(args.snapshot_model_name))
test_net.eval()
correct = 0
total = 0
try:
for (imgs, labels,_) in tqdm(t_loader_test):
imgs = Variable(imgs.cuda())
s_cls,_ ,_,_= test_net(imgs,0)
s_cls = F.softmax(s_cls)
s_cls = s_cls.data.cpu().numpy()
res = s_cls
pred = res.argmax(axis=1)
labels = labels.numpy()
correct += np.equal(labels, pred).sum()
total +=labels.shape[0]
current_accuracy = correct * 1.0 / total
print("Current accuracy is: {:.4f}%".format(current_accuracy*100.0))
except OSError:
print("OSError")
current_accuracy = 0
except IOError:
print("IOError")
current_accuracy = 0
except RuntimeError:
print("RuntimeError")
current_accuracy = 0
return current_accuracy
def test_model_single(t_loader_test,iter_count,args):
test_net = Alex_Model_MTRS().cuda()
test_net.load_state_dict(torch.load(args.snapshot_model_name))
test_net.eval()
correct = 0
total = 0
try:
for (imgs, labels) in tqdm(t_loader_test):
imgs = Variable(imgs.cuda())
s_cls,_ ,_,_= test_net(imgs,0)
s_cls = F.softmax(s_cls)
s_cls = s_cls.data.cpu().numpy()
res = s_cls
pred = res.argmax(axis=1)
labels = labels.numpy()
correct += np.equal(labels, pred).sum()
total +=labels.shape[0]
current_accuracy = correct * 1.0 / total
print("Current accuracy is: {:.4f}%".format(current_accuracy*100.0))
except OSError:
print("OSError")
current_accuracy = 0
except IOError:
print("IOError")
current_accuracy = 0
except RuntimeError:
print("RuntimeError")
current_accuracy = 0
return current_accuracy
def test_model_equal_weight(args):
if args.dataset_name == "MTRS":
target_name_list = ["A","N", "P", "R", "U","W"]
target_name_list.remove(args.source_name)
# load data
count = 0
total_acc = 0.0
for target_name in target_name_list:
#target test
test_list = "dataset/"+args.dataset_name+"/"+target_name+"List.txt"
test_set = MTRSImage(args.data_root, test_list ,split="test")
cluster_label_raw = torch.utils.data.DataLoader(test_set, batch_size=args.batch_size,
shuffle=False, num_workers=8)
total_acc+=test_model_single(cluster_label_raw,0,args)
count +=1
ave_acc = total_acc*1.0/count
return ave_acc
def loss_entropy(input):
loss = 0
'''for i in range(input.size()[0]):
soft_max = F.softmax(input[i])
loss += -1.0*torch.dot(soft_max,torch.log(soft_max))'''
soft_max = F.softmax(input)
loss = -1.0*torch.dot(soft_max.view(-1),torch.log(soft_max+1e-20).view(-1))
loss /=input.size()[0]
return loss
def two_loss_entropy(input1,labels):
loss = 0
'''for i in range(input1.size()[0]):
soft_max = F.softmax(input1[i])
soft_label = F.softmax(labels[i])
loss += -1.0*torch.dot(soft_label,torch.log(soft_max))'''
soft_max = F.softmax(input1)
soft_label = F.softmax(labels)
loss = -1.0*torch.dot(soft_label.view(-1),torch.log(soft_max+1e-20).view(-1))
loss /=input1.size()[0]
return loss
def im_loss_domain(class_output, t_labels, args):
update_file = args.update_list_file + "cluster_label.txt"
update_lines = open(update_file).readlines()
count = [0, 0, 0, 0]
for line in update_lines:
index = int(line.split()[1])
count[index] += 1
beta = 0.999
effective_num = 1.0 - np.power(beta, count)
weights = (1.0 - beta) / np.array(effective_num)
weights = weights / np.sum(weights) * 4 #no_of_classes
weights = torch.tensor(weights).float().cuda()
loss = torch.nn.CrossEntropyLoss(weight=weights, size_average=True).cuda()
return loss(class_output, t_labels)
def im_loss_class(source, class_output, s_labels):
samples_per_cls = {
'A': [650, 250, 830, 1000, 390, 360, 780, 380],
'N': [2800, 700, 2800, 2800, 700, 1400, 4900, 700],
'P': [800, 800, 1600, 3200, 800, 800, 6400, 1600],
'R': [11117, 9873, 6238, 2534, 2598, 3980, 10655, 2675],
'U': [100, 100, 100, 400, 100, 100, 400, 100],
'W': [111, 53, 110, 54, 50, 55, 110, 53]
}
no_of_classes = 8
num_per_cls = samples_per_cls[source]
beta = 0.9999
effective_num = 1.0 - np.power(beta, num_per_cls)
weights = (1.0 - beta) / np.array(effective_num)
weights = weights / np.sum(weights) * no_of_classes
# labels_one_hot = F.one_hot(s_labels, no_of_classes).float()
weights = torch.tensor(weights).float().cuda()
# weights = weights.unsqueeze(0)
# weights = weights.repeat(labels_one_hot.shape[0], 1) * labels_one_hot
# weights = weights.sum(1)
# weights = weights.unsqueeze(1)
# weights = weights.repeat(1, no_of_classes)
loss = torch.nn.CrossEntropyLoss(weight=weights, size_average=True).cuda()
return loss(class_output, s_labels)
def update_teacher(dataloader_no_shuffle,parser):
print "saving feature concat image npz"
args = parser.parse_args()
model = Alex_Model_MTRS().cuda()
model.load_state_dict(torch.load(args.snapshot_model_name))
model.eval()
count = 0
teacher_feature = np.array([])
tmp = np.array([])
try:
for (imgs, labels) in tqdm(dataloader_no_shuffle):
imgs = Variable(imgs.cuda())
s_cls,_ ,_,feature = model(imgs,0)
feature = feature.data.cpu().numpy()
s_cls = s_cls.data.cpu().numpy()
feature = feature.reshape(-1,4096)
# print(feature.shape)
teacher_feature_tmp = np.concatenate((feature,s_cls),axis=1)
tmp = np.append(tmp,teacher_feature_tmp)
count+=1
if count%50==0:
teacher_feature = np.concatenate((teacher_feature,tmp))
tmp = np.array([])
teacher_feature = np.concatenate((teacher_feature,tmp))
except OSError:
print("OSError")
except IOError:
print("IOError")
except RuntimeError:
print("RuntimeError")
teacher_feature = teacher_feature.reshape(-1,4096+10)
npzfile = np.load(args.image_npz_file)
x_train = npzfile['x_train']
y_train = npzfile['y_train']
x_train= x_train.reshape(-1,64*64*3)
mix_feature = np.concatenate((x_train,teacher_feature),axis=1)
np.savez(args.image_npz_update_file, x_train=mix_feature,y_train=y_train)
print "updating meta"
update_MTRS_meta_learner(parser)
dataloader_cluster_label = get_cluster_loader(args)
return dataloader_cluster_label